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Abstract—The aim of this paper is to propose a new method
of solving feature selection problem. Foundations of presented
algorithm lie in the theory of rough sets. Feature selection
methods based on rough sets have been used with success in many
data mining problems, but their weakness is their computational
complexity. In order to overcome the above-mentioned problem,
researches used diverse approximation techniques. This paper
presents a new approach to approximation of reducts.

Particle swarm optimization (PSO) is a stochastic meta-
heuristic similar to genetic algorithms. The idea is to see each
potential solution as a particle with certain velocity flying
through the problem space. The PSO finds optimal solutions
by interactions of individuals in population. The main advantage
of the PSO over genetic algorithms, is that PSO does not require
complex operators such as crossover or mutation. It only uses
simple mathematical operators to update position and velocity
of each particle, which makes PSO computationally inexpensive
in terms of both memory and runtime.

The presented feature selection algorithm treats each feature
subset as separate particle. Optimal subset, in terms of selected
measure, is discovered as particles fly within the problem space.
In order to speed up calculations and balance usage of hardware
resources (processors, memory), parallel asynchronous version
of PSO is applied. It is based on scheduling calculations of
complex fitness function on slave processors, while the main one is
responsible for updating particles data and checking algorithm’s
convergence. Applied approach scales well and provides balanced
usage of given resources even if it is not feasible to use the same
computational power of every processor, for instance when used
resources are not homogeneous.

Proposed method was tested on selected set of data sets from
the UCI repository and results were compared to some of the
classical algorithms.

Index Terms—Feature Selection, Rough Sets, Particle Swarm
Optimization, Parallel Asynchronous Particle Swarm Optimiza-
tion

I. INTRODUCTION

F
EATURE selection is one of phases in data mining. The

idea is to select subset of attributes, which preserves

knowledge for given information or decision system. There are

two main reasons for doing it. Firstly, it is some kind of data
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compression which eases comprehension of analysed data.

Secondly, most classifiers are better trained on non-redundant

data (compare with [6]). Moreover, removal of superfluous

attributes leads to smaller data, which will quicken classifier

training.

There are many algorithms for feature selection. Some of

them are simple filters concerning every attribute separately.

The more useful ones try to rank sets of attributes. They have

also high computational complexity (see [1]). One of methods

for finding „good” subset of attributes is calculating reducts. It

is based on rough sets theory. The reduct is a set of attributes

which: preserve information contained in full set of attributes

and is minimal, i.e. removing one attribute from reduct leads to

losing some knowledge about data. Unfortunately, calculating

reducts is quite complex [7].

Feature selection algorithms can be divided into two groups:

filters and wrappers ([2] and [3]). The most standard filters

select attributes based on some measure and are classifier

agnostic. On the other hand, wrappers use selected classifier

accuracy as a measure of quality of subset of attributes. By

doing that, they are somewhat „tied” to used classifier and

their results will probably not work well with other learning

algorithms.

The aim of this paper is to present a new feature selection al-

gorithm. It is wrapper algorithm, that uses classical, exhaustive

method for finding reducts and inducing decision rules from

them. Because reducts are induced on a subset of attributes,

time of their calculations should be smaller than time for

obtaining reducts from all attributes. Finding new candidates

for reducts is done by using particle swarm optimization.

The idea was inspired by work presented in [4]. Particle

swarm optimization is meta-heuristic originally developed as

a simulation of birds flocking. Because it is a little simpler to

apply and implement than genetic algorithms, it has gained

researchers attention lately. In order to further speed up

the approximation, parallel asynchronous version of particle

swarm optimization ([14]) was applied.

The rest of this paper is divided as follows. Section II

contains basic information about rough sets theory and reducts

calculations. In section III particle swarm optimization has

been presented. Above-mentioned section also contains com-
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parison of synchronous and asynchronous versions of this

meta-heuristic. Subsection III-C of section III contains de-

tailed information about algorithm presented in [4]. Proposed

algorithm for feature selection is described in section IV,

where it is also compared with method from [4]. In the

same section, experimental results: comparison of reducts and

found attributes subsets, as well as parallelization gains are

also presented. Section V contains conclusions and possible

extensions to presented research.

II. ROUGH SETS

The development of rough sets theory was started by

professor Z. Pawlak in 1981 [5]. Its main purpose is to

deal with uncertainty of information or decision systems. The

information system A is a pair of a non-empty, finite set of

objects U called universe and a non-empty, finite set of their

attributes A (see equation 1).

