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Dimensionality reduction refers to a set of mathematical techniques used to reduce complexity of the original high-dimensional
data, while preserving its selected properties. Improvements in simulation strategies and experimental data collection methods are
resulting in a deluge of heterogeneous and high-dimensional data, which o	en makes dimensionality reduction the only viable
way to gain qualitative and quantitative understanding of the data. However, existing dimensionality reduction so	ware o	en does
not scale to datasets arising in real-life applications, which may consist of thousands of points with millions of dimensions. In this
paper, we propose a parallel framework for dimensionality reduction of large-scale data. We identify key components underlying
the spectral dimensionality reduction techniques, and propose their e
cient parallel implementation. We show that the resulting
framework can be used to process datasets consisting of millions of points when executed on a 16,000-core cluster, which is
beyond the reach of currently availablemethods. To further demonstrate applicability of our frameworkwe perform dimensionality
reduction of 75,000 images representingmorphology evolution duringmanufacturing of organic solar cells in order to identify how
processing parameters a
ect morphology evolution.

1. Introduction

Computational analysis of high-dimensional data continues
to be a challenging problem, spurring the development
of numerous computational techniques. An important and
emerging class of methods for dealing with such data is
dimensionality reduction. In many applications, features of
interest can be preserved while mapping the high dimension-
ality data to a small number of dimensions. �ese mappings
include popular techniques such as principle component
analysis (PCA) [1] and complex nonlinear maps such as
Isomap [2] and kernel PCA [3].

Linear manifold learning techniques, for example, PCA
or multidimensional scaling [4–7], existed as orthogonaliza-
tion methods for several decades. Nonlinear methods like

Isomap, LLE (locally linear embedding) [8], and Hessian LLE
[9] were discovered recently. Another class of methods that
emerged in the past few years are the unsupervised learning
techniques, including arti�cial neural networks for Sammon’s
nonlinear mapping [10], Kohenen’s or self organizing maps
(SOM) [11], and curvilinear component analysis [12]. Modi-

�cations to the existing algorithms of manifold learning, to

improve either their e
ciency or performance, were another

area where e
orts were focused [13–16]. For example, Land-
mark Isomap [17] is a modi�cation to the original Isomap

method to extend its usage to larger datasets by picking a

few representative points and applying Isomap technique to

them. Along with the emergence of new manifold learning

techniques, di
erent sequential implementations of these
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techniques, targeting various hardware platforms and various
programming languages, have been developed [18, 19].

Dimensionality reduction techniques are o	en compute
intensive and do not easily scale to large datasets. Recent
advances in high-throughput measurements using physical
entities, such as sensors, or results of complex numerical
simulations are generating data of extremely high dimension-
ality. It is becoming increasingly di
cult to process such data
sequentially.

In this paper, we propose a parallel framework for dimen-
sionality reduction. Rather than focusing on a particular
method, we consider the class of spectral dimensionality
reduction methods. Till date, few e
orts have been made
in developing parallel implementations of these methods,
other than development of a parallel version of PCA [20,
21], parallelization of multidimensional scaling (MDS) for
genomic data [22], and algorithm development for GPU
platforms [23, 24].

We perform a systematic analysis of spectral dimen-
sionality reduction techniques and provide their uni�ed
view that can be exploited by dimensionality reduction
algorithm designers. We identify common computational
building blocks required for implementing spectral dimen-
sionality reduction methods and use these abstractions to
derive a common parallel framework. We implement such
a framework and show that it can handle large datasets
and it scales to thousands of processors. We demonstrate
advantages of our so	ware by analyzing 75,000 images of
morphology evolution duringmanufacturing of organic solar
cells, which enables us to visually inspect and correlate
fabrication parameters with morphology.

�e remainder of this paper is organized as follows. In
Section 2we introduce the dimensionality reduction problem
and describe basic spectral dimensionality reduction tech-
niques, highlighting their computational kernels. In Section 3
we provide a detailed description of our parallel framework
including algorithmic solutions. Finally, in Section 4 we
present experimental results, and we conclude the paper in
Section 5.

