
Parallel Flow-Sensitive Pointer Analysis by

Graph-Rewriting

Vaivaswatha Nagaraj

Indian Institute of Science, Bangalore

vaivaswatha@hpc.serc.iisc.in

R Govindarajan

Indian Institute of Science, Bangalore

govind@serc.iisc.in

Abstract—Precise pointer analysis is a problem of interest to
both the compiler and the program verification community. Flow-
sensitivity is an important dimension of pointer analysis that
affects the precision of the final result computed. Scaling flow-
sensitive pointer analysis to millions of lines of code is a major
challenge.

Recently, staged flow-sensitive pointer analysis has been pro-
posed, which exploits a sparse representation of program code
created by staged analysis. In this paper we formulate the staged
flow-sensitive pointer analysis as a graph-rewriting problem.
Graph-rewriting has already been used for flow-insensitive anal-
ysis. However, formulating flow-sensitive pointer analysis as a
graph-rewriting problem adds additional challenges due to the
nature of flow-sensitivity.

We implement our parallel algorithm using Intel Threading
Building Blocks and demonstrate considerable scaling (upto 2.6x)
for 8 threads on a set of 10 benchmarks. Compared to the
sequential implementation of staged flow-sensitive analysis, a
single threaded execution of our implementation performs better
in 8 of the benchmarks.

Index Terms—Flow-sensitive Pointer Analysis, Staged Flow
Sensitive Pointer Analysis, Amorphous Data-Parallelism, Graph-
Rewriting.

I. INTRODUCTION

Many compiler optimizations rely on alias information to

perform a safe code transformation [1]. Pointer alias analysis

is a static analysis that tries to determine if two pointer

expressions refer to the same memory location. Pointer (or

points-to) analysis attempts to statically determine the possible

run time values of pointer variables. This information can be

used to determine aliases in the program [20].

A large number of compiler optimizations, ranging from

simple dead code elimination to auto parallelization [37], need

alias information. For example, to infer that a variable is

dead, it is necessary to know that no alias of the variable

is live at that point. Without precise alias information, these

optimizations will need to make conservative assumptions (for

example, even though two variables do not alias, the compiler

may need to assume that they are aliased). This will lead

to some optimizations not being performed. Pointer analysis

is also useful in program verification problems such as bug

detection [12].

Static analysis, and more specifically alias analysis, is in

general undecidable [34] [23]. Hence, a large number of

approximation algorithms have been published that balance the

precision of the results and the efficiency of the analysis. These

algorithms explore various dimensions to achieve this balance.

One of the least precise (and hence fast) pointer analyses

is the address taken analysis. It records all variables whose

addresses have been assigned to another variable. It is often

used in production compilers [20]. Inclusion vs unification

[36] [2] is a well studied dimension that decides the way in

which pointer assignments (e.g., “x = y”) are processed. In the

inclusion based approach, processing this statement will lead

to the points-to set of x being a superset of the points-to set of

y. In a unification based algorithm, the points-to sets of x and

y will be considered equal. The context-sensitivity [16] of an

analysis decides whether the calling context of a function is

considered when analysing it. A context-insensitive analysis

allows values to flow from one call through the function

and return to another caller. Flow-sensitivity of an analysis

determines whether control-flow of the program is taken into

account. A flow-insensitive [13] analysis will compute for each

pointer variable, a single points-to set for the entire program. A

flow-sensitive analysis [15] on the other hand respects control

flow, and hence will compute points-to sets at each program

point for each pointer. Field-sensitivity determines whether

accesses to individual members of an aggregate (such as struct

in C) are tracked [31]. Some pointer analysis algorithms cannot

be strictly classified based on the categories mentioned above.

For example, the pointer analysis proposed by Nasre et al

[29] is context-sensitive but uses a probabilistic data structure

to approximate the computed results. Das [10] proposed an

algorithm that lies between inclusion and exclusion based

algorithms.

Our focus in this paper is primarily on flow-sensitive pointer

analysis. Flow-sensitive pointer analysis has been shown to

be of importance to a variety of program analyses such as

analysis of multi-threaded code [35] and detection of security

vulnerabilities [6]. Traditional flow-sensitive pointer analysis

[21] uses an iterative dataflow analysis, which is extremely

inefficient for pointer analysis, mainly due to the conservative

propagation of all dataflow information from each node in the

control flow graph to every other reachable node, because the

analysis cannot know which node actually needs what informa-

tion. Since there can be hundreds of thousands of pointers and

each pointer can have thousands of pointees, a huge amount

of information is stored, processed and propagated.

A frequently used method to optimize flow-sensitive

dataflow analyses is to perform a sparse analysis [7] [19].

978 -1-4799-1021-2/13/$31.00 ©2013 IEEE 19

These analyses directly connect variable definitions to their

uses, so that, dataflow values need to be propagated only to

their uses. However, pointer information is needed to compute

these def-use chains [1]. This results in a cyclic dependence.

Hardekopf and Lin [14] present a semi-sparse analysis that

performs a sparse analysis on some variables and an iterative

dataflow analysis on other variables. In [15] they propose a

fully sparse analysis. Li et al [25] proposed a method in

which the problem of flow-sensitive pointer analysis is reduced

to a general graph reachability problem. A recent work by

Khedker et al [22] uses the idea that points-to information of a

pointer needs to be propagated only to those program points in

which the pointer is live. They combine flow-sensitive pointer

analysis with liveness analysis [1].

A. Contributions

This paper makes the following contributions:

• We formulate flow-sensitive pointer analysis as a graph-

rewriting problem.

• We propose an efficient parallel algorithm to solve the

graph-rewriting problem. To the best of our knowledge,

this is the first successful attempt at parallelizing fully

flow-sensitive pointer analysis.

• We show how our algorithm can be efficiently imple-

mented using a parallel programming framework such as

Intel Threading Building Blocks [32].

