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Input/Output (I/O) operations can represent a significant proportion of the run-time of parallel
scientific computing applications. Although there have been several advances in file format libraries,
file system design and I/O hardware, a growing divergence exists between the performance of parallel
file systems and the compute clusters that they support. In this paper, we document the design and
application of the RIOT I/O toolkit (RIOT) being developed at the University of Warwick with
our industrial partners at the Atomic Weapons Establishment and Sandia National Laboratories.
We use the toolkit to assess the performance of three industry-standard I/O benchmarks on three
contrasting supercomputers, ranging from a mid-sized commodity cluster to a large-scale proprietary
IBM BlueGene/P system. RIOT provides a powerful framework in which to analyse I/O and parallel
file system behaviour—we demonstrate, for example, the large file locking overhead of IBM’s General
Parallel File System, which can consume nearly 30% of the total write time in the FLASH-IO
benchmark. Through I/O trace analysis, we also assess the performance of HDF-5 in its default
configuration, identifying a bottleneck created by the use of suboptimal Message Passing Interface
hints. Furthermore, we investigate the performance gains attributed to the Parallel Log-structured
File System (PLFS) being developed by EMC Corporation and the Los Alamos National Laboratory.
Our evaluation of PLFS involves two high-performance computing systems with contrasting I/O
backplanes and illustrates the varied improvements to I/O that result from the deployment of PLFS
(ranging from up to 25× speed-up in I/O performance on a large I/O installation to 2× speed-up on

the much smaller installation at the University of Warwick).
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1. INTRODUCTION

The substantial growth in the size of supercomputers—over
two orders of magnitude in terms of processing elements since
1993—has created machines of extreme computational power
and scale. As a result, users have been able to develop increas-
ingly sophisticated and complex computational simulations,
advancing scientific understanding across multiple domains.
Historically, industry and academia have focused on the devel-
opment of scalable parallel algorithms and their deployment on
increasingly sophisticated hardware, creating a perception that
supercomputer performance is synonymous with the number
of floating-point operations that can be performed each second.

One of the consequences of this has been that some of the
vital contributors to application run-time have developed at a
much slower rate. One such area is that of input and output
(I/O), typically required to read data at the start of a run and
write state information on completion.

As we advance towards exa-scale computing, the increasing
number of compute components will have huge implications
for system reliability. As a result, checkpointing—where the
system state is periodically written to persistent storage so that,
in the case of a hardware or software fault, the computation
can be restored and resumed—is becoming common place.
The cost of checkpointing is a slow-down at specific points
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142 S.A. Wright et al.

in the application in order to achieve some level of resilience.
Understanding the cost of checkpointing, and the opportunities
that might exist for optimizing this behaviour, presents a genuine
opportunity to improve the performance of parallel applications
at scale.

The Message Passing Interface (MPI) has become the de
facto standard for managing the distribution of data and
process synchronization in parallel applications. The MPI-2 [1]
standard introduced MPI-IO, a library of functions designed to
standardize the output of data to the file system in parallel. The
most widely adopted MPI-IO implementation is ROMIO [2],
which is used by both OpenMPI [3] and MPICH2 [4], as well
as by a number of vendor-based MPI solutions [5, 6].

In addition to the standardization of parallel I/O through MPI,
many file format libraries exist to further abstract low-level I/O
operations (e.g. data formatting) from the application. Libraries
such as HDF-5 [7], NetCDF [8] and Parallel NetCDF [9]
allow applications to output data in a standardized format,
enabling information to be more easily utilized by multiple
parallel applications. Optimizations can also be made to a single
library, creating improvements in the data throughput of many
dependent applications.

Unfortunately this has, in part at least, encouraged code
designers to treat these libraries as a black-box, instead
of investigating and optimizing the data storage operations
required by their applications. The result has been poor I/O
performance that does not utilize the full potential of expensive
parallel disk systems.

In this paper, we document the design and application of the
RIOT I/O Toolkit (referred to throughout the remainder of this
paper by the recursive acronym RIOT), first introduced in [10],
to demonstrate the I/O behaviours of three standard benchmarks
at scale on a variety of contrasting high-performance computing
(HPC) systems. RIOT is a collection of tools specifically
designed to enable the tracing and subsequent analysis of
application I/O activity. This tool is able to trace parallel file
operations performed by the ROMIO layer and relate these
to their underlying POSIX file operations. We note that this
recording of low-level parameters permits the analysis of I/O
middleware, file format libraries, application behaviour and
even the underlying file systems utilized by large clusters.

Specifically, this paper makes the following contributions:

(i) We present RIOT, an I/O tracer designed to intercept the
file functions in the MPI-2 standard, as well as the low-
level system calls triggered by the MPI-IO library. Our
tool records not only the timing information, but also
information relating to how much data is written and the
file offset to which it is written. We also introduce a post-
processing tool capable of generating statistical summaries
and graphical representations of an application’s parallel
I/O activities;

(ii) Using RIOT, we analyse the I/O behaviour of three
industry-standard benchmarks: the Block-Tridiagonal

(BT) solver, from the NAS Parallel Benchmark (NPB)
Suite; the FLASH-IO benchmark, from the University of
Chicago and the Argonne National Laboratory (ANL);
and IOR, a HPC file system benchmark that is used
during procurement and file system assessment [11, 12].
Our analysis employs three contrasting platforms: a
mid-size commodity cluster located at the University
of Warwick, a large-scale capacity resource housed at
the Open Computing Facility (OCF) at the Lawrence
Livermore National Laboratory (LLNL) and a proprietary
IBM BlueGene/P (BG/P) system installed at the Daresbury
Laboratory in the UK;

(iii) Through using RIOT, we demonstrate the significant
overhead associated with file locking on a small-scale
installation of IBM’s General Parallel File System (GPFS)
and contrast this to a larger GPFS installation, as well as to
a large-scale Lustre installation. We provide an analysis of
both the locking semantics of the contrasting file systems
as well as the different hardware configurations;