A = (U,A) (1)

An attribute is a function a : U → Va, ∀a∈A, where set Va is

called a value set of a. The decision system is an information

system extended by one distinguished attribute d /∈ A called

decision.

As objects in information system are described only by

attributes, two cases can occur:

• different objects can have the same values on all at-

tributes, or

• some attributes can be superfluous.

To deal with the former case, an indiscernibility relation is

used. More formally:

INDA(B) =
{

(x, x′) ∈ U2 : ∀a∈Ba(x) = a(x′)
}

(2)

The INDA(B) from equation 2 is called B-indiscernibility

relation. If (x, x′) ∈ INDA(B), then objects x and x′

are indiscernible from each other by attributes from B. The

equivalence classes of the B-indiscernibility relation are de-

noted [x]B .

For a subset of objects X ∈ U and a subset of attributes B ∈
A, X can be approximated only by attributes from B by

constructing its lower approximation BX = {x : [x]B ⊆ X}
and its upper approximation BX = {x : [x]B ∩X 6= ∅}. The

objects in BX are certainly in X basing on knowledge in B,

whereas objects from BX can be classified only as possible

elements of X on the basis of knowledge in B. The set

BNB (X) = BX \BX is called a B boundary region of X ,

and consists of objects which we cannot decisively classify

into X on the basis of knowledge in B. A set is said to

be rough (respectively crisp) if the boundary region is non-

empty (respectively empty).

In order to speed up classification and clarify knowledge

about data, redundant attributes can be removed. To do so, one

can keep only those attributes, which preserve indiscernibility

relation and hence set approximation. Rejected attributes were

redundant since their removal has not worsened classification

accuracy. There are usually several such subsets and those

which are minimal in terms of cardinality are called reducts.

It can be shown that the number of reducts of an information

system with m attributes may be equal to
(

m
⌈m

2
⌉

)

. Moreover,

finding minimal reduct, i.e. a reduct the cardinality of which

is the smallest among other reducts, is NP-hard [7].

In my experiments I have used classical algorithm for

calculating reducts. Its detailed description can be found

in [7]. The algorithm is executed in two steps: calculating

a discernibility matrix and finding all prime implicants of

a discernibility function induced from the discernibility matrix.

Obtaining decision rules from reducts is straightforward: for

each pair of object and reduct those attributes and their values

are taken from object, that are also in reduct. Such pairs create

conditional part of the rule. The decision part is made from

decision for analysed object.

For the information system A with n objects, the discerni-

bility matrix is a symmetric n × n matrix with entries given

in equation 3.

∀i,j∈{1,2,...,n} cij = {a ∈ A : a(xi) 6= a(xj)} (3)

The discernibility function fA for an information system A
is a Boolean function of m Boolean variables a∗

1
, a∗

2
, . . . , a∗m,

which correspond to attributes a1, a2, . . . , am, defined as on

equation 4, where c∗ij = {a∗ : a ∈ cij}.

fA (a∗
1
, a∗

2
, . . . , a∗m) =

∧

{

∨

c∗ij : i, j ∈ {1, 2, . . . , n} ∧ c∗ij 6= 0
}

(4)

The set of all prime implicants determines the set of all reducts

of A.

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization is a stochastic meta-heuristic

developed by Eberhart and Kennedy in 1995 [11]. It was

originally created to graphically model behaviour of bird

flocking or fish schooling. Initial simulations were transformed

into optimization algorithm, and later enhanced by introducing

inertia weight [12].

A. Synchronous Particle Swarm Optimization

Particle swarm optimization is an algorithm similar to

genetic algorithm [15]. In both cases solutions are mapped

into parts of population: in case of particle swarm optimization

population consists of particles, whereas in genetic algorithms

there are individuals or phenotypes who form population. In

both cases near-optimal solution is found as an individual

which is the best fitted one, where fitness measure is the

optimized function. Individuals in a new population are created

by interactions between parts of the previous one.

Particle swarm optimization is initialized with a random

set P = {p1, p2, . . . , pk} of particles. Each particle pi, i ∈
{1, 2, . . . , k} has:

• a position xi in S dimensional space,

• a velocity vi,
• memory of personal best position besti.
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There is also stored position bestg of the best particles found

so far.