• We demonstrate considerable scaling (upto 2.6x) for 8

threads on a set of 10 benchmarks. Compared to the

sequential implementation of staged flow-sensitive anal-

ysis, a single threaded execution of our implementation

performs better in 8 of the benchmarks.

II. BACKGROUND

Next, we present some necessary background information

on the static single assignment form, staged flow-sensitive

analysis [15], and the graph-rewriting based flow-insensitive

pointer analysis [27], which are useful in the rest of the paper

The goal of any pointer analysis is to determine statically,

for each pointer variable p, all elements that p may point

to (called the points-to set of p) at run time [18]. A flow-

insensitive analysis will compute this information without

regard to the program’s control flow, and hence will compute

for each variable, a single points-to set for the entire program.

A flow-sensitive analysis on the other hand respects control

flow, and hence will compute points-to sets at each program

point for each pointer.

Pointer analysis involves handling the following types of

statements (called points-to constraints) in a program.

• x = &a : (Address-of) Pointer variable x is assigned the

address of variable a.

• x = y : (Copy) Pointer variable y is copied over to

pointer variable x. This effectively means that, after this

statement, x will point to whatever y points to.

• x = ∗y : (Load) For each variable a that y may point to,

after this statement, x will point to whatever a points to.

• ∗x = y : (Store) For each variable a that x may point to,

after this statement, a will point to whatever y points to.

Similar to other pointer analysis techniques, we follow a

heap model in which we consider each static memory alloca-

tion site as a distinct abstract memory location, even though it

may correspond to different concrete memory locations during

program execution [18].

A. Intermediate Representation

Static single assignment (SSA) [9] is a program repre-

sentation that restricts each variable to have only a single

definition. If a variable has multiple definitions, it is split

into different variables (sometimes called versions). Whenever

more than one definition reaches a point, a φ node, which is

a special function that indicates multiple reaching definitions,

is inserted.

Indirect defs and uses through pointers complicate the

process of rewriting a program into the SSA form. In an

indirect def or use, the actual variable being defined or used is

not known (in the absence of points-to information). To avoid

this problem, modern compilers such as GCC [30] or LLVM

[24] use a partial SSA representation [15]. In partial SSA form,

top-level variables (variables whose address is never taken) are

placed in the SSA form while address-taken variables are not

placed in the SSA form. Top-level variables are referenced

directly in the IR. Address-taken variables are referenced only

through indirect loads or stores.

Unless otherwise stated, we will use letters at the end of the

alphabet to denote top-level variables (e.g., x, y, w in Fig. 1)

and letters at the beginning to denote address-taken variables

(e.g., a, b, c in Fig. 1). If a variable is sub-scripted, it denotes

that the variable is in SSA form.

B. Staged Flow-sensitive Analysis

Traditional flow-sensitive analysis [21] requires storing the

points-to information for every pointer variable at each node

in the control flow graph (CFG). After application of the

transfer function at each CFG node, the information needs to

be propagated. Since all uses of the points-to information at a

node are not known initially (knowledge of such uses would

in turn require complete points-to information), the traditional

approach has been to propagate information to all successors.

Consider the example shown in Fig. 1. Suppose that after

processing CFG node 1, it is known that x1 may point to

variables a or b. Since it may not be known what z1 or y1
points to, the points-to sets of a and b at node 1 will need to

be propagated to both node 2 and node 3.

Since the lack of points-to information prevents selective

propagation of dataflow values (in this case, the points-to

information), Hardekopf et al [15] proposed the use of an

auxiliary analysis (henceforth referred to as AUX) that is less

precise (and hence faster) than the main flow-sensitive analysis

(henceforth referred to as the primary analysis). Typically,

AUX will be a flow-insensitive context-insensitive analysis.

Similar to [15], we use Andersen-style [2] (inclusion based)

analysis for AUX.

20

v
1
 = *y

1
w
1
 = *z

1

*x
1
 = u

1

*w
1
 = t

2

µ(a
1
)

µ(b
1
)

c
2
 = (c

1
)

a
1
 = (a

0
)

b
1
 = (b

0
)

1

2 3

4

Fig. 1: Simple example to illustrate the need for AUX

AUX helps in constructing conservative def-use information

for address-taken variables. After performing AUX, flow-

insensitive points-to information is available. This means that

for each load or store statement, the points-to set (as computed

by AUX) of the variable dereferenced at the statement forms

the set of address-taken variables that may be indirectly

referenced there. These possible indirect uses and defs are

denoted by the µ and χ functions respectively [8]. Treating

each χ as both a def and use of the variable, and µ as a

use of the variable, the address-taken variables can be easily

converted to SSA form using any standard SSA conversion

algorithm [9]. Once the address-taken variables are in the SSA

form, inferring def-use information is straightforward since

SSA names inherently describe def-use information. With the

def-use edges in place, points-to information needs to be

propagated only along these def-use edges, thus saving both

time and memory. The actual flow-sensitive analysis proceeds

much like a traditional flow-sensitive analysis, except that

information propagation happens only along def-use edges

(corresponding to the variable whose dataflow information is

being propagated).

Figure 1 illustrates the usage of µ and χ, assuming that the

points-to sets for x1, y1, z1 and w1 as computed by AUX

are {a, b}, {b}, {a} and {c}. The address-taken variables

are shown after conversion to SSA form. Def-use edges (built

using results from AUX) are shown using dashed lines. In this

example, the adoption of def-use edges lead to the points-to

set of a being propagated only to node 3 and the points-to set

of b being propagated only to node 2.

A client (user) of this analysis would typically have a query

as “what is the points-to set of pointer x at program point

m” [29]. Since the program is assumed to be in partial SSA

form, only top-level variables (which are in the SSA form) are

referenced directly in the program. Hence, the points-to query

from the client can be translated to (1) Find the SSA version

(definition) of x that reaches program point m. Let this SSA

version be x1. (2) Return the points-to set of x1 as computed

by the staged flow-sensitive points-to analysis.