2. Definitions and Methods Overview

�e problem of dimensionality reduction can be formulated
as follows: Consider a set � = {�0, �1, . . . , ��−1} of � points,

where �� ∈ R
�, and� ≫ 1. We are interested in �nding a set

� = {	0, 	1, . . . , 	�−1}, such that	� ∈ R
�,
 ≪ �, and∀�,� |��−

��|ℎ = |	�−	�|ℎ. Here, |
−�|ℎ denotes a speci�c norm that cap-
tures properties we want to preserve during dimensionality
reduction [25]. For instance, by de�ning ℎ as Euclidean norm
we preserve Euclidean distance, thus obtaining a reduction
equivalent to the standard technique of principal component
analysis (PCA) [1]. Similarly, de�ning ℎ to be the angular
distance (or conformal distance [26]) results in locally linear
embedding (LLE) [8] that preserves local angles between
points. In a typical application [27, 28], �� represents a
state of the analyzed system, for example, temperature �eld
and concentration distribution. Such state description can
be derived from experimental sensor data or can be the

result of a numerical simulation. However, irrespective of
the source, it is characterized by high dimensionality, that is,

� is typically of the order of 106 [29]. While �� represents
just a single state of the system, common data acquisition
setups deliver large collections of such observations, which
correspond to the temporal or parametric evolution of the
system [27]. �us, the cardinality � of the resulting set

� is usually large (� ∼ 104-105). Intuitively, information
obfuscation increases with data dimensionality. �erefore, in
the process of dimensionality reduction (DR)we seek as small
a dimension 
 as possible, given constraints induced by the
norm |
−�|ℎ [25]. Routinely, 
 < 4 as it permits, for instance,
visualization of the set �.

DR techniques have been extensively researched over the
last decade [25]. In particular, methods based on spectral
data decomposition have been very successful [1, 2, 9] and
have been widely adopted. Early approaches in this category
exploited simple linear structure of the data, for example,
PCA ormultidimensional scaling (MDS) [30]. More recently,
techniques that can unravel complex nonlinear structures
in the data, for example, Isomap [2], LLE, and kernel PCA
[3], have been developed. While all these methods have
been proposed taking into account speci�c applications [19,
25], their underlying formulations share similar algorithmic
mechanisms. In what follows we provide a more detailed
overview of spectral DR techniques and we identify their
common computational kernels that form the basis for our
parallel framework.

2.1. Spectral Dimensionality Reduction. �e goal of DR is to
identify a low-dimensional representation � of the original
dataset �, that preserves certain prede�ned properties. �e
key idea underpinning spectral DR can be explained as
follows. We encode desired information about �, that is,
topology or distance, in its entirety by considering all pairs
of points in �. �is encoding is represented as a matrix
��×�. Next, we subject matrix� to unitary transformation�,
that is, transformation that preserves norm of �, to obtain

its sparsest form Λ, where � = �Λ��. Here, Λ �×� is a
diagonal matrix with rapidly diminishing entries. As a result,
it is su
cient to consider only 
 entries of Λ to capture all
the information encoded in �. �ese 
 entries constitute the
set �. �e above procedure hinges on the fact that unitary
transformations preserve original properties of � [31]. Note
also that it requires amethod to constructmatrix� in the �rst
place. Indeed, what di
erentiates various spectral methods is
the way information is encoded in �.

We summarize the general idea of spectral DR in
Algorithm 1. In the �rst four steps we construct the matrix
�. As indicated, this matrix encodes information about the
property that we wish to preserve in the process of DR. To
obtain � we �rst identify the � nearest neighbors (�NN) of
each point �� ∈ �. Note that currently all studied methods
use �NN de�ned in Euclidean space. �is enables us to
de�ne a weighted graph � that encapsulates, both distance
and topological, properties of the set �. Given graph �,
we can construct a function �	 : � × � → R to
isolate the desired property. For instance, consider the Isomap
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Input: Set� = {�0, �1, . . . , ��−1}, �� ∈ R
�, and the target dimension 
.

Output: Set � = {	0, 	1, . . . , 	�−1}, 	� ∈ R
�.

(1) For each �� ∈ � �nd its � nearest neighbors.
(2) De�ne directed weighted graph � = (�, �, �),

where (��, ��) ∈ � i
 �� is a neighbor of ��,
and �(��, ��) is a distance measure,

usually �(��, ��) = |�� − ��|2.
(3) Let��� = �	(��, ��), where �	 extracts speci�c property

from graph �.
(4) Normalize� to obtain matrix �.
(5) Find eigenvectors of �, � = �Λ��.
(6) Identify latent dimensionality 
.
(7) � is represented by the �rst 
 rows of �.