In each population, all particles’ positions are updated with

formula 5 and particles’ new fitnesses are calculated.

xi(t+ 1) = xi(t) + vi(t) (5)

Best positions: bestg and besti are updated if necessary.

Particles accelerate according to a formula 6.

vi(t+ 1) = w(t) · vi(t)+

c1 · rand1() · (besti − xi)+

c2 · rand2() · (bestg − xi)

(6)

Velocities cannot be larger than some constant vmax. If they

were, particles would fly too fast and probably miss subspaces

containing optimal solutions. The vmax constant should be

large enough, to allow particles to escape regions with sub-

optimal solutions.

The rand1 and rand2 are uniformly distributed random

functions in [0, 1]. Algorithm’s parameters: c1 and c2 define

particles’ acceleration constants. Their high values correspond

to high attraction of past sub-optimal solutions, whereas low

values allow particles to roam far from target regions. The c1
constant corresponds to personal best solution, and the c2
determines how firmly particle follows the flock.

The w in equation 6 is called inertia [12]. It is positive

linear function of time. Choosing proper inertia is crucial for

providing balance between local and global exploration, thus

to ensuring that optimal solution is found in small number of

iterations.

In equation 6 one can distinguish three parts. The first one

corresponds to particle’s „memory”. The second one, con-

trolled with c1 constant, is linked to particle’s „cognition”. The

third part, which is governed by constant c2, describes „social”

behaviour of particle. It is responsible for collaboration among

particles.

When all particles in the population are updated, particle

swarm optimization algorithm checks its convergence. If the

best solution found so far is good enough, then calculations are

stopped. If found solution is not good enough, then the whole

process of moving particles and obtaining their statistics is

repeated.

B. Asynchronous Particle Swarm Optimization

In order to speed up particle swarm optimization algorithms,

there were proposed many parallelization strategies. Some of

them were based on communication strategies similar to ones

used with genetic algorithms [13]. In [14] authors proposed

significant change to particle swarm optimization algorithm:

asynchrony. By making algorithm asynchronous, authors made

it converge faster to some optimal solution. It is worth noting,

that above-mentioned change created algorithm, whose results

will probably be different from the ones obtained from the

classical version.

In the asynchronous version of particle swarm optimization,

after obtaining fitness for one particle, convergence check and

updates are done. It leads to dynamically updated global best

position, which can be modified after updating one particle

and not after updating whole population as in synchronous

version of algorithm.

It is noteworthy that asynchronous version of particle swarm

optimization running sequentially will produce different results

than classical particle swarm optimization. The cause of that

difference is the above-mentioned difference in strategies

for updating data of global best particle. If the global best

position would be updated in the middle of processing one

population, then the rest of population would move differently

in asynchronous than in the synchronous version of particle

swarm optimization.

Parallelization of asynchronous particle swarm optimization

is straightforward, when done in master-slave architecture.

The master processor is responsible for updating particles,

checking convergence and scheduling fitness calculations on

slave processors. Slave processor evaluates fitness of given

particle’s position and returns obtained value to master proces-

sor. Communication between master processor and slave ones

is done with use of first-in-first-out task queue. As master

processor process one particle, the one from the front of

the task queue, at time and later schedules its data to slave

processor, dynamic load balancing is done implicitly. If some

slave processor is slower or more loaded, then it will calculate

fitness slower than other ones. It will lead to scheduling more

work on faster or less busy processors, because they will more

often get tasks from master processor.

C. Feature Selection using Particle Swarm Optimization and

Rough Sets

In [4], feature selection algorithm based on particle swarm

optimization and rough sets theory was presented. In order

to exploit particle swarm optimization for finding relevant

attributes, some adaptations were necessary.
1) Representation of Position: For decision system with

m attributes particle position was coded as a binary bit string

of length m. If i-th attribute (i ∈ {1, 2, . . . ,m}) was chosen,

then i-th bit of position string was set to 1. Otherwise, it

was set to 0. More formally, there was defined bidirectional

mapping from a power set P(A) of the set of attributes A into

space of binary string of length m: M : P(A) −→ {0, 1}m,

such that for R ⊆ A, the condition from equation 7 holds.

