
Parallel Frequent Patterns Mining Algorithm on GPU

Jiayi Zhou
Department of Computer Science

National Tsing Hua University
Hsinchu 300, Taiwan

jyzhou@mx.nthu.edu.tw

Kun-Ming Yu†
Department of Computer Science

and Information Engineering
Chung Hua University
Hsinchu 300, Taiwan

yu@chu.edu.tw

Bin-Chang Wu
Department of Computer Science

and Information Engineering
Chung Hua University
Hsinchu 300, Taiwan

aquavit@pdlab.csie.chu.edu.tw

Abstract—Extraction of frequent patterns from a
transactional database is a fundamental task in data mining. Its
applications include association rules, time series, etc. The
Apriori approach is a commonly used generate-and-test
approach to obtain frequent patterns from a database with a
given threshold. Many parallel and distributed methods have
been proposed for frequent pattern mining (FPM) to reduce
computation time. However, most of them require a Cluster
system or Grid system. In this study, a graphic processing unit
(GPU) was used to perform FPM with a GPU-FPM to speed-up
the process. Because of GPU hardware delimitations, a compact
data structure was designed to store an entire database on GPU.
In addition, MemPack and CLProgram template classes were
also designed. Two datasets with different conditions were used
to verify the performance of GPU-FPM. The experimental results
showed that the speed-up ratio of GPU-FPM can achieve 14.857
with 16 times of threads.

 Keywords—frequent pattern mining, parallel processing,
graphic processing unit (GPU), OpenCL

I. INTRODUCTION
Both in business and scientific research, there has been a

tremendous growth of data that needs to be processed.
Extracting information from large amount of data is necessary
in making correct and effective decisions. Different methods
have been developed to determine the characteristics and
interrelationships of data. Association rule learning,
classification, clustering, and regression commonly need to
mine data. Extraction of frequent patterns from a transaction-
oriented database is one of the most important of these.
Frequent patterns represent the number of times an itemset
appears in a given database. Therefore, if an itemset is frequent
it means there are strong relationship between items.

Most frequent patterns mining (FPM) either uses the
generate-and-test (Apriori-like) [1] or the pattern growth
approach (FP-growth) [2]. The core concept of the Apriori-like
approach is that if the length k pattern is not frequent in the
database, then the super-pattern (length 1k +) will not be
frequent. It uses a bottom-up approach, extending frequent
subsets one item at a time. Since the generated candidates are
independent, this approach is suitable for parallelization.

Although many Apriori-like methods have been proposed [3-4],
the computation time increases significantly when the database
contains a large number of transactions. Some studies [5-7]
apply parallel and distributed techniques to speed-up the
mining processes. However, most of them require a high
performance computing system, e.g., a Cluster or Grid System.

In recent years, the graphic processing unit (GPU) has
developed from a 3D rendering device for games to a general-
purpose computing device [8]. While the GPU can only
execute some simple instructions and functions, compared with
CPU, it has a large number of computing units. Moreover,
using GPU as a high-performance computing device which
does not only reduce the deployment cost but also saves on
maintenance. GPU programming strategies can be classified
according to either graphic APIs or GPU programming
language. It is difficult for developers to use the graphic APIs
since they need understand the graphic hardware and encode
their data to graphic vectors. The most serious problem is the
use of previously designed parallel algorithms. Therefore, GPU
programming language is currently being used to develop
GPU-enabled programs. NVIDIA and ATI have been proposed
as GPU programming language by CUDA [9] and Stream [10]
respectively. Programs can be written in C programming
language (C99) to use the power of GPU. However, CUDA can
only be used on NVIDIA’s GPU and vice versa. Therefore,
OpenCL [11] was proposed in 2009 to deal with this situation.
The program design with OpenCL not only can be executed on
different brand GPU devices, but also on multi-core CPUs.