Algorithm 1: Spectral dimensionality reduction.

algorithm in which the geodesic distance is maintained. In
this case, �	 returns the length of the shortest path between
�� and �� in �. Note that for some methods �	 is very
simple; for example, for PCA it is equivalent to a distance
measure �, �	(��, ��) = �(��, ��), while for other methods
�	 can be more involved. Di
erences between various DR
methods and their corresponding function �	 are outlined
in Table 1. �e property extracted by function �	 is stored in
an auxiliary matrix �, which is next normalized to obtain
matrix �. �is process of normalization is a simple algebraic
transformation, which ensures that � is centered and hence
that the �nal low-dimensional set of points � contains the
origin and is not an a
ne translation [31]. Subsequently, �
is spectrally decomposed into its eigenvalues that constitute
the sparsest representation of �. Resulting eigenvectors and
eigenvalues are then postprocessed to extract the set� of low-
dimensional points.

�e abstract representation of spectral DR methods in
Algorithm 1 is based on a thorough analysis of existing
techniques [1, 2, 8]. While this representation is compact,
it o
ers su
cient �exibility to, for instance, design new
dimensionality reduction procedures. At the same time it
provides clear separation of individual computational steps
and explicates data �ow in any DR process. We exploit both
these facts when designing our parallel framework.

2.2. Performance Analysis of Dimensionality Reduction Meth-
ods. We used the above presentation of DRmethods to iden-
tify their basic computational kernels. To better understand
how these kernels contribute to the overall performance of
di
erent DR methods, we performed a set of experiments
using domain speci�c implementation in Matlab. Experi-
ments were carried out for varying � and a �xed � = 1000
on a workstation with 8GB of RAM and an Intel 3.2 GHz
processor. Obtained results are presented in Table 2.

As can be seen, the run time of analyzed methods is
dominated by two steps, namely, �NN and construction of
the auxiliary matrix �. Together they account for 99.8%
of the total execution time for � = 4000. In our imple-
mentation the �NN procedure depends on all-versus-all

distance calculations.�is is justi�ed taking into account that
� is very large and thus e
cient algorithmic strategies for
�NN, for example, based on hierarchical space decompo-
sition [32], are infeasible. Consequently, complexity of this

step is �(��2). �e cost of computing matrix � depends
explicitly on the de�nition of function �	. Among existing
DR techniques this function is the most complex for the
Isomap method. Recall that in the process of DR we are
interested in preserving either distance or local topology
characteristics. Local topology properties can be directly
obtained from �NN [8, 9, 33], inducing computationally
e
cient de�nition of �	. Conversely, distance characteristics
must conform to global constraints and therefore have higher
computational complexity [34]. In case of Isomap, pairwise
geodesic distances can be e
ciently derived from all-pairs
shortest path distances using, for example, Floyd-Warshall

algorithm, with �(�3) worst-case complexity.
Another signi�cant DR component is normalization.

Although implementation of this step varies between dif-
ferent methods it is invariably dominated by matrix-matrix
multiplication. �erefore, we assume overall normalization
complexity to be �(�3). �e last important component is
the eigenvalue solver. In general, complexity of this kernel
varies depending on the particular solver used. Commonly
employed algorithms include Lanczos method [35], Krylov
subspace methods [36], or de�ation-based power methods
[37, 38]. �e choice of method is driven by the structure of
the matrix and the number of required eigenvalues. Standard
distance preservingDRmethods operate on dense symmetric
matrices, while topology preserving methods involve sparse
symmetric matrices. Accordingly, complexity of these tech-

niques is usually �(
�2), where 
 is the number of desired
eigenvalues.

A �nal key factor we have to consider is memory com-
plexity of the described kernels. Here, the main contributing
structures are matrices � and �. �ese matrices are most
o	en dense and in themajority of cases require�(�2) storage.
Because �NN directly depends on distances between all
pairs, it utilizes an � × � matrix as well. Finally, input dataset
� requires �(��)memory.
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Table 1: Comparison of selected spectral dimensionality reduction methods.

PCA Isomap LLE

Parameter � in KNN � ∼
 ∼


Function �	 �(��, ��)
Length of the shortest path between

�� and �� in �
��� if (��, ��) ∈ �, 0 otherwise,
where �� = ∑
� :(
� ,
�)∈� ��
�


Normalization
�∗�� = �2�� ,

� = ���∗�
�∗�� = �2�� ,

� = ���∗� � = ( − �)−1( − �)−�

Note: � is the identity matrix, and� = � − (1/�)1�×�.

Table 2: Run time (in seconds) of di
erent DR components (
 = 3).