(iv) RIOT is the first tool, to our knowledge, to show the
relationship between POSIX and MPI function calls and
thus allow developers to analyse the POSIX file behaviour
that is a direct result of MPI-IO calls. In Section 6.1,
we utilize this ability to visualize the performance of the
FLASH-IO benchmark, demonstrating a significant slow-
down in performance due to the use of suboptimal MPI
hints. We optimize the application’s behaviour using MPI
hint directives and achieve more than a 2× improvement
in the write bandwidth;

(v) Finally, through an I/O trace analysis, we provide insight
into the performance gains reported by the Parallel Log-
structured File System (PLFS) [13, 14]—a novel I/O
middleware being developed by EMC Corporation and
the Los Alamos National Laboratory (LANL) to improve
file write times. We show how improvements in the I/O
performance can be demonstrated on relatively small
parallel file systems and how large gains can be achieved
on much larger installations. We also offer some insight
into why this is the case and how PLFS reduces file system
contention, improving the achievable bandwidth.

The remainder of this paper is structured as follows. Section 2
gives an overview of related work in the area of parallel I/O
analysis and optimization. Section 3 outlines the design and
implementation of RIOT. Section 4 describes the experimental
set-up used in this paper, ranging from the configuration of the
machines used to the three applications employed in this study.
Section 5 demonstrates the low overhead of our tool, as well as
RIOT operating on three different HPC systems, presenting the
initial results for the three codes on the contrasting platforms.
Section 6 presents a comparison of the different file systems in
use on the machines used in our study. We present an analysis
of the HDF-5 middleware library and we investigate PLFS,
offering insight into the gains reported in [13] and finally,
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Parallel File System Analysis Through Tracing 143

Section 7 concludes the paper and offers potential avenues for
future work.

2. BACKGROUND AND RELATED WORK

2.1. I/O benchmarking

The assessment of the file system performance, either during
procurement or during system installation and upgrade, has
resulted in a number of benchmarking utilities which attempt
to characterize common read/write behaviour. Notable tools
in this area include the IOR [11] and IOBench [15] parallel
benchmarking applications. While these tools provide a good
indication of potential performance, they are rarely indicative
of the true behaviour of production codes. For this reason, a
number of mini-application benchmarks have been created that
extract file read/write behaviour from larger codes to ensure a
more accurate representation of the application I/O. Examples
include the BT solver application from the NPB Suite [16]
and the FLASH-IO [17] benchmark from the University of
Chicago—both of which are employed in this paper.

2.2. System monitoring and profiling tools

While benchmarks may provide a measure of file system
performance, their use in diagnosing problem areas or
identifying optimization opportunities within large codes is
limited. For this activity, monitoring or profiling tools are
required to either sample the system’s state or record the file
read and write behaviour of parallel codes in real-time.

The tools iotop and iostat both monitor a single work-
station and record a wide range of statistics ranging from the
I/O busy time to the CPU utilization [18]. iotop is able to pro-
vide statistics relevant to a particular application, but this data
is not specific to a particular file system mount point. iostat
can provide more detail that can be targeted to a particular file
system, but does not provide application-specific information.
These two tools are targeted at single workstations, but there
are many distributed alternatives, including Collectl [19] and
Ganglia [20].

Ganglia and Collectl both operate using a daemon process
running on each compute node and therefore require some

administrative privileges to install and operate correctly. Data
about the system’s state is sampled and stored in a database; the
frequency of sampling therefore dictates the overhead incurred
on each node. The I/O statistics generated by the tools focus
only on low-level POSIX system calls and the load on the I/O
backend and, therefore, much of the data will be inclusive of the
calls made by other running services and applications. Further-
more, the data generated by these applications may not include
information relating to file locks, or the file offsets currently
being operated on. These applications, therefore, have a limited
use for application analysis and optimization, since they do
not provide an appropriate amount of application-specific data
(Table 1). It is for this reason that many large multi-science
HPC laboratories [e.g. ANL, Lawrence Berkeley National
Laboratory (LBNL)] have developed alternative tools.

Application profiling tools can be used to generate more
detailed information about a particular execution on a function-
by-function basis. The data produced relates only to the specific
application being traced along with its library (e.g. MPI) and
low-level system calls.

Using function interpositioning, an intermediate library can
intercept communications between the application and the
underlying file system to analyse the behaviour of I/O intensive
applications. Intercepting the POSIX and MPI file operations
is the approach taken by RIOT; Darshan [21], developed at
ANL and the Integrated Performance Monitoring (IPM) suite
of tools [22], from LBNL.

Darshan has been designed to record file accesses over a
prolonged period of time, ensuring that each interaction with the
file system is captured during the course of a mixed workload.As
described in [21], the aim of this work is to monitor I/O activity
for a substantial amount of time on a production BG/P machine
in order to guide developers and administrators in tuning the
I/O backplanes used by large machines.

Similarly, IPM [23] uses an interposition layer to catch all
calls between the application and the file system. This trace
data is then analysed in order to highlight any performance
deficiencies that exist in the application or middleware. On
the basis of this analysis, the authors were able to optimize
two applications, achieving a 4× improvement in the I/O
performance.

TABLE 1. Feature comparison between a collection of cluster I/O monitoring tools (Ganglia and Collectl) and application I/O profiling tools
(Darshan, IPM and RIOT).