∀i∈{1,2,...,m}M(R)i =

{

0 ai /∈ R

1 ai ∈ R
(7)

The movement of particle corresponds to modifying subset

of attributes in order to find a better subset. If i-th bit of

particle’s position was set from zero to one, then the i-th
attribute was added to subset. It i-th bit was set to zero,

then the i-th attribute was removed. If proper representation of

velocity and fitness measure were chosen, then particles flying

towards the best position will correspond to finding subsets

of A with most relevant attributes.
2) Representation of Velocity: The speed of particle was

represented as a positive integer, varying from 1 to vmax. Value

of the velocity shows how many bits of particle’s position
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should be changed in the particular moment of time to be the

same as in the global best position. In other words, particles

fly through problem space towards the current best position.

In order to update particles’ speeds and positions, the

authors of [4] proposed notion of positions difference. The dif-

ference of positions is equal to component-wise difference of

positions seen as two vectors in m-dimensional space. For

instance, if a = [1, 0, 1, 0, 1] and b = [1, 1, 0, 0, 0], then:

a − b = [0,−1, 1, 0, 1]. The 1’s’ in difference correspond to

those bits, which should be set in b to make b equal to a.

Similarly, the −1’s denote which bits in b should be unset. To

use positions’ difference in equation 6, it should be converted

to integer. To do so, the authors of [4] proposed sum of

all difference’s components. In the previous example, it is:

|a− b| =
∑m

j=1
(a− b)j = 1. If updated speed was smaller

than one, it was set to 1.

Formulae for updates of particle’s velocity is presented on

equation 8. The i ∈ {1, 2, . . . , k} on equation 8 denotes

particle’s index.

vi(t+ 1) = min(vmax,max(1,

w(t) · vi(t)+

c1 · rand1() ·
m
∑

j=1

(besti − xi)j +

c2 · rand2() ·
m
∑

j=1

(bestg − xi)j

))

(8)

As it is mentioned above, particle’s position is updated to

move particle towards the global best position. The two cases

are possible:

1) vi ≤ |bestg − xi| , i ∈ {1, 2, . . . , k},

2) vi > |bestg − xi| , i ∈ {1, 2, . . . , k}.

In the first case, vi random bits, which are different than the

ones in bestg , are changed. That way, particle flies towards the

global best position, but doing random search instead simply

being the same as the best. In the second case, apart from

flipping all of the bits which are different from the ones in

the bestg , the vi−|bestg − xi| the similar ones are also flipped.

It can be interpreted as a particle flying past the best position

and exploring more regions.

3) Fitness function: The fitness function used in [4] is

presented on equation 9.

F(pi) = α · γR(d) + β ·
m− |R|

m
(9)

The α and β are two parameters corresponding to the impor-

tance of classification and subset length, α ∈ [0, 1], β = 1−α.

The γR(d) is classification quality of condition attribute set R,

relative to decision d, |R| is its cardinality and m = |A|.
To measure classification quality of a condition attribute

set R, the authors of [4] used the LEM2 algorithm ([8]) for

inducing rules from set R and rule negotiation in classifica-

tion ([9]). The final score was obtained by doing ten-fold cross

validation.

IV. PROPOSED ALGORITHM AND CONDUCTED

EXPERIMENTS

A. Proposed algorithm

Proposed algorithm is a fusion of two above-mentioned

methods. It is slightly changed algorithm presented in [4],

which is shortly described in section III-C. Instead of the

LEM2 algorithm, exhaustive algorithm for finding reducts (see

section II) has been used. Encoding particle’s position, velocity

and their update strategies was the same, as presented in

section III-C1 and III-C2. The fitness function was also the

same as the one shown in section III-C3.

The main advantage of proposed method over the one

presented in [4], is usage of asynchronous particle swarm op-

timization. Every time particle fitness is obtained, that particle

data are updated. After update, algorithm checks convergence

and, if necessary, updates the global best position. Because of

frequent updates, particles react more dynamically to finding

new best solution. But the main trait of proposed change

is to allow exploitation of parallel architecture of modern

processors. I have used parallel asynchronous particle swarm

optimization [14] and fused it with algorithm presented in [4].