� 100 1000 2000 4000

KNN 0.08640 1.34998 5.66768 27.91930

� in PCA — — — —

� in Isomap 0.06470 14.9030 130.130 1153.30

� in LLE 0.08960 0.12601 0.24609 0.49253

Normalize 0.00195 0.11875 0.74934 5.56630

Eigensolve 0.02916 0.05536 0.23267 0.85211

Extract � 0.00020 0.00014 0.00016 0.00022

One important caveat that a
ects the above analysis is
the relationship between � and �. In many applications �
is signi�cantly greater than �. �is is not surprising taking
into account that acquiring high resolution data (hence
high-dimensional) is resource intensive. �erefore one may
expect that with increasing � there is usually decrease of
�. In our applications [29, 39] it is not uncommon that
� = �(�2) or even � = �(�4). Consequently, the �NN
step in Algorithm 1 becomes the most compute intensive
while memory requirement is dominated by the input data.
Observe that this trend is re�ected in our experimental data.

3. Parallel Framework for
Dimensionality Reduction

Dimensionality reduction very quickly becomes both mem-
ory and compute intensive, irrespective of the particular
method. Memory consumption arises from the size of input
data and the auxiliary matrices created in the process. �e
computational cost is dominated by pairwise computations
and weight matrix construction. �e goal of our framework
is to scale DR methods to very large datasets that could be
analyzed on large parallel machines.

We designed our parallel DR package following the
general outline presented in Algorithm 1. Taking into
account signi�cant memory and computational complexity,
we focused on distributed memory machines with MPI.
To ensure modularity of the framework without sacri�cing
performance and scalability, we decided to employ a scheme
in which processors are organized into a logical 2D mesh. In
what follows, we assume a simple point-to-point communi-
cation model with latency !� and bandwidth 1/!�.

3.1. ConstructingGraph�. �egraph construction procedure
is based on identifying � nearest neighbors of each input

point. Because of the high dimensionality of the input data
it is advantageous to implement �NN in two steps, where
we �rst compute all pairwise distances and then we identify
neighbors in a simple scan. Note that these pairwise distances
actually represent the distance measure � (see Algorithm 1).
�erefore we will consider � to be an � × � distance matrix.
Parallel pairwise computation is a well studied problem [40].
Here, we bene�t fromour earlier experiencewith accelerating
pairwise computations on heterogeneous parallel processors
[41].

Let " = #2 denote the number of processors conceptual-
ized as organized into a # × # virtual mesh. We decompose
� into blocks of (�/#) × (�/#) elements. Processor with
coordinates ($, %) is responsible for computing elements of �
within block ($, %). �is scheme requires that each processor
stores two blocks of �/# points of the input dataset � that
correspond to row-vectors and column-vectors used to com-
pute respective part of the matrix �. In our implementation,
the distribution of the input dataset is performed by parallel
I/O with initially preprocessed�. Note that to obtain a single
element of � we perform |
 − �|2 norm computations, which
are particularly well suited for vectorization. �erefore, we
hand-tuned our code to bene�t from SIMD extensions of
modern processors.

Given pairwise distances, the second step is to identify
neighbors of individual points (i.e., vertices of �). �is
step is executed only for methods where � < �, which
virtually involves all methods other than PCA (see Table 1).
As in the case of pairwise computations it can be e
ciently
parallelized using the following scheme. Initially, each pro-
cessor creates a set of � candidate neighbors with respect
to the block of matrix � it stores. Speci�cally, processor
with coordinates ($, %) searches for neighbors of the set
of points [���/�, . . . , �(�+1)�/�) by analyzing rows of its local
block of �. Because � is very small this operation can be
performed using a simple linear scan. Next, all processors
within the same row perform all-to-all communication to
aggregate candidate neighbors. Here, the candidate neigh-
borhood of point �
 is assembled on the processor with
coordinates (⌊'#/�⌋, ⌊'"/�⌋ mod #). �is processor merges
candidate neighborhood lists into the �nal set of � nearest
neighbors. Observe that this completes the graph construc-
tion phase—graph � is now stored in the form of adjacency
list distributed over " processors.

�e computational complexity of the entire procedure

can be decomposed into �(��2/") cost of computing dis-
tance matrix,�((�/√") log �) cost of performing local�NN
search, and �((!� + !�(��/"))√") cost of distributing local
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Figure 1: Graph � before (a) and a	er (b) symmetrization for an
example set of seven points and � = 2.

�NN information to all processors sharing a row. Hence, the

total complexity is bounded by�(��2/"+(!�+!�(��/"))√"),
which is optimal for " < �2.