Ganglia Collectl Darshan IPM RIOT

Monitoring level System System Application Application Application
Monitoring style Sampled Sampled Continuous Continuous Continuous
Syscall monitoring Limited Limited POSIX-IO POSIX-IO POSIX-IO
MPI monitoring None None MPI-IO Complete MPI-IO
Statistics collection Counters Counters Counters Counters Full trace
Statistics reported Per-node Per-node Per-rank Per-rank Per-rank
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Darshan and IPM both collect data using counters to record
the I/O statistics. In contrast, RIOT records all I/O events in
the memory and thus provides users with a full trace of file
activities. As a result, RIOT’s post-processing tools can relate
individual POSIX operations to their parent MPI-IO function
calls, permitting analysis not only of the application’s I/O
behaviour but also of the underlying POSIX file behaviour
induced by the use of MPI-IO. This data can then be used to
analyse the performance of a particular piece of middleware.
Furthermore, RIOT is able to highlight any deficiencies that may
exist within a ROMIO file system driver or provide guidance as
to which MPI hints may benefit a particular application or file
system.

Table 1 summarizes the features of each of the tools described
above.

2.3. Distributed file systems

The I/O backplane of high-performance clusters is generally
provided by a distributed file system. The two most widely
used file systems are IBM’s GPFS [24] and the Lustre File
System [25], both of which are analysed in this study. While
both ultimately serve the same purpose, their architectures are
somewhat different.

A Lustre installation consists of a number of Object Storage
Servers (OSS) and a single, dedicated Metadata Server (MDS).
Conversely, GPFS uses a number of I/O servers, and distributes
metadata over each of them. While the MDS in Lustre uses
its own hard drives to store metadata (e.g. directory tree, file
structure), GPFS can be configured to store this data either to the
same disks as the raw data, or to higher performance metadata-
specific disks, depending on the configuration.

2.4. Virtual file systems

In addition to distributed file systems, a variety of virtual file
systems have been produced to further improve performance.
PLFS [13] and Zest [26] have both been shown to improve the
file write performance. In these systems, multiple parallel writes
are written sequentially to the file system with a log tracking
the current data. Writing sequentially to the file system in this
manner offers potentially large gains in write performance, at
the possible expense of later read performance [27].

In the case of Zest, data is written sequentially using the
fastest path to the file system available. There is, however, no
read support in Zest; instead, it serves as a transition layer,
caching data that is later copied to a fully featured file system at a
later non-critical time. The result of this is high write throughput
but no ability to restart the application until the data has been
transferred and rebuilt on a read-capable system.

In a similar vein to [28, 29], in which I/O throughput is vastly
improved by transparently partitioning a data file (creating
multiple, independent I/O streams), PLFS uses file partitioning
as well as a log-structured file system to further improve the

potential I/O bandwidth. Through our tracing tools, we offer an
in-depth analysis of the benefits offered by PLFS (Section 6.3).

We previously introduced RIOT in [10, 30]. In this paper, we
significantly extend this work as follows:

(i) We utilize a custom I/O benchmark designed specifically
to assess the impact of using RIOT on I/O intensive
applications. We demonstrate that the performance
overheads incurred through the use of RIOT are minimal,
thus making it an appropriate tool for tracing large and
long-running production-grade codes;

(ii) We demonstrate the first applications of RIOT on a
proprietary BlueGene system, IBM’s highly scalable,
low-power massively parallel HPC platform;

(iii) We present a detailed application of RIOT in a
comparative study of the I/O performance of a mid-
range and a large-scale commodity cluster, and also the
IBM BG/P. The contrasting I/O configuration of these
three platforms are extensively evaluated, offering insight
into potential future designs and also demonstrating the
versatility of RIOT;

(iv) We complement our previous analysis of collective
buffering [30] with an assessment of the use of dedicated
I/O aggregators, such as the dedicated I/O nodes found in
the BG/P. Our results show that collecting the data from
many nodes prior to committing the data to the file system
can lead to exceptional I/O performance;

(v) We utilize RIOT’s ability to visualize file write behaviour
to analyse the write pattern used by HDF-5 with data-
sieving enabled. This data clearly demonstrate how a
single MPI write operation is decomposed into a series
of smaller POSIX lock, read, write, unlock cycles;

(vi) Through a new case study, we demonstrate that a RIOT
trace can be used to detect performance bottlenecks in an
application’s I/O. By disabling data-sieving (a problem
highlighted by RIOT) and enabling collective buffering
in the FLASH-IO benchmark, we increase the achievable
bandwidth of this industry-standard benchmark by 2× on
two of our three test systems.

3. RIOT OVERVIEW

The left-hand side of Fig. 1 depicts the usual flow of I/O in
parallel applications; generally, applications either utilize the
MPI-IO file interface directly, or use a third party library such
as HDF-5 or NetCDF. In both cases, MPI is ultimately used
to perform the read and write operations. In turn, the MPI
library calls upon the MPI-IO library which, in the case of both
OpenMPI and MPICH, is the ROMIO implementation [2]. The
ROMIO file system driver [31] then calls the system’s POSIX
file operations to read and write the data to the file system. In
this paper, we utilize the PLFS ROMIO file system driver during
our experiments.
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FIGURE 1. Tracing and analysis workflow using RIOT.

RIOT is an I/O tracing tool that can be utilized either as
a dynamically loaded library (via run-time pre-loading and
linking) or as a static library (linked at compile time). In the case
of the former, the shared library uses function interpositioning to
place itself in the library stack immediately prior to execution.
When compiled as a dynamic library, RIOT redefines several
functions from the POSIX system-layer and MPI libraries—
when the running application makes calls to these functions,
control is instead passed to handlers in the RIOT library. These
handlers allow the original function to be performed, timed
and recorded into a log file for each MPI rank. By using
the dynamically loadable libriot, application recompilation
is avoided; RIOT is therefore able to operate on existing
application binaries and remain compiler and implementation
language agnostic.

For situations where dynamic linking is either not desirable
or is only available in a limited capacity (such as in the BG/P
system used in this study), a static library can be built. A com-
piler wrapper is used to compile RIOT into a parallel application
using the -wrap functionality found in the Linux linker.

