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Abstract

For systems with a large aumber of FPGAs, where a design is instantated across muitiple FPGAs in a
chassis, an efficient mechanism of programming the FPGA devices is needed. The mechanism described
herein allows multiple FPGAs to be programmed across a backplane. Only a single configuration PROM
is required to store the configuration for the multiple instances of the design. When the system boots, all
FPGAs are programmed in parallel. This design is applicable 1o any system which contains a multiple
board system which has instances of identical FPGA implementations distributed across the boards. Signal

integrity of signals is considered.






Figure 1: Backplane with multiple FPGA instances

1 Overview

Traditional mechanisms of programming multiple FPGAs are not well suited for systems that contain
multiple FPGA devices distributed across a backplane. Device chains require large programming times
since the concatenation of the programming bits are serially streamed through each of the devices. The use
of duplicate identical PROMs is also undesirable, as it introduces the opportunity for inconsistency in the
system and increase time to modify the design. Brute force Hard-wiring of the bidirectional Init and Done
signals is non-scalable due to signal integrity and rise-time delays.

The mechanism described herein allows multiple FPGAs to be programmed across a backplane. Only a
single PROM is required to store the configuration for the multiple instances of the design. When the system
boots, all FPGAs are programmed in parallel. This design is applicable to any system which contains a
multiple board system which has instances of identical FPGA implementations distributed across the boards.
Signal integrity of signals is considered. A sample system is shown in Figure 1.



Each design is inslantiated on Mater/Slave boards in the system.

(A passive backplane is used to interconnect FPGA programming signals between boards.
kOne backplane layout, shown below, is used for each design.
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Figure 2: Backplane Configuration

2 Backplane Configuration

A diagram of the passive backplane used to interconnect the boards in the system is shown in Figure 2. The
backplane has three types of slots: Miscellaneous (Misc), Master, and Slave. The (Misc) board attaches to
the slot in the center of the chassis. It contains the PROMs to program the FPGAs in the system. Master
and Slave boards attach to the remaining slots in the system.

2.1 Distribution of the shared signals

The backplane distributes the program (Prog) and data (Din) signal from the Misc board to the Master and
Slave boards using a point to multi-point line. Separately-driven signals are used to drive the signal on the
left and right side of the backplane.

2.2 Distribution of signals to the Master

Each system has one master slot and zero or more slave slots. When the first board is inserted, it should
be placed in the master slot. The boards that attach to the master and slave slots are identical. The slots,
however, are wired slightly differently.

Firstly, the master slot is wired to provide a point-to-point interconnection of Done and Init signals to
the Misc board. These signals are not connected on the slave boards. The Master slot also has the Mast
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Figure 3: Signal reflections on source-terminated backplane lines

signal grounded so that logic on the board can identify that it is a master. That signal is not connected on
the slave boards.

2.3 Distribution of clock signals

To provide glitchless operation of the programming clock, the Misc board has point-to-point path to each
master or slave in the system. Clock-driver chips on the Misc board separately drive drive a signal to each
clock trace of the backplane.

2.4 Backplane Signal Drivers

The I/0 signals are all LVCMOS (2.5V), except where noted. All signals driving the backplane, as well as
the longer traces that appear on the same board, are source-terminated.

As shown in Figure 3, this configuration allows multipoint data signals to be valid within one RTT
and point-to-point clock signals to make a single transition to full voltage at RTT/2, so long as the source
termination impedance matches the distributed circuit load.
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Figure 4: Master/slave Board Configuration

3 Master/Slave Board

The detail of the master/slaveboard is shown in Figure 4. This board contains the the FPGA(s) for one or
more instances of a design. The slot connector on the lefthand side of the diagram matches the connector
on the backplane. The JTAG connector on the right enable board-level testing.

3.1 Program and Data

The incoming Prog and Din signals are re-buffered on the master/slave board before they are fed to each
FPGA device. The source-terminated trace should start at the first FPGA and be routed as shown on the
diagram to preserve transmission line characteristics.

3.2 Initialize and Done

The Done and Init signals for all devices on the board have pullups, since they are driven by open-drain
outputs on the FPGA. The signals from the first device are driven to the backplane, while signals from the
rest of the FPGAs remain local to the device.