3.2. Building Auxiliary Matrix�. Given graph�we proceed
to the next step, which involves constructing the auxiliary
matrix � from the information encapsulated in �. As is the
case of � we distribute� over # × #mesh of processors.

Recall that the formulation of DR methods proposed
in Algorithm 1 ensures that the only step that is method
dependent is the construction of matrix �. Consequently,
any parallel implementation of this step will vary but it will
re�ect limitations inherent to the sequential counterpart.
Speci�cally, topology preserving methods, such as, LLE,
will involve only local data and hence will be amenable to
embarrassing parallelism with limited or no communica-
tion. Conversely, distance preserving methods will inevitably
require a global data view and thus potentially more sophisti-
cated parallelization strategies. Following our previous claim
regarding complexity of Isomapwe focus our presentation on
the parallel implementation of this particular method.

�e function �	 used in Isomap is based on the geodesic
distance, which has beenmathematically shown to be asymp-
totically equivalent to a graph distance in � (i.e., shortest
path distance) [42]. However, the geodesic distance is a
metric, while all-pairs shortest paths in directed graph �
do not have to satisfy the symmetry condition. �erefore,
to obtain �, special attention must be paid to how shortest
path distances are used. More precisely, graph � must be
transformed to ensure that it is symmetric. Note that a	er
such transformation the graph is no longer regular; that is,
certain nodes may have more than � neighbors (see Figure 1).

Taking into account the above requirements we obtain
the following procedure of constructing � in parallel. First,
all processors within the same row perform all-to-all com-
munication to replicate graph �. As a result, each column
of processors stores a copy of the entire graph �, that is,

row-wise distributed between # processors in that column.
�anks to this, each processor can initialize its local part
of � without further communication. A	er initialization �
represents the distributed adjacencymatrix of�, where��� =
�(��, ��) if �� is a neighbor of ��, and +∞ otherwise. In the
next step symmetrization procedure is executed. Processors
with coordinates ($, %) and (%, $), where $ ̸= %, exchange
respective blocks of � and select element-wise minimum
value between blocks. Similar operation is performed locally
by processors on the diagonal, that is, processors for which
$ = %. At this stage� can be used to identify all-pairs shortest
paths. Several parallel algorithms have been proposed to
address this problem, targeting the PRAM model [43–45],
shared memory architectures [46], and multi/many cores
[47–49], as well as distributed memory machines [45, 50].
Among the existing parallel strategies we decided to adopt
the checkerboard version of the parallel Floyd algorithm [46].
Brie�y, the method proceeds in � iterations, where in each

iteration every processor performs �(�2/") operations to
update its local block of �. All processors are synchronized
in each iteration, owing to the fact that in iteration ', 'th
row and 'th column of � have to be broadcasted. �e
broadcast is performed between processors that share the
same row/column. A	er � iterations, matrix � stores all-
pairs shortest path, which concludes the entire procedure.

Complexity of this phase is �(�3/" + �(!� +
!�(�/√")) log(√")) and is dominated by the parallel
Floyd’s algorithm. While replication and symmetrization of

� can be executed e
ciently in�(�2/" + !� + !�(�2/")) time,
all-pairs path searching involves extensive communication
that slightly hinders scalability. Nevertheless, the algorithm

remains scalable as long as " < �2/log2(�), which is true in
the majority of real-life cases.

3.3. Matrix Normalization. �e goal of normalization is to
transform matrix � such that the resulting matrix � is
both row and column centered; that is, ∑� � �� = 0 and

∑� � �� = 0. �e normalization stage in all cases consists

of matrix-matrix multiplication (see Table 1). However, in
certain situations, especially in distance-preserving methods,
explicit matrix multiplication can be avoided by taking
advantage of structural properties of one of thematrices (e.g.,
thematrix� in Table 1).�is is the case for, for example, PCA

and Isomap, wherewe exploit the fact thatmatrices� and��
are given analytically and thus can be generated in-place on
each processor that requires them to perform multiplication.
Consequently, the communication pattern inherent to the
standard parallel matrix-matrix multiplication algorithms is
simpli�ed to one parallel reduction in the �nal dot-product
operation. �e complexity of this approach is �(�3/" + (!� +
!�(�2/"))√").