We use the the algorithm and implementation of Hardekopf

et al [15] as our reference and will henceforth refer to it as

the reference algorithm/implementation.

x

a

 p y

c

p

(a)

x

y

 l a

 p

c

(b)

x

y

s

a

 p

c

(c)

Fig. 2: Rewrite rules for Andersen’s analysis. Dashed arrows

indicate newly added edges. The edge types are: p(points-to),

c(copy), l(load-to), s(store-from)

 x = &a

 y = x

(a)

x

a

p

y

c

(b)

x

a

p

y

c

p

(c)

Fig. 3: (a) Example points-to constraints, (b) Initial constraint

graph, (c) The constraint graph of (b) after applying the copy

rewrite rule.

C. Graph-rewriting

Méndez-Lojo et al [27] introduced the idea of solving

flow-insensitive pointer analysis via graph-rewriting. An initial

constraint graph is built using the points-to constraints of the

program, followed by repeated application of a set of rewrite

rules on the graph, till the graph stops changing.

The constraint graph consists of a node for each pointer

variable in the program. Corresponding to the four basic types

of points-to constraints, there are four types of edges in the

graph. There is a one-one correspondence between each edge

in the initial constraint graph and each points-to constraint in

the original program.

The rewrite rules for Andersen’s analysis are shown in Fig.

2. Applying a rewrite rule amounts to processing a points-to

constraint. After the rewriting terminates (i.e., no more rewrite

rules can be applied), the outgoing “p” edges from a node form

the points-to set of the variable corresponding to that node.

As an example, consider the constraints in Fig. 3(a). The

initial constraint graph for this is shown in Fig. 3(b). After

applying the copy rewrite rule (Fig. 2(a)), the graph would

transform to what is shown in Fig. 3(c). The points-to sets for

x and y initially are {a} and {}. After applying the rewrite

rule, the new points-to sets become {a} and {a} respectively.

III. GRAPH-REWRITING FORMULATION

The two main challenges in adapting flow-insensitive graph-

rewriting rules (Section II-C) for flow-sensitive pointer analy-

sis are (1) presence of spurious edges and (2) handling strong

and weak updates. Hence we begin this section by explaining

21

 (1)
 x1 = &a

 (2)
 *x1 = z1

 a1 = χ(a0)

 (4)
 *x1 = z2

 a2 = χ(a0)

 (3)
 y1 = *x1
 µ(a1)

 (5)
 y2 = *x1
 µ(a2)

(a)

x1

a2

p

a1

p

y1

l

y2

 l

c cc c

(b)

Fig. 4: (a) A simple program. (b) Flow-insensitive constraint

graph corresponding to the load constraints in nodes 3 and 5

of (a).

these two challenges. We then introduce a new set of rewrite

rules that are required for flow-sensitive pointer analysis. Later,

we identify and elucidate the sources of parallelism present in

the analysis and how our formulation helps in extracting this

parallelism.

A. Presence of Spurious Edges

Consider the CFG in Fig. 4(a). The CFG has been annotated

with χ and µ functions using the results from AUX. The flow-

insensitive constraint graph corresponding to load constraints

in the CFG is shown in Fig. 4(b). Here, solid edges are part

of the initial constraint graph and dashed edges are the ones

added by flow-insensitive rewrite rules. The only definition of

variable a reaching node 3 of the CFG is a1 (and similarly

only a2 reaches node 5). Hence, for a flow-sensitive pointer

analysis, the points-to set of a2 should not included in the

points-to set of y1 (and similarly, the points-to set of a1 should

not be included in the points-to set of y2). Hence, for a flow-

sensitive analysis, the edges a1
c

→ y2 and a2
c

→ y1 should not

be added. These edges reduce the precision of the analysis.

However, application of the flow-insensitive rewrite rules lead

to the addition of these spurious edges (as shown in the figure).

Potential edges: For any edge type, we introduce the

concept of a potential edge. A potential edge of type t indicates

that there could be an actual edge of type t between the nodes,

depending on the information computed by the flow-sensitive

analysis as it progresses. Some of the rewrite rules will be

modified to look for a potential edge before inserting an actual

edge of that type. This will become clear as we explain the

rewrite rules. We use a prefix “p ” on the edge type to denote

potential edges of that type1.

To illustrate the utility of potential edges, we again consider

the example in Fig. 4. Our goal is now to modify the rewrite

rules such that the two spurious edges a1
c

→ y2 and a2
c

→ y1
do not get added. Only a1

c

→ y1 and a2
c

→ y2 should be

added as a result of applying the rewrite rules. To achieve this,

we add potential copy edges a1
p c

→ y1 and a2
p c

→ y2 during

1The prefix “p ” used for potential edges (which can be of any type) should
not be confused with the label “p” used for points-to edges

 *x1 = y1
 a1 = χ(a0)
 b1 = χ(b0)

(a)

if x1

p

→ a then

a1
c

← y1
end if

if x1

p

→ b then

a1
c

← a0
end if

(b)

Fig. 5: The points-to set of variable a1 in (a) is decided by

the points-to set of x1 as show in (b).

construction of the initial constraint graph corresponding to the

load constraints. The flow-insensitive load rewrite rule (Fig.

2(b)) is modified to add a new copy edge only if there already

exists a potential copy edge between the two nodes. The two

copy edges a1
c

→ y1 and a2
c

→ y2 will get added since

potential copy edges exist between the two pairs. However,

since the edges a1
p c

→ y2 and a2
p c

→ y1 are not present, the

two spurious copy edges mentioned earlier do not get added.