As shown in Fig. 1, libriot intercepts I/O calls at three
positions. In the first instance, MPI-IO calls are intercepted and
redirected through RIOT, using either the PMPI interface, or
dynamic or static linking. In the second instance, POSIX calls
made by the MPI library are intercepted, and in the final instance
any POSIX calls made by the ROMIO file system interface are
caught and processed by RIOT.

Traced events in RIOT are recorded in a buffer stored in
main memory. While the size of the buffer is configurable,

our experiments have led us to set the buffer size at 8 MB.
This allows ∼340 000 operations to be stored before needing
to be flushed to the disk. This delay of logging (by storing
events in memory) may have a small affect on the compute
performance (since the memory access patterns may change),
but storing trace data in memory helps to prevent any distortion
of the application’s I/O performance. In the event that the buffer
becomes full, the data is written out to disk and the buffer is reset.
This repeats until the application has terminated.

Time coherence is maintained across multiple nodes, by
overloading the MPI_Init function to force all ranks to wait
on an MPI_Barrier before each resetting their respective
timers. This allows us to order events even after nodes have
experienced a degree of time drift.

After the recording of an application trace is complete, a post-
execution analysis phase can be conducted (shown on the right-
hand side of Fig. 1).

During execution RIOT builds a file lookup table and for
each operation only stores the time, the rank, a file identifier, an
operation identifier and the file offset. After execution, these log
files are merged and time-sorted into a single master log file,
as well as a master file database. Using the information stored,
RIOT can:

(i) produce a complete run-time trace of the application’s
I/O behaviour;

(ii) demonstrate the file-locking behaviour of a particular
file system;

(iii) calculate the effective POSIX bandwidth achieved by
MPI to the file system;
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(iv) visualize the decomposition of an MPI file operation
into a series of POSIX operations;

(v) demonstrate how POSIX operations are queued and
then serialized by the I/O servers.

Throughout this paper, we make a distinction between effective
MPI-IO and POSIX bandwidths—MPI-IO bandwidths refer
to the data throughput of the MPI functions on a per MPI-
rank basis. POSIX bandwidths relate to the data throughput
of the POSIX read/write operations as if performed serially
and called directly by the MPI library. We make this
distinction due to the inability to accurately report the perceived
POSIX bandwidth due to the non-deterministic nature of
parallel POSIX operations. The perceived POSIX bandwidth
is therefore bounded below by the perceived MPI bandwidth
(since the POSIX bandwidths must necessarily be at least
as fast as the MPI bandwidths), and is bounded above by
the effective POSIX bandwidth multiplied by the number of
ranks (assuming a perfect parallel execution of each POSIX
operation).

4. EXPERIMENTAL SET-UP

In this paper, we demonstrate RIOT working on three distinct
HPC systems. We utilize the recently installed Minerva
supercomputer, located at the University of Warwick’s Centre
for Scientific Computing, the Sierra cluster from the OCF at
LLNL and, finally, the IBM BG/P proprietary system housed at
the Daresbury Laboratory in the United Kingdom.

Minerva and Sierra are built from similar components, uti-
lizing commodity Intel Xeon dual-socket hex-core Westmere-
EP processors, clocked at 2.66 and 2.80 GHz, respectively. The
interconnect between Minerva nodes is QLogic’s TrueScale 4X
QDR InfiniBand, offering a theoretical maximum bandwidth of
32 Gb/s. Each Minerva node is connected through InfiniBand
to its two I/O nodes. Similarly, Sierra compute nodes are also
connected via InfiniBand to the 24-node storage system utilized
in this study—the I/O backplane used in these experiments is
part of LLNL’s ‘islanded I/O’network, whereby many large I/O
systems are shared between multiple clusters in the computing
facility.

The BG/P system used for the experiments in this paper
is a single cabinet, consisting of 1024 compute nodes. Each
node contains a single quad-processor compute card clocked
at 850 MHz. The BlueGene features dedicated networks for
point-to-point communications and MPI collective operations.
File system and complex operating system calls (such as timing
routines) are routed over the MPI collective tree to specialized
higher-performance login or I/O nodes enabling the design of
the BlueGene compute node kernel to be significantly simplified
to reduce the background compute noise. For these experiments,
we utilize a compute-node to I/O node ratio of 1:32; however,

differing ratios are provided by IBM to support varying levels
of workload I/O intensity.

As well as variation in compute architecture and size, the
machines selected utilize different file systems for their I/O
backends. Minerva employs IBM’s GPFS, whereas the file
system used for our experimentation on Sierra is formatted for
use with Lustre. The BG/P system also uses GPFS, but does so
with faster hard disks and a higher density of I/O servers than
Minerva.

A detailed specification of the three machines utilized in this
study can be found in Table 2.

4.1. I/O benchmarks

For this study, we have selected three applications which
are representative of a broad range of high-performance
applications.

We employ a standard benchmark (IOR) that can be
customized to recreate typical, or problematic I/O behaviours,
as well as being customized to use either an MPI-IO interface
or the HDF-5 application library.

Two additional applications have also been chosen (FLASH-
IO, BT) that recreate the I/O behaviour of much larger codes
but with reduced compute time and less configuration required
than the parent version. This permits the investigation of system
configurations that may have an impact on the I/O performance
of the larger codes, without requiring considerable machine
resources.

The three applications used in this study are the following:

(i) IOR [11, 12]: A parametrized benchmark that
performs I/O operations through both the HDF-5
and MPI-IO interfaces. In this study, IOR has been
configured to write 256 MB per process to a single
file in 8 MB blocks. IOR’s write performance through
both MPI-IO and HDF-5 are assessed.

(ii) FLASH-IO [32, 33]: This benchmark replicates the
checkpointing routines found in FLASH [17, 34], a
thermonuclear star modelling code. In this study, we
use a 24 × 24 × 24 block size per process, causing
each process to write ∼205 MB to disk through the
HDF-5 library.