3.4. Finding Eigenvalues. Computing eigenvalues is the �nal
step in the dimensionality reduction process. Although paral-
lel eigensolvers are readily available, they are usually designed
for shared memory and multi/many core architectures [51–
54]. �is unfortunately makes them impractical for our
purposes. At the same time, existing distributed memory
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solutions are not scalable and cannot handle large and dense
data. For instance, one of the more popular packages, SLEPc
[55], uses a simple 1D decomposition and in our tests did
not scale to more than 4096 processors. A more recent
library, elemental [56], which is still under development,
o
ers 2D block-cyclic decomposition, but relies on a �xed
block size (private communication). Finally, ELPA [57],
which is the most promising library in this category, is also
under development.

For these reasons we decided to implement a custom
eigenvalue solver that exploits special properties of matrix
� (symmetric, positive semide�nite) and computes only the
�rst 
 eigenvalues. Our solver is based on the power method
[31] andmatrix de�ation and is outlined in Algorithm 2. Note
that power methods are considered easy but not e
cient
to parallelize. At the same time, however, they are at heart
of several important real-life systems, for instance, Google’s
PageRank [58].

In general, our approach follows the standard scheme
of the power method (lines 3–18), repeated 
 times to
identify �rst 
 largest eigenvalues. A	er identi�cation of an
eigenvalue and its associated eigenvector, the matrix � is
de�ated—the contribution of the vector is removed from �
(line 19). Observe that powermethod involves nestedmatrix-
vector product (lines 6–11) that under normal circumstances
would require parallel vector transposition. However, our
parallel implementation bene�ts from the fact that � is
symmetric, hence eliminating need for vector transposition.
Indeed, the entire procedure consists of local matrix-vector
product followed by all-reduce operation.Here, the reduction
operation alternates between columns and rows as required
to ensure that vector x is stored properly. Note that the
power method is bounded by convergence criteria (line 5).
In our case we use one of several popular conditions, which
involves checking relative error between the current and
previous estimate of the eigenvalue that can be performed
every several iterations. We also note that convergence is
signi�cantly improved by using a matrix shi	ing strategy in
the form � = � − 7 , where 7 is a positive number [59].

Extracting eigenvalue and eigenvector in iteration $ (lines
11–18) depends on vectors 8 and 9, while de�ation step
involves ;�. �erefore, it is advantageous to replicate both
8 and 9 in their entirety on each processor. We achieve this
with all-to-all communication executed by processors within
the same row. �is allows us to execute the de�ation step
in parallel, with each processor updating its local block of
matrix �. �us, the complexity of a single iteration of the

power method is�(�3/" + (!� + !�(�/√")) log(")), while the
de�ation step is �(�2/" + !�√" + !��).

To conclude this section we would like to emphasize
that our solver operates under the same assumptions as any
power method. It requires that the �rst 
 eigenvectors of �
are linearly independent, the initial vector x generated in $th
iteration is not orthogonal to the eigenvector V�, and �nally,
the �rst 
 eigenvalues are nondegenerate [31]. Note that these
conditions are not restrictive and are easily satis�ed in the
context of dimensionality reduction.

Table 3: Run time in seconds for di
erent " and varying problem
sizes �. Due tomemory limitations problem instancewith � = 32768
could not be solved on less than " = 256 processors.

" �
4096 8192 16384 32768

16 404.63 3492.28 45288.93 —

64 101.72 761.75 6906.64 —

256 33.99 263.24 1655.39 14613.33

1024 39.06 124.19 682.91 3964.65

4. Experimental Results

To assess scalability of our framework and test its per-
formance in real-life applications, we performed a set of
experiments using the TACC Ranger cluster [60]. A single
node of this machine is based on AMD processors working
at 2.3 GHz and provides 16 cores with 32GB of DDR2 RAM
and 512 KB of L2 cache per core. Nodes are connected by a
multistage In�niband network that o
ers 1 GB/s bandwidth.
To compile all test programs and the framework, we used
the Intel C++ 10.1 compiler with standard optimization �ags
and MVAPICH 1.0.1 MPI implementation. In every test we
ran one MPI process per CPU core, which we refer to as
processor.

4.1. Scalability Tests. In the �rst set of experiments we
measured how problem size in�uences performance of our
solution. We created a collection of synthetic datasets con-
sisting of � = {4096, 8192, 16384, 32768} points with � =
10000. Next, we performed Isomap dimensionality reduction
using di
erent numbers of processors. Obtained results are
summarized in Table 3 and Figure 2.

�e results show that our framework provides very good
scalability for large problem sizes in the entire range of
tested processor con�gurations. �e super-linear speedup
observed for � = 16384 is naturally explained by cache
performance. Observe that the dominating computational
factors in our framework are operations like matrix-matrix
and matrix-vector products, which are well suited to exploit
memory hierarchy. In our current implementation, we use
direct SIMD-based implementation of these routines. A
slightly weaker performance for small problem sizes and large
number of processors can be attributed to network latency
that o
sets computational gains.