B. Strong and Weak Updates

Consider the store node shown in Fig. 5(a). The flow-

sensitive points-to set of a1 depends not only on whether x1

points to a but also on whether x1 points to any other variable b

(as computed by the flow-sensitive analysis). If x1 points only

to a, then a1 will have a strong update, thus getting a “c” edge

from y1. If x1 points to both a and b, then the previous points-

to set of a (which is in the SSA variable a0) also needs to be

copied to a1, making the update weak. If x1 does not point to

a, a1 will have the same points-to set as a0. This logic (w.r.t

updating a1) is shown in Fig. 5(b).

To handle strong and weak updates, we need a way to

group all the indirect defs in a store constraint. We do this

by introducing Klique nodes, a new node type which is used

to connect all these indirect defs. Every store constraint in

the original program will have an associated Klique node

in the constraint graph. For each address-taken variable that

may be (indirectly) defined in that store, we add a Klique

edge (denoted by the letter “k”)2 from the corresponding SSA

version of that variable to the corresponding Klique node. For

example, for the store constraint in Fig. 5(a), a new Klique

node is created and Klique edges are added from a1 and b1
to this Klique node. Thus, we have connected all indirect defs

in a store constraint. The rewrite rules in the next sub-section

will make it clear as to how this helps us perform a weak or

a strong update.

We next present the various components of our algorithm,

namely the graph structure (node and edge types) and the

rewrite rules. The overall algorithm will be presented in

Section III-E

C. Graph Structure

Node types: The constraint graph for flow-sensitive analysis

can have the following types of nodes:

2Note that we use the term Klique for both nodes and edges. A Klique edge
will always be directed to a Klique node.

22

• TopLvl: These nodes correspond to the top-level variables

in the program. Top-level variables are expected to be

in the SSA form [9]. Since the SSA form guarantees

a single definition, the outgoing “p” edges of a TopLvl

node will represent the flow-sensitive points-to set of the

corresponding top level variables.

• AddrTakenSSA: There is one AddrTakenSSA node for each

SSA version of each address-taken variable. Since each

possible (indirect) definition of an address-taken variable

will have its own SSA version, the outgoing “p” edges

of these nodes will represent the flow-sensitive points-to

sets of the corresponding address-taken variables.

• NonSSA: These nodes correspond to address-taken vari-

ables in the original program, before converting them to

SSA form. We will use these nodes as a representative of

all AddrTakenSSA nodes that are from the same address-

taken variable. All “p” edges will be directed towards

these nodes.

• Klique: These nodes are useful to handle strong and weak

updates. They are artificial nodes that are introduced to

recognize the set of address-taken variables that may

(indirectly) be defined at a given store constraint.

As remarked earlier, SSA variables will be sub-scripted with

a number.

Apart from the four edge types (p, c, l and s) that are used

in flow-insensitive analysis, we have the following additional

edge types:

• Uses (u): In a load constraint, when it is known (as

the flow-sensitive analysis progresses) that the TopLvl

node being dereferenced points to an address-taken vari-

able, a Uses edge is added from the TopLvl node to

the corresponding AddrTakenSSA node. Note that the

AddrTakenSSA node will have a µ function in that load

constraint.

• Defines (d): In a store constraint, when it is known (as the

flow-sensitive analysis progresses) that the TopLvl node

being dereferenced points to an address-taken variable,

a Defines edge is added from the TopLvl node to the

corresponding AddrTakenSSA node. Note that the Addr-

TakenSSA node will be on the LHS of a χ function in

that store constraint.

• Klique edge (k): These edges connect AddrTakenSSA

nodes on the LHS of χ functions in a store constraint

to a Klique node that is unique to that store constraint.

• NonKilledCopy (n): These edges connect the AddrTak-

enSSA node on the RHS of a χ function to the cor-

responding AddrTakenSSA node on the LHS. They are

useful to perform weak updates.

• AlreadyDefined (a): AddrTakenSSA nodes in a store con-

straint that are already defined (i.e., they have an incom-

ing Defines edge) are marked by having an AlreadyDe-

fined edge from the Klique node of that store constraint.

• SSAParent (ssa-parent) : Each AddrTakenSSA node will

have exactly one SSAParent edge to identify the NonSSA

node that corresponds to it.

Some of the edge types above can also be seen as properties

of nodes. For example, the SSAParent edge from a node can

be considered as a constant property of that node. We present

them as edges for the sake of a pure graph formulation.

Initial constraint graph: The initial constraint graph is

built from points-to constraints in the input program. The

nodes and edges added for each type of constraint is shown

in Fig. 6.

The initial constraint graph for a store constraint (Fig. 6(a))

consists of the following components:

1) The top-level variable (x1 here) potentially defines

(“p d”) the address-taken taken variables (a1 and b1)

on the LHS of a χ function.

2) The store edge, labelled “s” (here x1 stores from y1).

3) Due to the store (from y1), there is a potential copy

(“p c”) from the RHS top-level variable (y1) to each

variable that may potentially be defined (a1 and b1).

4) AddrTakenSSA nodes on the RHS of χ functions (a0
and b0) have a NonKilledCopy edge (labelled “n”) to

the corresponding nodes (a1 and b1 respectively) on the

LHS of the χ function. Upon a weak update, this edge

leads to a copy edge.

5) Klique nodes and edges (labelled “k”) are added to group

together variables that may (indirectly) be defined in

this constraint (here, a1 and b1 are connected to the

Klique node k1). As mentioned, this grouping helps in

performing weak updates.

The initial constraint graphs for other types of constraints (Fig.

6) are similar to (but simpler than) the initial graph for store

constraints. We skip explaining them in detail.

D. Rewrite Rules

Once the initial constraint graph is constructed from the

input program as shown in Fig. 6, the analysis needs to be

solved. The rewrite rules to solve the analysis are shown in

Fig. 7. We apply these rewrite rules till no more edges are

added to the graph, indicating a fixed point. At the end of

the analysis, the “p” edges emanating from a node form the

points-to set for the variable corresponding to that node.