B. Experimental results

1) Experimental setting: The sixth version of the Java

language was chosen as an implementation language for

proposed algorithm. The Rseslib library was used as a source

of implementation of exhaustive algorithm for reducts calcula-

tion, inducing classifier (see section II for algotithm’s details)

and doing cross validation. As in [4], ten-fold cross validation

was used. The parallel asynchronous particle swarm optimiza-

tion [14] was implemented within Data Mining EXpressions

Library (dmexl), which provides framework for implementing

parallel data mining algorithms, especially the ones for feature

selection. The dmexl library is being developed by the author

of this paper.

Most of the algorithm’s parameters were set to be equal

to ones presented in [4]. The α was set to 0.9, and β –

to 0.1, as in [4]. See section III-C3 and equation 9 for detailed

description of above-mentioned parameters. Acceleration con-

stants: c1 and c2 were both set to 2. As in [4], the vmax

parameter was chosen to be equal to m
3

. The value of minimal

fitness, which could stop algorithm execution before reaching

requested number of populations, was set to 0.85.

The inertia weight (see equation 6) was the same as in [4]

and it is presented on equation 10.

w(t+ 1) = (w(t)− 0.4) ·
Pno − t

Pno + 0.4
(10)

The Pno in equation 10 is the number of populations to

simulate. The inertia weight is linear function which decreases

with time, and varies between 1.4 and 0.4.

http://www.oracle.com/technetwork/java/javase/overview/
index-jsp-136246.html

http://rseslib.mimuw.edu.pl/

https://github.com/mateka/dmexl
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Experiments were conducted on a personal computer

equipped with: Intel Core i7-4700HQ quad core CPU and

32GB of RAM. Amount of runtime memory available to java

virtual machine was limited to 6GB.

2) Used data tables: Tests were conducted on set of fifteen

data tables from UCI repository [16]. Selected tables are

listed on table I. Statistics for selected tables are presented

on table II.

TABLE I
DATA TABLES USED IN EXPERIMENTS

Table name URI
Balloon 1 http://archive.ics.uci.edu/ml/datasets/Balloons
Balloon 2 http://archive.ics.uci.edu/ml/datasets/Balloons
Balloon 3 http://archive.ics.uci.edu/ml/datasets/Balloons
Balloon 4 http://archive.ics.uci.edu/ml/datasets/Balloons
Hayes-Roth http://archive.ics.uci.edu/ml/datasets/Hayes-Roth
Voting https://archive.ics.uci.edu/ml/datasets/

Congressional+Voting+Records
Lenses http://archive.ics.uci.edu/ml/datasets/Lenses
Lung Cancer http://archive.ics.uci.edu/ml/datasets/Lung+Cancer
Monk 1 http://archive.ics.uci.edu/ml/datasets/MONK’s+

Problems
Monk 2 http://archive.ics.uci.edu/ml/datasets/MONK’s+

Problems
Monk 3 http://archive.ics.uci.edu/ml/datasets/MONK’s+

Problems
Postoperative https://archive.ics.uci.edu/ml/datasets/

Post-Operative+Patient
Promoters http://archive.ics.uci.edu/ml/datasets/Molecular+

Biology+%28Promoter+Gene+Sequences%29
Tic Tac Toe https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+

Endgame
Zoo http://archive.ics.uci.edu/ml/datasets/Zoo

TABLE II
BASE STATISTICS FOR DATA TABLES USED IN EXPERIMENTS

Table name Attributes Objects Decision classes
Balloon 1 4 16 2
Balloon 2 4 20 2
Balloon 3 4 20 2
Balloon 4 4 20 2
Hayes-Roth 5 132 3
Voting 16 435 2
Lenses 4 24 3
Lung Cancer 56 32 3
Monk 1 7 432 2
Monk 2 7 432 2
Monk 3 7 432 2
Postoperative 8 90 3
Promoters 58 106 2
Tic Tac Toe 9 958 2
Zoo 17 101 7

For all data tables three experiments were made in

RSES (see [10]). All of them were ten-fold cross validation

classifications. In the first case, exhaustive reducts calculation

algorithm was used. There was no rule shortening and conflicts

were resolved by „simple voting”. This case is denoted by

Exhaustive 1 on Table III. Two other experiments used rule

shortening with rule shortening ratio set to 1.0 and conflicts

were resolved by „standard voting”. These are a default

http://logic.mimuw.edu.pl/~rses/

settings in RSES. Algorithms used with these settings were:

exhaustive algorithm (Exhaustive 2) and LEM2 algorithm. All

obtained classification accuracies are presented on table III.