To further understand how di
erent components of the
framework perform,wemeasured their run time obtained for
changing problem sizes. Table 4 shows that all modules scale
as we would expect based on their theoretical complexity.
�e most time consuming stages are construction of the
auxiliary matrix � for Isomap and normalization. �is is
not surprising taking into account that both components

scale as �(�3) and the parallel Floyd’s algorithm involves �
rounds of communication.�e abrupt performance decrease
in the normalization stage, which can be observed for � =
16384, can be attributed to cache performance. Recall that
normalization depends on matrix-matrix multiplication and
hence is inherently sensitive to data locality. �e �nal remark
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Input: Matrix ��×� and the required numbed of eigenvalues 
.
2D mesh of " = # × # processors.

Output: Set of eigenvalues and eigenvectors of �,
Λ 0,...,�−1 = {;0, ;1, . . . , ;�−1} and �0,...,�−1 = {V0, V1, . . . , V�−1}.

(1) Let x be a column-wise distributed vector in R
�.

(2) for $ ← 0 : 
 − 1 do

(3) Initialize x randomly. Processors within the same column use the same seed.
(4) DE'8F� ← !G8H
(5) while not converged do

(6) Compute 9 = �x locally.
(7) if DE'8F� = !G8H then

(8) Perform column-wise all-reduce to obtain 9.
(9) else

(10) Perform row-wise all-reduce to obtain 9.
(11) end if

(12) DE'8F� ← ¬DE'8F�
(13) x ← 9
(14) end while

(15) Compute 8 = �9 as in steps (6)–(11).
(16) Replicate entire vector 8 and 9 on each processor.

(17) ;� ←
9 ⋅ 8
9 ⋅ 9

(18) V� ←
9
|9| 2

(19) De�ate local block of �: � ← � − ;�V�V�� .
(20) end for

Algorithm 2: 2D-Block Parallel Power Method.
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Figure 2: Relative speedup for di
erent problem sizes �.

concerns � nearest neighbors module and eigenvalue solver.
�e �NN scales linearly with the data dimension � (see
Table 5) and bothmodules can be used as standalone replace-
ments whenever �NN or 
 largest eigenvalues problem has
to be solved.

In the �nal test we compared our parallel eigensolver
with SLEPc [55], one of the most popular and widely used
libraries providing eigensolvers. SLEPc is an e
cient and
portable framework that o
ers an intuitive user interface. In

Table 4: Component-wise run time in seconds for varying problem
sizes, and " = 1024 and� = 10000.

� 2048 4096 8192 16384 32768

KNN 0.623 1.389 5.721 22.254 86.706

� in Isomap 9.132 56.517 128.225 457.306 1697.124

Normalize 0.160 0.905 6.526 223.240 2546.11

Eigensolve 0.050 0.155 0.188 0.699 2.838

Table 5: Run time in seconds of KNN component for � = 1024 and
di
erent number of processors and varying�.

" �
100 1000 10000 100000

16 0.053 0.530 5.466 92.014

64 0.015 0.115 1.373 22.984

256 0.005 0.027 0.349 5.860

1024 0.002 0.007 0.682 1.875

many cases it is the �rst choice for solving large-scale sparse
eigenvalue problems.

Table 6 shows that our implementation systematically
outperforms SLEPc. �is can be explained by two main
factors: �rst, unlike SLEPc our implementation follows 2D
data decomposition scheme, which o
ers better scalability,
and second, we are seeking only the 
 largest eigenvalues.

4.2. Using Dimensionality Reduction to Explore Manufactur-
ing Pathways. Solar cells, or plastic solar cells, manufactured
from organic blends, that is, a blend of two polymers,
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Figure 4: Scree plot of the ten largest eigenvalues (a) and their proportional energy covered (b).

Table 6: Comparison of our eigensolver with SLEPc. For " =
1024SLEPc failed to execute.