Rules (a), (b) and (c) (Fig. 7) are adaptations of the three

flow-insensitive rewrite rules, taking spurious edges into ac-

count. These rules now look for a potential edge before adding

an actual edge. Rules (d) and (e) add Defines and Uses edges

based on whether the TopLvl node being dereferenced points to

the concerned address-taken variable. This requires knowing

the SSAParent of AddrTakenSSA nodes that are potentially

defined or used (in χ or µ functions). Rules (f) and (g) handle

weak updates. Rule (f) marks a node belonging to a Klique

as already defined (i.e., it has an incoming Defines edge).

This is the first step in performing a weak update. For an

AddrTakenSSA node on the LHS of a χ function, if another

AddrTakenSSA node in the same Klique is already defined,

then the value on the RHS of the χ function needs to be

copied. This is carried out by rule (g), completing the weak

update process. Thus, rules (c), (f) and (g) together handle the

logic for strong and weak updates (Fig. 5).

23

 *x1 = y1
 a1 = χ(a0)
 b1 = χ(b0)

x1

y1

 s

b1

p_d

a1

 p_db0

n

a0

np_c p_c

k1

k k

(a)

x1 = *y1
 µ(a1)

y1

x1

 l a1

 p_u

p_c

(b)

x1 = &a

x1

a

 p

(c)

x1 = y1

y1

x1

 c

(d)

v1 = Φ(v2 , v3)

v2 v3

v1

c c

(e)

Fig. 6: Initial graph for for different types of constraints. In (a),

k1 is a Klique node. In (e), v1, v2, v3 may be either top-level

or address-taken.

Similar to the flow-insensitive rewrite rules in [27], our

rewrite rules have the property that they may be applied on

different nodes in parallel, as long as the underlying data

structure that represents edges can handle concurrent updates.

E. Putting It All Together

A summary of the steps in our method is presented here.

1) Convert TopLvl variables to SSA form. Most compilers

already have an SSA based representation, and hence

this step may not be necessary.

2) Perform AUX. The less precise points-to information

computed by AUX is used to annotate the program with

χ and µ functions.

3) Convert the address-taken variables (which are in the χ

and µ functions) to SSA form using any standard SSA

conversion algorithm.

4) Build the initial constraint graph according to Fig. 6.

5) Apply the flow-sensitive graph rewrite rules (Fig. 7), in

parallel, repeatedly till fixed point.

6) The points-to set for each top-level variable can be

obtained from the corresponding TopLvl graph node. The

points-to (“p”) edges from this node form the points-to

set. Since only top-level variables are directly referenced

x1

y1

c

a

p

x1

y1

c

a

p

p

(a)

x1

a1

u

y1

l

p_c

x1

a1

u

y1

l

c

(b)

x1

y1

s

a1

d

p_c

x1

y1

s

a1

d

c

(c)

x1

a1

p_d

a

p

x1

a1

d

a

p

(d)

x1

a1

p_u

a

p

x1

a1

u

a

p

(e)

x1

b1

d

k1

k

x1

b1

d

k1

k a

(f)

a0

a1

n

k1

k

b1

a

a0

a1

n c

k1

k

b1

a

(g)

Fig. 7: Rewrite rules for flow-sensitive pointer analysis

24

in partial SSA form, the points-to sets of address-taken

variables are not needed after the algorithm terminates.

F. Properties of Our Graph-rewriting System

In this section, we show that our algorithm described in

Section III-E: (1) Terminates. (2) Computes a unique solution

whose precision is equivalent to that of the reference algo-

rithm. (3) Easily exploits parallelism. Due to space limitation,

we provide only an informal argument and do not provide a

formal proof.

Theorem 1. The algorithm described in the previous section

terminates in a finite number of steps.

Proof: Since the total number of edges that can be added

to the graph is finite and we add at least one edge to the graph

in each iteration (we stop if no edges are added in an iteration),

the algorithm terminates after a finite number of iterations.

Theorem 2. The fixed point (final graph) obtained when the

algorithm terminates is unique.

Proof: Similar to the rewrite rules in [27], our rewrite

rules are locally confluent. Combining this with the result of

Theorem 1, we can conclude (by Newman’s lemma [4]) that

the rewriting system is globally confluent, and hence the final

graph (fixed point) is unique.

Theorem 3. The results computed by our algorithm is equiv-

alent to that of the reference algorithm.

Proof: Every TopLvl node in our graph corresponds to

a top-level variable. The points-to sets for these variables are

flow-sensitive since they are in the SSA form. For address-

taken variables, the reference algorithm stores the points-

to sets at each program point where the variable is in a

χ or µ function. We achieve the same by having different

nodes for each SSA version of the address-taken variable,

with these SSA versions corresponding to the use/def of the

variable in a χ or µ function. Actual dataflow propagation

in the reference algorithm happens through def-use edges

built using the SSA names of variables. However, our method

does not have explicit def-use edges. The node for a variable

holds the points-to information. Update of points-to set of a

variable happens through incoming copy edges to the node

(that corresponds to the variable) in the constraint graph.

These copy edges are added wherever points-to set propagation

happens in the reference algorithm.

Observation 1. Our formulation of the analysis exposes

parallelism.

In the analysis performed by the reference algorithm, any

points-to constraint that has new incoming (IN) information

can be processed independently of other constraints. This

means that there are multiple items on the worklist that can

be processed in parallel. The second source of parallelism in

the analysis is the update of variables in a single constraint.

Since a load or store constraint can involve more than one

address-taken variable, each of them can be updated inde-

pendently of the other while processing the constraint. Our

graph formulation exposes both these sources of parallelism

in a natural way. Any two graph nodes can be processed in

parallel. Synchronization is required only when two threads

simultaneously try to update edges of the same node. Such

a parallelism in which different nodes in the graph can be

processed in parallel, but with certain constraints, is called

amorphous data-parallelism [33].