3.3 Component Selection

Specific parts and components that can be used to implement the circuit are shown at the bottom of Figure 4.
Care must be taken for the buffering of signals between logic families. Note, for example, how the 3.3V
signals on the JTAG interface drive the 2.5V signals on the FPGA. Since the FPGA IO pads are 5.5V
tolerant, it is acceptable to overdrive their input voltages.
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Figure 5: MISC Board Configuration

4 MISC Board Configuration

The Miscellaneous board is shown in Figure 5. The connector on the left matches the connector on the
backplane. The Misc board contains the PROMs holding FPGA configuration data, a CPLD to program the
FPGAs, and a JTAG interface. It distributes programming signals and clocks to the backplane.

4.1 Program and Data signals

Both Prog and Din are source-terminated signals distributed across the backplane. The Prog backplane
signal is generated either by the XC18xx PROM CF/ or as a result of manually pressing the reprogram
button. The CF/ signal is generated by the PROM when it detects the initial power-on state or when an
explicit reprogramming command arrives via the JTAG interface.

The Data signal from the PROM feeds the Din signal on the backplane. For large FPGA devices (like the
XCV1000e) that require multiple PROMs to store the configuration, the CEQ/ and CE signals are cascaded
between PROMs. For the cascaded PROM, the Daza signal is tri-stated by the CE signal. The Cclk is
shared among PROMs.



4.2 Clocks

The programming clock is generated by an external crystal oscillator on the MISC board. A socketed device
operating at 10 MHz is planned, though operation at frequencies closer to RTT should be possible. As
noted by Peter Alfke, Xilinx Applications engineer, avoiding the master mode reduces the configuration
time because the inherent timing inaccuracy of the on-chip clock.
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4.3 Zero Stretch Circuit

The zero-stretch circuit delays a signal incident at ZSin to the output signal of ZSout. The circuit can be
implemented as a simple chain of Flip/Flops followed by a logic gate to detect a sequence of zeros, as shown
in Figure 6.

To reduce the number of Flip/Flops, it is preferable to implement the design of the zero-stretch circuit
in a CPLD as a counter. A device with n F/Fs would allows a delay of up to M = 2%,

The delay is chosen to be, at minimum, the worst-case variation between the time that the master FPGA
is ready to program and the time that all other FPGAs in the system are ready to program.

This time can be estimated as the sum of the 1V rise time of the power supply plus the worst-case time
for the chip to come out of the power-on reset state. The result of the circuit is used to delay programming
of the parailel FPGAs until every device in the system is ready.

A device like the Xilinx XC9536 provides sufficient /O and Flip/Flops to implement the zero stretch
circuit.



4.3.1 Reference Design for Zero-Stretch Circuit using CPLD

A complete reference implementation of a zero-stretch circuit is illustrated in Figure 7. In this circuit, the
CPLD provides a sufficient delay between the time that the one sampled FPGA indicates that it is ready to
be programmed, and the time that the rest of the FPGAs should be expected to be ready.

The Zero Stretch CPLD generates ZSout such that data from the PROM is read no sooner than time
it takes for the sampled FPGA to become ready for programming and the worst-case time that might be
required for the any other FPGA in the of the same design to become ready for programming.

A timing diagram showing the signais for the PROMs is shown at the bottom of Figure 7. The ZSinFF
signal is simply a flopped-version of the ZSin signal. An internal counter on the Zero Stretch circuit is used
to count the number of pulses from the rising edge of the ZSinFF signal. The count is reset when ZSinFF=0.
The count is incremented for each pulse once ZSinFF=1. Once the count reaches N, it holds the value and
sets ZSout=1.

10
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5 JTAG

Every board in the system contains a JTAG connector. On the Misc board, this connector is used to
reprogram the PROMs. On the Master/Slave boards, JTAG is available for board-level testing. These
connectors appear on the righthand side of Figure 4 and Figure 5. The signals for TCK, TMS, TDI, and TDO
signals are routed as shown. A Clock tree device is used to distribute the JTAG clock.

5.1 JTAG Connector

A RJ45 8-pin connector appears on the faceplate of the board to allow JTAG board-level reprogramming
or debugging. When connected, an extra signal called the JTAG Cable Insertion Indicator is grounded to
indicate test mode. All other signals on the connector are standard. A pinout of the connector is shown in
Figure 8.

5.2 Board-Level FPGA Testing

The JTAG connector on the master/slave board enables programming and debugging of the FPGAs with or
without connection to the backplane.

When the cable is inserted, the The mode bits for each FPGA must be set to boundary scan mode.
The FPGAs operate in slave mode (M3, M1, My = 011) by default, or in boundary scan (JTAG) mode
(M,, My, My = 001) when the external cable is connected. Both modes utilize preconfiguration pullups to
avoid floating inputs to CMOS gates during the interval the system is programming the FPGAs.

12
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