(iii) BT [16, 35]: An application from the NPB Suite
which has been configured by NASA to replicate I/O
behaviours from several important internal production
codes. A variety of possible problem sizes are
available but our focus is the C problem class (162 ×
162 × 162), writing a data-set of ∼6.4 GB.

We note that since all three machines are production platforms,
and results are subject to variation, all data is derived from five
runs; where appropriate the mean is reported.
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TABLE 2. Benchmarking platforms used in this study.

Minerva Sierra BG/P

Processor Intel Xeon 5650 Intel Xeon 5660 PowerPC 450
CPU speed 2.66 Ghz 2.8 Ghz 850 Mhz
Cores per node 12 12 4
Nodes 258 1849 1024
Interconnect QLogic TrueScale 4X QDR InfiniBand 3D torus Collective tree
File system GPFS Lustre GPFS
I/O servers/OSS 2 24 4
Theoretical bandwidth ∼4 GB/s ∼30 GB/s ∼6 GB/s
Storage disks

Number of disks 96 3600 110 35
Disk size 2 TB 450 GB 147 GB 500 GB
Disk speed 7200 RPM 10 000 RPM 15 000 RPM 7200 RPM
Bus type Nearline SAS SAS Fibre channel S-ATA
Raid level 6 (8 + 2) 6 (8 + 2) 5 (4 + 1)

Metadata disks
Number of disks 24 30 (+2)a N/A
Disk size 300 GB 147 GB N/A
Disk speed 15 000 RPM 15 000 RPM N/A
Bus type SAS SAS N/A
Raid level 10 10 N/A

aSierra’s MDS uses 32 disks: two configured in RAID-1 for journalling data, 28 disks configured in RAID-10 for the data volume itself and a
further two disks to be used as hot spares.

5. PERFORMANCE ANALYSIS

5.1. RIOT performance analysis

We first use an I/O benchmark specifically designed to assess
the overheads that our toolkit may introduce at run-time. Since
RIOT requires all I/O functions to be interposed, we utilize a
custom benchmark designed to perform a known set of read and
write operations over a series of files. Write sizes of 256 KB,
1, 4 and 16 MB per process were performed 100 times for both
read and write operations.

Table 3 shows the time taken to perform 100 operations, each
4 MB in size (other file sizes demonstrate similar effects and so
the results are therefore not shown), in three configurations: (i)
without RIOT, (ii) with RIOT configured to only trace POSIX
file calls and, (iii) with RIOT performing a full trace of MPI
and POSIX file activity. Our benchmark reports timings for the
six MPI-IO functions that we believe to be the most commonly
used in scientific codes. It should be noted that we would expect
the overhead of RIOT associated with other MPI-IO functions
to be approximately the same, since the function interposition
and timing routines would be equivalent.

In Table 3, we see that RIOT adds minimal overhead to an
application’s run-time, although it is particularly difficult to
precisely quantify this overhead since the machines employed
operate production workloads. In some cases, the overheads
appear negligible (or indeed present themselves as slight

improvements over the original run-time). We account for this
by the fact that the machines and their I/O backplanes are shared
resources and are therefore subject to a small (�10%) variation
in run-time performance. Despite this variability (which is a
feature of any large-scale production system), the low variation
between run-times with and without RIOT loaded demonstrates
the minimal impact that our toolkit has on application run-
time. This is a key feature of our design and is an important
consideration for profiling activities associated with large codes
that may already take considerable lengths of time to run in their
own right.

5.2. I/O subsystem performance

We next use RIOT to trace the write behaviour of the three codes
in five different configurations. Figure 2 shows the perceived
bandwidth achieved by each of the benchmarks on the three
different systems. It is interesting to note that the two HDF-
5-based codes (FLASH-IO and IOR through HDF-5) perform
significantly worse than the other two codes on both Minerva
and Sierra. The parallel HDF-5 library, by default, attempts to
utilize data-sieving in order to transform many discontinuous
small writes into a single much larger write. To do this, a
large region (containing the target file locations) is locked
and read into memory. The small changes are then made to
the block in memory, and the data is then written back out
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TABLE 3. Average time (s) to perform a hundred 4 MB operations: without RIOT, with only POSIX tracing and with complete MPI and POSIX
RIOT tracing.

Minerva Sierra BG/P

Function Tracing level 24 48 96 24 48 96 32 64 128

MPI_File_write None 44.00 84.54 150.91 44.75 60.32 119.72 71.31 120.26 262.96
POSIX 44.22 93.05 150.72 46.78 67.07 113.41 68.99 113.52 256.70
Complete 44.36 84.66 155.48 46.33 70.72 123.89 69.00 116.13 256.89

MPI_File_write_all None 26.39 50.62 100.96 36.25 71.13 129.69 71.46 101.24 140.40
POSIX 26.17 51.95 101.08 38.59 68.44 131.63 70.59 100.93 135.17
Complete 26.99 50.66 99.95 38.11 64.32 127.30 70.70 100.09 139.02

MPI_File_write_at_all None 12.91 25.83 57.00 37.52 70.68 127.12 61.37 69.50 96.83
POSIX 11.81 28.27 55.39 36.64 63.91 126.87 61.48 70.87 98.30
Complete 13.20 27.08 54.51 36.27 73.06 135.99 60.78 72.06 96.96

MPI_File_read None 7.26 12.22 25.81 2.77 5.41 15.04 47.74 56.97 182.20
POSIX 6.73 11.99 25.10 5.83 6.66 19.57 48.45 57.27 190.51
Complete 7.05 12.46 26.10 2.36 5.00 16.42 48.41 57.60 179.90

MPI_File_read_all None 21.09 26.03 40.66 15.81 21.56 49.47 55.92 65.89 203.63
POSIX 19.85 27.17 42.31 18.63 24.73 58.97 56.27 64.52 211.50
Complete 20.67 26.62 41.24 16.99 25.74 63.82 58.97 68.57 209.91

MPI_File_read_at_all None 2.21 3.61 6.36 4.41 4.56 5.15 36.73 37.89 41.23
POSIX 2.33 3.79 5.87 4.14 4.72 5.56 36.45 39.97 44.06
Complete 2.14 3.70 5.60 4.83 4.71 5.31 38.53 40.63 45.33

Average overhead of RIOT (%) 0.48 1.15 0.31 2.39 4.23 5.95 0.54 0.74 0.08

to persistent storage in a single write operation. While this
offers a large improvement in performance for small unaligned
writes [36], many HPC applications are constructed to perform
larger sequential file operations.