Even with 16GB of RAM, RSES was unable to calculate

TABLE III
RSES ALGORITHM ACCURACIES ON USED DATA TABLES

Table name Exhaustive 1 Exhaustive 2 LEM2
Balloon 1 0.40 0.70 0.40
Balloon 2 0.70 1.00 1.00
Balloon 3 0.60 1.00 1.00
Balloon 4 0.60 1.00 1.00
Hayes-Roth 0.79 0.88 0.93
Voting 0.88 0.95 0.98
Lenses 0.45 0.80 0.85
Lung Cancer – – 0.40
Monk 1 0.53 1.00 0.99
Monk 2 0.43 0.49 0.71
Monk 3 0.97 1.00 1.00
Postoperative 0.49 0.42 0.42
Promoters – – 0.92
Tic Tac Toe 0.63 0.98 1.00
Zoo 0.73 0.97 1.00

reducts and rules for Lung Cancer and Promoters tables

when using exhaustive algorithms, with or without shortening

obtained rules.

3) Algorithm’s accuracy: Proposed algorithm was executed

sixty times on each data table. Half of experiments were se-

quential and thirty were parallel. In each algorithm’s execution,

there were 20 particles and at most 100 populations. Statistics

for obtained accuracies are presented on table IV. The first

TABLE IV
STATISTICS FOR ACCURACIES OF SEQUENTIAL AND PARALLEL VERSIONS

OF PROPOSED ALGORITHM

Table name
Sequential Parallel

min max avg min max avg
Balloon 1 0.00 0.75 0.73 0.00 0.75 0.74
Balloon 2 0.00 0.80 0.80 0.00 0.80 0.79
Balloon 3 0.00 0.80 0.80 0.00 0.80 0.80
Balloon 4 0.00 0.80 0.80 0.00 0.80 0.80
Hayes-Roth 0.00 0.58 0.56 0.00 0.58 0.56
Voting 0.59 0.96 0.94 0.60 0.96 0.95
Lenses 0.00 0.77 0.71 0.00 0.77 0.71
Lung Cancer 0.05 0.58 0.47 0.03 0.58 0.45
Monk 1 0.00 0.75 0.64 0.00 0.75 0.68
Monk 2 0.00 0.67 0.67 0.00 0.67 0.67
Monk 3 0.00 0.81 0.81 0.00 0.81 0.81
Postoperative 0.00 0.71 0.71 0.00 0.71 0.71
Promoters 0.22 0.71 0.66 0.21 0.78 0.65
Tic Tac Toe 0.00 0.70 0.69 0.00 0.70 0.69
Zoo 0.00 0.61 0.61 0.00 0.61 0.61

thing to note, is that both: sequential and parallel version of

algorithm have roughly the same accuracies (see Figure 1).

Unfortunately, their accuracies are much lower than those of

LEM2 from RSES. On average, proposed algorithm had more

stable accuracy than exhaustive one from RSES. It is probably

due to working on subsets of attributes. It is also important

to remember, that in RSES rules were shortened whereas in

proposed algorithm they were not. It probably led to overfitting

rules in experiments with proposed algorithm.
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Fig. 1. Accuracies of sequential and parallel versions of proposed algorithm

The interesting conclusion can be drawn from comparing

results of exhaustive algorithm without rule shortening and the

proposed one. The proposed algorithm performed in all except

three cases better than the exhaustive algorithm without rule

shortening from RSES. Probably, due to working on smaller

sets of attributes, which lead to creation of shorter reducts

and rules. The next step in my research is testing proposed

algorithm with rule shortening.
Comparison of obtained accuracies from proposed algo-

rithm, exhaustive one from RSES with turned off rules short-

ening and LEM2 with default settings is presented on Figure 2.
It seems that number of decision classes had no impact on

proposed algorithm accuracy, as it was quite stable between

different experiments.