IV. IMPLEMENTATION AND OPTIMIZATIONS

We implemented our parallel algorithm in C++, using

Intel Threading Building Blocks [32] (referred to as TBB

henceforth) for parallel work management.

The initial constraint graph for all benchmarks were gen-

erated using Ben Hardekopf’s LLVM implementation of the

staged flow-sensitive pointer analysis [15]. Hence, our imple-

mentation has the same properties (w.r.t various dimensions

of pointer analysis) as Ben Hardekopf’s implementation. Our

implementation is context-insensitive, field-sensitive and flow-

sensitive. Although our graph formulation description in the

previous section ignores pointer arithmetic statements 3 (state-

ments of the form “x = y + o”, where x, y are pointer variables

and o is a constant offset), our implementation handles these

points-to constraints in a way similar to earlier work [26].

Edge representation: In our graph-rewriting approach,

although different nodes can be processed independently,

synchronization is required whenever two threads try to add

edges to the same node. To handle this efficiently, we use

concurrent data structures that allow parallel updates by dif-

ferent threads. A concurrent sparse bit vector is highly suitable

for this purpose. However we were unable to obtain a good

implementation of concurrent sparse bit vectors in C++. So we

used the concurrent unordered set data structure provided by

TBB in our implementation. This is a hash table based data

structure that allows concurrent addition of set elements.

Potential edges can be represented in two ways. Since

they lose importance as soon as an actual edge of the same

type is added between the two nodes, one way to represent

them would be to have two bits per edge. 00 represents

no edge, 01 represents a potential edge and 10 (or 11) can

represent an actual edge. The other way to implement these

edges is to treat them as a different edge type altogether. We

use the latter approach in our implementation. In such an

implementation, there is an option to delete potential edges

once an actual edge has been added in its place. Deleting

may improve performance since deleted edges will not be

redundantly checked when applying a rewrite rule.

Worklist approach: Although it is possible to try and

apply each rewrite rule to all nodes until no more edges are

added to the graph, it is very inefficient. We use a worklist

based approach to apply rewrite rules, maintaining a separate

worklist for each of the rewrite rules. “p” edges in the initial

3Since pointer arithmetic statements do not add any new challenge to flow-
sensitive analysis, we skipped describing them in our main algorithm.

25

constraint graph are used to build the initial worklists. Any

new edge that is added during the analysis can trigger more

nodes to be added to one or more worklists. For example, a

new “p” edge can trigger the rules (a), (d) and (e) in Fig. 7.

We employ a dual worklist based approach (similar to

double buffering [3]) to add and remove items from the

worklists. Rewrite rules are applied to nodes on the current

worklist, while we add new nodes (which need processing) to

the next worklist. Once the current worklist becomes empty,

the current and next worklists are swapped and the process

repeats. This is done until both the worklists are empty. We

implement worklists using vectors provided by the standard

template library [28]. Further, the next worklist is maintained

per thread (as thread local storage) and at the end of an

iteration, before swapping next and current, we combine the

per thread worklists. The current worklist is a global worklist.

We use a per node flag to determine if a node is in a worklist or

not. We rely on the parallel for construct of TBB to manage

work scheduling. TBB implements work-stealing [32] [5] to

manage parallel workload.

Incremental updates: When new “p” edges are added to

a node, the node gets added to the worklist of rewrite rule

(a) (in Fig. 7). When this node is processed again in the next

iteration to apply the rule, only the new “p” edges need to be

propagated (through the “c” edges). Points-to edges that were

added before the previous iteration can be ignored here. This

optimization can be applied to other rewrite rules as well. Thus

it helps to maintain newly added edges as a delta over existing

edges. This idea has already been used by Méndez-Lojo et al

in their GPU implementation of Andersen’s analysis [26]. We

adapt this idea to our approach. This optimization ensures that

no redundant work is carried out when a rewrite rule is applied.

V. RESULTS

In this section, we evaluate our algorithm and implemen-

tation by comparing it to the current state-of-art algorithm

by Hardekopf et al [15]. We use the implementation available

at http://www.cs.ucsb.edu/˜benh/ as our reference.

We first show some properties of the benchmarks that we used

followed by the performance results.

Our experiments are conducted on a 4-socket machine with

a 2.0 GHz 8-core processor on each socket, with a total of

64GB memory. The machine runs Debian GNU/Linux 6.0

and has version 4.0 of Intel Threading Building Blocks [32]

installed.

We use a subset of benchmarks from SPEC2006 [17] that

are relatively larger (in terms of lines of code), and a few other

programs that have all been used in previous studies [15] [27].

Program names with a numbered prefix are from SPEC2006.

Ex is a text processor, Nethack is a text based game, Sendmail

is an email server, Svn (subversion) is a revision control system

and Vim is a text editor.

Table I shows the number of nodes (of each type) present

in the initial constraint graph. Table II shows the average

(across iterations) number of nodes in each worklist for each

benchmark. The worklists (a) to (g) correspond to rewrites

TABLE I: Number of nodes of each type

benchmark TopLvl NonSSA AddrTakenSSA Klique

ex 9852 1229 7953 148
254.gap 45946 2393 635639 469
176.gcc 114994 5908 255774 1770
nethack 85994 11977 124448 223
197.parser 8514 1020 3631 129
253.perlbmk 50538 2829 270833 543
sendmail 45155 4136 22220 347
svn 99181 8740 6328901 2738
vim 238031 8935 1017678 724
255.vortex 17910 3304 12138 107

TABLE II: Average number of nodes in each worklist

benchmark (a) (b) (c) (d) (e) (f) (g) (h)

ex 86 12 11 11 13 11 16 6
254.gap 335 23 20 20 23 20 5 27
176.gcc 220 76 27 27 76 27 23 72
nethack 1147 270 23 23 275 23 278 956
197.parser 57 8 16 16 9 16 4 13
253.perlbmk 106 15 9 9 16 9 10 14
sendmail 225 31 17 17 32 17 31 22
svn 713 180 82 82 180 82 315 26
vim 4638 81 34 34 85 34 625 66
255.vortex 260 40 10 10 40 10 151 64

rules from (a) to (g) in Fig. 7. Worklist (h) corresponds to the

rewrite rule for processing pointer arithmetic statements (as

stated earlier in Section IV, we have not mentioned processing

of pointer arithmetic statements in our algorithm description,

though we process them in our implementation). While these

columns give us some idea of the extent to which the analysis

for the benchmarks can be parallelized, it is important to

note that not all of it can be exploited fully. There may be

contention among threads (when applying a rewrite rule) to

access the same node, which may slow down the accesses.