The use of file locks will help to maintain file coherence but,
as RIOT is able to demonstrate, when writes do not overlap,
the locking, reading and unlocking of file regions may create a
significant overhead—this is discussed further in Section 6.1.

Also of note in Fig. 2d is that BT performs significantly
better on the BG/P after 256 processors are used (note the
logarithmic scale). Owing to the architecture of the machine
and the relatively small amount of data that each process writes
at this scale, the data is flushed very quickly to the I/O node’s
cache and this gives the illusion that the data has been written
to disk at speeds in excess of 1 GB/s. For much larger output
sizes the same effect is not seen, since the writes are much
larger and therefore cannot be flushed to the cache at the same
speed. We note that while the I/O performance of Minerva and
Sierra plateau quite early, the I/O performance of the BG/P
system does not. While a commodity cluster using MPI will
often use ROMIO hints such as collective buffering [37] to
reduce the contention for the file system, the BG/P performs
what could be considered ‘super’ collective buffering, where 32
nodes send all of their I/O traffic through a single I/O node.
This results in the exceptional scaling behaviour observed in

Fig. 2d.As the output size and the number of participating nodes
increase, contention begins to affect performance as Fig. 2a
demonstrates.

The write performance on each of the commodity clusters is
roughly equivalent to the write speed of a single disk. When we
consider that these systems consist of hundreds (or thousands)
of disks, configured to write in parallel, it is clear that the full
potential of the hardware is not being realized. If we analyse the
effective bandwidth of each of the codes (i.e. the total amount
of data written divided by the total time taken by all nodes), it
becomes apparent that data is being written very slowly onto the
individual disks. Figures 3 and 4 and Table 4 show the effective
MPI and POSIX bandwidths achieved by each of the codes
on our three machines. The POSIX bandwidth is significantly
higher than the MPI bandwidth, demonstrating a large overhead
in MPI. However, even the POSIX bandwidth does not approach
the potential achievable bandwidth of the machine.

We believe that much of this slow-down can be attributed
to two main problems: (i) disk seek time and (ii) file
system contention. In the former, since data is being accessed
simultaneously from many different nodes and users, the file
server must constantly seek for the information that it requires.
In the latter case, since the reads and writes to a single file must
maintain some degree of consistency, contention for a single
file can become prohibitive.
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FIGURE 2. Perceived MPI write bandwidth for (a) IOR (through MPI-IO), (b) IOR (through HDF-5), (c) FLASH-IO (through HDF-5)
and (d) BT Class C (through MPI-IO), measured using RIOT.

From the results presented in Figs 2–4 and Table 4, it is clear
that Sierra generally has a much quicker I/O subsystem than
Minerva. However, the BG/P’s file system far outperforms both
clusters when scaled. The unusual interconnect and architecture
that it uses allows its compute nodes to flush their data to the
I/O nodes cache quickly, allowing computation to continue.
Similarly, when the writes are small, Minerva can be shown
to outperform Sierra, mainly due to the locality of its I/O
backplane. However, when HDF-5 is in use on Minerva, the
achievable bandwidth is much lower than that of the other
machines due to file-locking and the poor read performance
of its hard disk drives.

6. FILE SYSTEM COMPARISON

As highlighted in Table 2, the I/O subsystem utilized by Minerva
is much smaller than that used by Sierra. Each machine utilizes
a different file system, providing us with an opportunity to not
only compare the hardware differences between the machines,
but also to compare the semantics of the differing file systems
and MPI-IO ROMIO drivers. Furthermore, there exists a clear
opportunity to find ways in which Minerva’s I/O system could be
better utilized to provide a higher level of service to users. Using
RIOT, we undertake a comparative study of IBM’s GPFS and

the Lustre File System. We also explore the HDF-5 middleware
library, as well as the effect of the PLFS virtual file system on
the contrasting systems.

6.1. GPFS vs. Lustre

Through our experiments with FLASH-IO and IOR, both
through HDF-5, a large performance gap has been identified
between using the HDF-5 file format library and performing
I/O directly via MPI-IO. Although a slight slow-down may be
expected, since there is an additional layer in the software stack
to traverse, the decrease in performance is quite large (up to a
50% slow-down). Figure 5 shows the percentage of the MPI file
write time spent in each of the four main contributing POSIX
file functions.

For the Minerva supercomputer, at low core counts, there is
a significant overhead associated with file-locking (Fig. 5a). In
the worst case, on a single node, this represents an approximate
slow-down of 30% in performance. The reason for the use
of file-locking in HDF-5 is that data-sieving is often utilized
to write small unaligned blocks in much larger blocks. The
penalty for this is that data must be read into memory prior
to writing; this behaviour can prove to be a large overhead for
many applications, where the writes may perform much better
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FIGURE 3. Effective POSIX bandwidth for (a) IOR (through MPI), (b) IOR (through HDF-5) and (c) FLASH-IO (through HDF-5), measured
using RIOT.
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FIGURE 4. Effective MPI bandwidth for (a) IOR (through MPI), (b) IOR (through HDF-5) and (c) FLASH-IO (through HDF-5), measured using
RIOT.

TABLE 4. Effective POSIX and MPI bandwidths (MB/s) achieved
on the three platforms for BT.