TABLE V
SPEEDUP AND EFFICIENCY

Table name Speedup Efficiency
Balloon 1 0.59 0.15
Balloon 2 0.58 0.15
Balloon 3 0.58 0.15
Balloon 4 0.58 0.15
Hayes-Roth 1.11 0.28
Voting 19.00 4.75
Lenses 0.60 0.15
Lung Cancer 1.45 0.36
Monk 1 3.76 0.94
Monk 2 3.97 0.99
Monk 3 3.93 0.98
Postoperative 1.00 0.25
Promoters 3.23 0.81
Tic Tac Toe 4.58 1.15
Zoo 1.74 0.43

4) Algorithm’s performance: For execution times: T1 –

sequential and Tc – parallel on c processors, seedup Sc =
T1

Tc

and efficiency Ec = T1

Tc·c
are measures for expressing paral-

lelization gains. Those measures for proposed algorithm are

shown in table V. The presented values are mean values of

all executions for each table. It is worth noting, the number

of threads of execution for parallel version of algorithm was

set to 4 · c in order to fully utilize a given processor. That is

the reason why efficiency may be greater than 1. There was

an interesting case with Voting table. The sequential version

of proposed algorithm have reached maximum number of

populations four times, whereas the parallel version reached

it only one. That is the reason why speedup for Voting table

is so enormous.
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Fig. 3. Relationship between number of attributes and speedup or efficiency

The relationship between the number of attributes and

speedup or efficiency is shown on Figure 3. X-axis shows
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Fig. 2. Accuracies of proposed algorithm (pso), exhaustive one and LEM2

the number of attributes and y-axis shows:

• speedup for the first graph,

• efficiency for the second graph.

Although, with an increasing number of attributes speedup and

efficiency are generally growing, the tendency is not clear.
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Fig. 4. Relationship between size of table and speedup or efficiency

On Figure 4 the relationship between the size of table

and speedup or efficiency is shown. The horizontal axis

corresponds to the table size, i.e. the number of attributes

multiplied by the number of objects. Similarly to Figure 3,

vertical axes correspond to speedup and efficiency. On Figure 4

it can be almost clearly seen, that, with an increasing size of

data table, speedup and efficiency grow. The trend is only

disturbed by the case of the Voting table, which was already

described.

Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

Efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

Fig. 5. Relationship between size of table and speedup or efficiency with
Voting table removed

Relationship between size of table and speedup or effi-

ciency, with removed the Voting table statistics, is shown

on Figure 5. Graphs on Figure 5 clearly show upward trend

in speedup and efficiency of proposed algorithm with the

growth of the size of the table. When overhead of managing

threads and parallelism is compensated by the table size,

a parallel version of proposed algorithm performs better than

the sequential one.

If there is any relation between the number of decision
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classes and performance of proposed algorithm, it cannot be

induced from gathered results. The main parameters, which

can help to decide if a parallel or sequential version should be

used, are: the number of attributes and the number of objects.

V. CONCLUSION

Although the presented algorithm was not able to achieve

astonishing accuracy, it was on par with the ones implemented

in RSES system used with default settings. As with all settings,

they can be tuned to selected problem to achieve better results.

It is noteworthy, that proposed algorithm performed better

in most cases than exhaustive algorithm from RSES with

rule shortening turned off and simple voting as a method for

solving conflicts.

Particle swarm optimization is said to be simpler to apply

in purely numerical optimization problems than genetic algo-

rithms. It is due to its straightforward application and there is

no need to define complex operators, as in genetic algorithms.

Unfortunately, applying particle swarm optimization to feature

selection and calculating reducts is not as straightforward

as applying it to numerical optimization problems. Coding

attributes subsets as binary strings and updating particles’

speed and position turned out to be as complicated as when

calculating operators in genetic algorithms.

The performance of parallel version of presented algorithm

is promising. With growing size of data tables, algorithm’s

speedup and efficiency were raising. Although, these are

optimistic results, there should be examined what impact on

these coefficients would have adding more cores or processors.

The performance results are even more optimistic, as pre-

sented algorithm is a part of a Data Mining EXpression

Library (dmexl). The dmexl library is a framework for easier

development of data mining algorithms. Currently, efforts

are taken into providing building blocks for feature selec-

tion algorithms. From the user’s perspective, library enables

writing complex algorithms as a simple expression. By se-

lecting executor object, the user decides if algorithm should

be executed sequentially or in parallel. Some examples can

be seen in library’s source code, which is available on the

Internet: https://github.com/mateka/dmexl.

Another interesting research topic, would be using modifi-

cation of proposed algorithm to execute feature selection in

the context of clustering. As a classification accuracy would

be unavailable, some other measure should be used to grade

obtained particles. One possibility is to use a measure of

coherence of resulting clusters. If this approach is sensible

and applicable, further research has to be done.
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