" � = 1024 � = 4096
Our solver SLEPc Our solver SLEPc

16 0.0444 4.8159 2.5315 0.7049

64 0.0088 2.1666 0.6056 0.8134

256 0.0705 8.5538 0.1251 2.4143

1024 0.0742 ∗ 0.1320 ∗
4096 0.0411 N/A 0.2024 10.9992

represent a promising low-cost, rapidly deployable strategy
for harnessing solar energy. While highly cost-e
ective and
�exible, their low power conversion e
ciency makes them
less competitive on a commercial scale in comparison with
conventional inorganic solar cells. A key aspect determining
the power conversion e
ciency of organic solar cells is the
morphological distribution of the two polymer regions in the
device. Recent studies reveal that signi�cant improvement
in power conversion e
ciency is possible through better
morphology control of the organic thin �lm layer during
the manufacturing process [29, 61–66]. High-throughput
exploration of the various manufacturing parameters, for

example, evaporation rate, blend ratio, substrate patterning
frequency, substrate patterning intensity, and solvent, can
potentially unravel process-morphology relationships that
can help tailor processing pathways to obtain enhanced mor-
phologies. Note that such high-throughput analysis results
in datasets that are too large to visually inspect for trends
and relationships. A promising approach towards unraveling
process-morphology relationships in this high-throughput
data is via dimensionality reduction. Here, we showcase
our parallel framework on this pressing scienti�c problem.
In particular, we focus on using dimensionality reduction
to understand the e
ects of substrate patterning [67, 68],
described by patterning frequency and intensity, on mor-
phology evolution. We note that nanotip photolithography
patterning of the substrate has shown signi�cant potential to
guide morphology evolution [69].

�e input dataset consists of � = 75150 morphologies.
Each morphology is a 2-dimensional snapshot which is
vectorized to have dimensionality � = 8326. Figure 3
shows several representative �nal morphologies obtained by
varying the patterning frequency, '", from 0.5 to 1.50, and
the intensity of the attraction/repulsion, K, from 1 + 1H − 6 to
1 + 8H − 4 (in the remaining we omit leading 1 for clarity). In
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Figure 5: Morphology evolution as captured by the �rst three principal components of the original data. Di
erent colors represent di
erent
patterning frequency '" (le	) and di
erent patterning intensity K (right).

all these cases, the lower surface of the domain is patterned to
attract and/or repel speci�c classes of polymers, thus a
ecting
the morphology. We performed dimensionality reduction on
this dataset using " = 16384 processors on TACC Ranger.
�e total run time was 1058 seconds.

Figure 4 plots the �rst 10 eigenvalues of the data. Note that
the �rst three eigenvalues, and hence the �rst three principle
components of the data, represent ∼70% of the information
content of the entire data. We therefore characterize each
morphology in terms of this three-dimensional representa-
tion.

Figure 5 represents all the morphologies in such reduced
space. In the plot to the le	, the points are color coded
according to the patterning frequency used, while in the
plot to the right, the points are color coded according to
the patterning intensity. �is plot provides signi�cant visual
insight into the e
ects of patterning frequency and intensity.
�ere exists a central plane of patterning frequency, where
the morphology evolution is highly regulated irrespective of
the patterning intensity ('" ≤ 1). �is is particularly valuable
information as the patterning frequency is much easier
to control than patterning intensity from a manufacturing
perspective. For patterning frequencies above '" = 1, the
morphologies are highly sensitive to slight variations in both
frequency and intensity. �is is also clearly seen in Figure 6,
where slight variations in the intensity give dramatically
di
erent �nal morphologies. Notice also that higher intensity
does not necessarily give di
erent morphologies. �is is a
very important insight that allows us to preclude further,

potentially expensive, exploration of the phase space of
increasing patterning intensity.

Finally, the low-dimensional plots illustrate the ability
to achieve the same morphology using di
erent processing
conditions. For instance, in Figure 7, we isolate the morphol-
ogy evolution under two processing conditions that result
in identical morphologies. Such correlations, most sensitive
regions versus least sensitive regions (Figure 6) and con�gu-
rations resulting in identical morphologies, are enormously
useful as we tailor processing pathways to achieve designer
morphologies. �is analysis illustrates the power of parallel
dimensionality reduction methods to achieve this goal. We
defer a comprehensive physics-based analysis of this dataset
to a subsequent publication.

5. Conclusions

In this work we illustrate a systematic analysis of dimension-
ality reduction techniques and recast them into a uni�ed view
that can be exploited by dimensionality reduction algorithm
designers. We subsequently identify the common compu-
tational building blocks required to implement a spectral
dimensionality reduction method. We use this insight to
design and implement a parallel framework for dimension-
ality reduction that can handle large datasets and scales
to thousands of processors. We demonstrate the capability
and scalability of this framework on several test datasets.
We �nally showcase the applicability and potential of the
framework towards unraveling complex process-morphology
relationships in the manufacturing of plastic solar cells.
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