Processors

16 64 256 1024

Minerva POSIX 159.65 84.90 24.48
MPI 21.41 4.95 1.11

Sierra POSIX 169.56 40.78 7.98 1.55
MPI 14.49 1.94 0.44 0.09

BG/P POSIX 132.10 49.06 21.10 8.75
MPI 84.15 2.88 8.58 3.45

were data-sieving to be disabled. Figure 5c shows how the BG/P
does not perform data-sieving and therefore there is no overhead
associated with reading data into memory. However, due to the
use of dedicated I/O nodes, the compute nodes spend ∼80% of
their MPI write time waiting for the I/O nodes to complete.

In contrast to Minerva, the same locking overhead is not
experienced by Sierra; however, up to 20% of the MPI write time
is spent waiting for other ranks. It is also of note that Minerva’s
I/O subsystem is backed by relatively slow 7200 RPM 2 TB
Nearline SAS hard drives; Sierra, on the other hand, uses much
quicker 10 000 RPM 450 GB SAS enterprise-class hard disk
drives, providing a much smaller seek time, a much greater
bandwidth and various other performance advantages (e.g.
greater rotational vibration tolerance).As a consequence of this,
a single Sierra I/O node can service a read request much more
quickly than one of Minerva’s, providing an overall greater level
of service.

Despite Sierra having 12 times more I/O servers, nearly
40 times more disks (which also spin faster and are
connected through a faster bus connection), its performance
is not significantly greater (as demonstrated in Fig. 2). One
explanation for this is that, ultimately, reads and writes to
a single file must be serialized, in part at least, by the I/O
servers.
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FIGURE 5. Percentage of time spent in POSIX functions for FLASH-IO on (a) Minerva, (b) Sierra and (c) BG/P, measured using RIOT.

We next explore two ways to improve the performance of
I/O intensive codes. First, we utilize RIOT to analyse why we
experience such a slowdown with HDF-5 based applications
on the Minerva and Sierra supercomputers; secondly, we use
RIOT to analyse the behaviour of the PLFS virtual file system,
developed at LANL, to gain more understanding into how a
log-based file system and transparent file partitioning can offer
such impressive improvements in the achievable bandwidth.

6.2. Middleware analysis: HDF-5

Using RIOT’s tracing and visualization capabilities, the
execution of a small run of the FLASH-IO benchmark (using a
16 × 16 × 16 grid size and only two processors) is investigated.
Figure 6 shows the composition of a single MPI-IO write
operation in terms of its POSIX operations. Rank 0 (Fig. 6a)
spends the majority of its write time performing read, lock and
unlock operations, whereas Rank 1 (Fig. 6b) spends much of its
time performing only lock, unlock and write operations. Since
Rank 1 writes to the end of the file, increasing the end-of-file
pointer, there is no data for it to read in during data-sieving;
Rank 0, on the other hand, will always have data to read (since
there will be zeroes present between its current position and the
new end-of-file pointer).

Also of interest is the fact that both processors are splitting
one large write into five lock, read, write, unlock cycles. This
is indicative of using data-sieving, with the default 512 KB
buffer, to write ∼2.5 MB of data. When performing a write
of this size, where all the data is ‘new’, data-sieving may be
detrimental to performance. To test this hypothesis, we located
the MPI_Info_set operations in the FLASH-IO source code
(used to set the MPI-IO hints) and added additional operations
to disable data-sieving. We then performed the same experiment
in order to visualize the write behaviour with data-sieving
disabled. Figure 7 shows that now the MPI-IO write operation
is consumed by a single write operation, and the time taken to
perform the write is shorter than that found in Fig. 6.

Using the problem size benchmarked previously (24 ×
24 × 24), we performed further executions of FLASH-IO on
Minerva and Sierra using between 1 and 32 compute nodes
(12 to 384 processors) in three configurations: first, in its
original configuration; secondly, with data-sieving disabled
and, finally, with collective buffering enabled and data-sieving
disabled. Figure 8a demonstrates the resulting improvement
on Minerva, showing a 2× increase in the write bandwidth
over the unmodified code. Better performance is observed
when using collective buffering. On Sierra (Fig. 8b), we see
a similar improvement in performance (∼2× improvement in
bandwidth). We also see that, on a single node (12 processor
cores), performing only data-sieving is slightly faster than using
collective buffering and beyond this we see that using collective
buffering increases the bandwidth by between 5 and 20%.

It should be noted that this result does not mean that
data-sieving will always decrease performance. In the case
where data in an output file is being updated (rather than a
new output file generated), using data-sieving to make small
differential changes may improve performance.

6.3. Virtual file system analysis: PLFS

PLFS is an I/O interposition layer designed primarily for
checkpointing and logging operations. PLFS intercepts MPI-
IO calls through a ROMIO file system driver and transparently
translates them from n-processes writing to 1 file, to n-processes
writing ton-files.The middleware creates a view over then-files,
so that the calling application can operate on these files as if
they were all concatenated into a single file. The use of multiple
files by the PLFS layer helps to significantly improve file write
times, as multiple, smaller files can be written simultaneously.
Furthermore, improved read times have also been demonstrated
when using the same number of processes to read back the file
as were used in its creation [14].

Table 5 presents the average perceived and effective MPI-IO
and POSIX bandwidths achieved by the BT benchmark when
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FIGURE 6. Composition of a single, collective MPI write operation on MPI ranks 0 and 1 ((a) and (b), respectively) of a two-processor run
of FLASH-IO, called from the HDF-5 middleware library in its default configuration.
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FIGURE 7. Composition of a single, collective MPI write operation on MPI ranks 0 and 1 ((a) and (b), respectively) of a two processor run
of FLASH-IO, called from the HDF-5 middleware library after data-sieving has been disabled.
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FIGURE 8. The perceived bandwidth for the FLASH-IO benchmark in its original configuration (Original), with data-sieving disabled (No DS)
and with collective buffering enabled and data-sieving disabled (CB and No DS) on (a) Minerva and (b) Sierra, as measured by RIOT.