A. Performance

Figure 8 shows the performance of our analysis compared

to the reference implementation. For eight of the benchmarks,

a single threaded execution of our algorithm outperforms the

reference implementation. A maximum speedup of 14.4x is

seen for gap.

We are able to scale upto four threads easily for most

benchmarks. However, some of the benchmarks (such as

parser) do not scale well. As expected, the number of nodes on

each worklist for a benchmark limits the amount of parallelism

that can be extracted. For example, svn, vim and nethack

show good scaling as they have a larger number of nodes

(on an average) on their worklists (svn and vim also scale

to eight threads easily). On the other hand, parser and perl

have relatively lower number of nodes (on an average) on the

worklists, and hence do not show good scaling.

An important aspect of our implementation is the use of

hash table based sets. We use the concurrent unordered set

data structure provided by TBB to represent edges. As we

remarked earlier, this data structure is not efficient for repre-

senting graph edges for the following reasons: (1) Hash based

26

 0x

 1x

 2x

 3x

 4x

 5x

 6x

e
x

2
5

4
.g

a
p

1
7

6
.g

c
c

n
e

th
a

c
k

2
5

3
.p

e
rl
b

m
k

1
9

7
.p

a
rs

e
r

s
e

n
d

m
a

il

v
im

s
v
n

2
5

5
.v

o
rt

e
x

S
p

e
e

d
u

p

1
0

.8
x

1
1

.4
x

1
4

.2
x

1
4

.4
x

1
3

.1
x

6
.5

x

reference
1 thread
2 threads
4 threads
6 threads
8 threads

Fig. 8: Speedup compared to the reference implementation

sets require one node in the chaining linked list (of a bucket)

to store a single bit. (2) The entire table is allocated even

when the number of bits stored is low. A good data structure

for representing edges in constraint graphs is the sparse bit

vector [26]. A sparse bit vector can store multiple bits in a

node of its linked list. Hence, it can skip over bits faster during

a lookup and it also takes up lesser memory to store the same

number of bits. However, we were unable to obtain a good

implementation of sparse bit vectors that supports concurrent

accesses. We plan to implement sparse bit vector based edge

representation in the future. We believe that using a concurrent

sparse bit vector can further improve the scalability of our

algorithm.

VI. RELATED WORK

The area of pointer analysis is rich in literature. A good

survey can be found in [20]. A good description of traditional

flow-sensitive pointer analysis can be found in [21]. Flow-

sensitive pointer analyses based on iterative dataflow analysis

are in general inefficient as they redundantly propagate large

points-to sets. However, a recent work by Khedker et al [22]

avoids redundant propagation by taking liveness of pointer

variables into account. Points-to sets are propagated only to

places where they are live. This work by Khedker et al is both

flow and context-sensitive. It was evaluated on benchmarks

upto 30kLoC.

Hardekopf and Lin proposed a semi-sparse flow-sensitive

analysis [14] which takes advantage of sparse representation

for some of the variables in the program. Their staged flow-

sensitive pointer analysis [15] is a fully sparse analysis and

succeeds in scaling to millions of lines of code. Li et al [25]

formulate flow-sensitive pointer analysis as a graph reachabil-

ity problem using value flow graphs.

The work by Méndez-Lojo et al [27] is the first one to

formulate pointer analysis as a graph-rewriting problem and

parallelize it. They extend this work to perform the same

analysis on GPUs [26]. However, their analysis is flow-

insensitive. As we mentioned earlier in Section III, flow-

sensitivity introduces additional challenges that we address in

our work.

In [11], Edvinsson et al take advantage of control flow

branches and polymorphic calls to find independent tasks that

can be processed in parallel. Although ordering of constraints

during processing provides partial flow-sensitivity, the analysis

is not fully flow-sensitive since no strong updates are per-

formed. In terms of parallelism, the granularity of parallelism

in their algorithm is limited to processing multiple constraints

in parallel. Our algorithm, in addition to this, enables updating

multiple variables within a constraint in parallel.

To the best of our knowledge, our work is the first to

parallelize fully flow-sensitive pointer analysis.

VII. CONCLUSION AND FUTURE WORK

Flow-sensitive pointer analysis is an important problem

for the compiler community. Improving the efficiency of this

analysis can result in significant speedup of the compilation

process. To this effect, our work contributes a new algorithm

to perform flow-sensitive pointer analysis efficiently.

In this paper, we identified two sources of parallelism

in flow-sensitive pointer analysis and introduced a graph-

rewriting formulation of the analysis that can easily extract this

parallelism. Our algorithm is efficient and easy to implement.

It scales considerably upto 8 threads.

We currently use a hash table based set representation for

graph edges. We believe that our implementation can be further

improved by employing sparse bit vectors to represent graph

edges. Our approach can also be extended to incorporate

context-sensitivity. We leave this for future work.

27

VIII. ACKNOWLEDGMENTS

We would like to thank Ben Hardekopf for his LLVM

implementation of the staged flow-sensitive pointer analysis

and for providing us the benchmarks. We would also like to

thank Mario Méndez-Lojo for making available his parallel

implementation of Andersen’s analysis and his suggestions for

our implementation. Rupesh Nasre’s comments were useful in

improving the paper.