The Computer Journal, Vol. 56 No. 2, 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/56/2/141/363579 by guest on 16 August 2022



Parallel File System Analysis Through Tracing 153

TABLE 5. Perceived and effective bandwidth (MB/s) for BT Class C through MPI-IO and PLFS, measured using RIOT.

MPI-IO PLFS

16 64 256 16 64 256

Perceived bandwidth Minerva 223.36 53.76 61.44 276.32 224.64 125.44
Sierra 222.24 126.08 115.20 337.12 1518.08 3118.08

Effective POSIX bandwidth Minerva 12.39 1.72 0.83 72.07 36.60 8.86
Sierra 169.56 40.78 7.98 235.44 538.13 437.88

Effective MPI bandwidth Minerva 13.96 0.84 0.24 17.27 3.51 0.49
Sierra 13.89 1.97 0.45 21.07 23.72 12.18
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FIGURE 9. Concurrent write() operations for BT Class C on 256 processors on (a) Minerva and (b) Sierra.

running with and without the PLFS ROMIO file system driver.
Note that, as previously, effective bandwidth in this table refers
to the bandwidth of the operations as if called serially and hence
are much lower than the perceived bandwidths.

When not using PLFS we see that the effective POSIX
write bandwidth decreases as the applications are scaled. PLFS
partially reverses this trend as writes are no longer dependent on
operations performed by other processors and can therefore be
flushed to the file server’s cache much more quickly. The log-
structured nature of PLFS also increases the bandwidth, as data
can be written in a non-deterministic sequential manner with a
log file keeping track of the data ordering. For a BT Class C
execution on 256 processors, PLFS increases the bandwidth
from 115.2 MB/s perceived bandwidth up to 3118.08 MB/s
on the Sierra cluster, representing a 27-fold increase in write
performance.

Much smaller gains are seen on Minerva, but due to its rather
limited I/O hardware, this is to be expected. There are fewer I/O
servers to service read and write requests on Minerva and as a
result there is much less bandwidth available for the compute
nodes.

Figure 9 demonstrates that during the execution of BT on 256
processors, concurrent POSIX write calls wait much less time

for access to the file system.As each process is writing to its own
unique file, it has access to its own unique file stream, reducing
file system contention. For non-PLFS writes, we see a stepping
effect where all POSIX writes are queued and completed in a
serialized, non-deterministic manner. Conversely, on larger I/O
installations, PLFS writes do not exhibit this stepping behaviour,
and on smaller I/O installations they exhibit this behaviour to
a much lesser extent, as the writes are not waiting on other
processes to complete.

7. CONCLUSIONS

Parallel I/O operations continue to represent a significant
bottleneck in large-scale parallel scientific applications. This
is, in part, because of the slower rate of development that
parallel storage has witnessed when compared with that of
microprocessors. Other causes include limited optimization
at the code level and the use of complex file formatting
libraries. Contemporary applications can often exhibit poor I/O
performance because code developers lack an understanding
of how their code utilizes I/O resources and how best to
optimize for this.

The Computer Journal, Vol. 56 No. 2, 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/56/2/141/363579 by guest on 16 August 2022



154 S.A. Wright et al.

In this paper, we document the design, implementation and
application of RIOT, a toolkit with which these issues might be
addressed. We demonstrate RIOT’s ability to intercept, record
and analyse information relating to file reads, writes and locking
operations within three standard industry I/O benchmarks.
RIOT has been utilized on two commodity clusters as well an
IBM BG/P supercomputer.

The results generated by our tool illustrate the difference
in performance between the relatively small I/O subsystem
installed on the Minerva cluster and the much larger Sierra
I/O backplane. Although there is a large difference in the size
and complexity of these I/O systems, much of the performance
differences originate from the contrasting file systems that
they use. Furthermore, through using the BG/P located at
Daresbury Laboratory, we have demonstrated that exceptional
performance can be achieved on small I/O subsystems where
dedicated I/O aggregators are used, allowing data to be
quickly flushed from the compute node to an intermediate
node.

RIOT provides the opportunity to:

(i) calculate not only the bandwidth perceived by a user,
but also the effective bandwidth achieved by the I/O
servers. This has highlighted a significant overhead
in the MPI library, showing that the POSIX write
operations to the disk account for little over half of
the MPI write time. It has also been shown that much
of the time taken by MPI is consumed by file-locking
behaviours and the serialization of file writes by the
I/O servers;

(ii) demonstrate the significant overhead associated with
using the HDF-5 library to store data grids. Through
our analysis, we have shown that on a small number
of cores, the time spent acquiring and releasing file
locks can consume nearly 30% of the file write time.
Furthermore, on small-scale, multi-user I/O systems,
reading data into memory, in order to perform data-
sieving, can prove very costly;

(iii) visualize the write behaviour of the MPI when data-
sieving is in use, showing how large file writes are
segmented into many 512 KB lock, read, write, unlock
cycles. Through adjusting the MPI hints to disable
data-sieving, we have shown that on some platforms,
and for some applications, data-sieving may degrade
performance;

(iv) analyse the performance gains resulting from PLFS.
In this paper, we have demonstrated a 25× speed-
up on the Sierra supercomputer through using PLFS.
The increased number of individual file streams allows
an I/O server to better handle many concurrent write
requests. Even on the much smaller Minerva cluster,
PLFS was able to yield almost a 2× speed-up.

Next we plan to utilize the log files produced by RIOT to create
an automated benchmark generator. We believe that RIOT can

be used to create synthetic I/O benchmarks with which I/O
configuration options for the host or file system can be quickly
assessed. We also believe this offers an opportunity for many
laboratories to release I/O benchmarks that recreate the I/O
operations in classified, production-grade applications.
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