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[2] Lars Ole Andersen. Program analysis and specialization for the c
programming language. Technical report, 1994.

[3] Edward Angel. Interactive Computer Graphics: A Top-Down Approach

Using OpenGL. Addison-Wesley Publishing Company, USA, 5th edi-
tion, 2008.

[4] M. Bezem, J.W. Klop, Terese, and R. de Vrijer. Term Rewriting

Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2003.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46(5):720–748, September
1999.

[6] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible
security enforcement using dynamic data flow analysis. In Proceedings

of the 15th ACM conference on Computer and communications security,
CCS ’08, pages 39–50, New York, NY, USA, 2008. ACM.

[7] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic con-
struction of sparse data flow evaluation graphs. In Proceedings of the

18th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’91, pages 55–66, New York, NY, USA, 1991. ACM.

[8] Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark
Streich. Effective representation of aliases and indirect memory opera-
tions in ssa form. In Proceedings of the 6th International Conference

on Compiler Construction, CC ’96, pages 253–267, London, UK, UK,
1996. Springer-Verlag.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.,
13(4):451–490, October 1991.

[10] Manuvir Das. Unification-based pointer analysis with directional as-
signments. In Proceedings of the ACM SIGPLAN 2000 conference on

Programming language design and implementation, PLDI ’00, pages
35–46, New York, NY, USA, 2000. ACM.

[11] Marcus Edvinsson, Jonas Lundberg, and Welf Löwe. Parallel points-to
analysis for multi-core machines. In Proceedings of the 6th International

Conference on High Performance and Embedded Architectures and

Compilers, HiPEAC ’11, pages 45–54, New York, NY, USA, 2011.
ACM.

[12] Samuel Z. Guyer and Calvin Lin. Error checking with client-driven
pointer analysis. In Science of Computer Programming, 2005.

[13] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In Proceedings of

the 2007 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’07, pages 290–299, New York, NY, USA,
2007. ACM.

[14] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer
analysis. SIGPLAN Not., 44(1):226–238, January 2009.

[15] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for
millions of lines of code. In Proceedings of the 9th Annual IEEE/ACM

International Symposium on Code Generation and Optimization, CGO
’11, pages 289–298, Washington, DC, USA, 2011. IEEE Computer
Society.

[16] Laurie Hendren. Context-sensitive points-to analysis: Is it worth it. In
Compiler Construction, 15th International Conference, volume 3923 of

LNCS, pages 47–64. Springer, 2006.
[17] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH

Comput. Archit. News, 34(4):1–17, September 2006.

[18] Michael Hind. Pointer analysis: haven’t we solved this problem yet?
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, PASTE ’01, pages
54–61, New York, NY, USA, 2001. ACM.

[19] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. In-
terprocedural pointer alias analysis. ACM Trans. Program. Lang. Syst.,
21(4):848–894, July 1999.

[20] Michael Hind and Anthony Pioli. Which pointer analysis should i use?
SIGSOFT Softw. Eng. Notes, 25(5):113–123, August 2000.

[21] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press, Inc., Boca Raton, FL, USA,
1st edition, 2009.

[22] Uday P. Khedker, Alan Mycroft, and Prashant Singh Rawat. Liveness-
based pointer analysis. In Proceedings of the 19th international con-

ference on Static Analysis, SAS’12, pages 265–282, Berlin, Heidelberg,
2012. Springer-Verlag.

[23] William Landi. Undecidability of static analysis. ACM Lett. Program.

Lang. Syst., 1(4):323–337, December 1992.
[24] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization.

Master’s thesis, Computer Science Dept., University of Illinois at
Urbana-Champaign, December 2002.

[25] Lian Li, Cristina Cifuentes, and Nathan Keynes. Boosting the perfor-
mance of flow-sensitive points-to analysis using value flow. In Proceed-

ings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, ESEC/FSE ’11,
pages 343–353, New York, NY, USA, 2011. ACM.

[26] Mario Méndez-Lojo, Martin Burtscher, and Keshav Pingali. A gpu
implementation of inclusion-based points-to analysis. In PPOPP, pages
107–116, 2012.

[27] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. Parallel
inclusion-based points-to analysis. SIGPLAN Not., 45(10):428–443,
October 2010.

[28] David R. Musser and Atul Saini. The STL Tutorial and Reference

Guide: C++ Programming with the Standard Template Library. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1995.

[29] Rupesh Nasre, Kaushik Rajan, R. Govindarajan, and Uday P. Khedker.
Scalable context-sensitive points-to analysis using multi-dimensional
bloom filters. In Proceedings of the 7th Asian Symposium on Pro-

gramming Languages and Systems, APLAS ’09, pages 47–62, Berlin,
Heidelberg, 2009. Springer-Verlag.

[30] Diego Novillo. Tree ssa - a new optimization infrastructure for gcc. In
GCC Developers Summit, 2003.

[31] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient field-
sensitive pointer analysis of c. ACM Trans. Program. Lang. Syst., 30(1),
November 2007.

[32] Chuck Pheatt. Intel threading building blocks. J. Comput. Sci. Coll.,
23(4):298–298, April 2008.

[33] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. The tao of parallelism in algorithms. SIGPLAN Not.,
46(6):12–25, June 2011.

[34] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program.

Lang. Syst., 16(5):1467–1471, September 1994.
[35] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for

multithreaded programs. In Proceedings of the eighth ACM SIGPLAN

symposium on Principles and practices of parallel programming, PPoPP
’01, pages 12–23, New York, NY, USA, 2001. ACM.

[36] Bjarne Steensgaard. Points-to analysis in almost linear time. In Pro-

ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’96, pages 32–41, New York, NY,
USA, 1996. ACM.

[37] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool.

28