In this study, the GPU-FPM algorithm was used to speed-
up the mining processes for FPM when using GPU. Although
GPU is a powerful computing device, there are limitations: like
memory size, memory latency, etc. Therefore, the data
structure has to be re-designed for the FPM algorithm on GPU.
Since the verification time dominates computation time, the
main goal of GPU-FPM is to use GPU to verify generated
candidates in order to speed-up the FPM processes. Compact
Data Structure, MemPack, and CLProgram class were used to
achieve this. For verifying the GPU-FPM performance, it was
implemented on Microsoft Windows with OpenCL 1.0, in
addition, data generated by an IBM Quest Data Generator [12]
was used. The proposed algorithm was tested under different
conditions, including different transaction lengths, threads,

--
* This work is partially supported by National

Science Council. (NSC 98-2221-E-216-023)
† The corresponding author.

block sizes, and thresholds. The experimental results showed
that GPU-FPM significant reduced the computation time with
increasing threads. The speed-up ratio achieved 14.857 with 16
times of threads (in case of the T40I10D100K threshold being
1900, and block size 10). Moreover, even in the worst case,
GPU used 89.942% of the execution time. This means that
GPU-FPM efficiently used the GPU computing power.

The rest of the paper is organized as follows: In section 2,
the FPM, GPU, and OpenCL are described. The proposed
GPU-FPM is introduced in section 3 and the experimental
results are illustrated in section 4. Finally, the conclusions
discussed in section 5.

II. PRELIMINARIES

A. Frequent Pattern Mining (FPM)
The main concept of FPM is to find the number of times a

given pattern appears in a database. FPM is defined as follows:

Let D be a transactional database consisting of a set of
transactions 1 2, , , nT T T : 1 2{ , ,..., }nD T T T= . Let I be a set of
items 1 2, , , mi i i , a set 1 2{ , , , }kX i i i I= ⊆ called an itemset
or a k -itemset if it consists of k items. The support of an
itemset X is the number of transactions containing X .

support(,) { | , }iX D i X T X I= ⊆ ⊆ for 1i n= 

An itemset is called frequent if the support is greater than or
equal to the given absolute minimal threshold ξ . FPM is given
a set of items I , a database D , and a minimal threshold ξ ,
then find FP(,)D ξ .

FP(,) { | support(,) }D X I X Dξ ξ= ⊆ ≥

B. Graphic Processing Unit (GPU)
GPU is a parallel-oriented computing device. It always

consists of massive processing units to perform mathematical
computing. It used to be used as a co-processor CPU for games
and 3D design applications. The DirectX 9 proposed in 2005,
has taken graphics cards to the next generation because of
vertex and pixel shaders being integrated in general-purpose
processing units—introducing the universal shader. The
mainstream GPU has hundreds to thousands computing units.
Each unit can be regarded as a simplified CPU. Compared with
the multicore CPU, the number of processing units has also
increased. Consequently, GPU also has a whole new
application—general-purpose computing on graphics
processing units (GPGPU).

C. OpenCL
The GPU programming language can be classified as

graphic APIs (DirectX, OpenGL, etc.), GPU programming
language (NVIDIA CUDA [9], ATI Stream [10], OpenCL [11],
etc). Previously, GPU programming required developers with
in-depth knowledge of graphics programming and hardware. In
order to utilize the computation resources on GPU, developers
had to encode data to a graphic vector, and then use the
DirectX or OpenGL functions to perform rendering. After that,

the rendered data had to be decoded. This procedure not only
required graphic programming knowledge, but also depended
on different GPUs. Recently, CUDA and Stream have been
proposed by NVIDIA and ATI. Both of them provide C
interface and allow developers to adapt the hardware, e.g.,
number of processing units, size of local and global memory.
However, previous frameworks could only be used with the
respective GPUs, e.g., CUDA could only be executed on
NVIDIA’s GPUs.

In order to solve this situation, the Khronnos Group and
many industry-leading companies created the OpenCL.
OpenCL is an open and cross-platform parallel heterogeneous
programming system. It provides a uniform programming
environment for developers to write efficient and portable
codes using a diverse mix of multi-core CPUs, GPUs, and other
processors.

III. GPU-FPM
The goal of GPU-FPM was using massive processing units

on GPU to speed-up the FPM procedures. However, each
processing unit on GPU can only perform simple instructions.
Another important issue is memory size and access latency.
Therefore, the algorithm and data structure had to be re-
designed for GPUs to fully utilize its computation resources.
Figure 1 illustrates the architecture of GPU-FPM. GPU-FPM
has the following features: (1) data handling between CPU and
GPU, (2) compact data structure, and (3) highly parallel.

CLProgram

GPU

Pattern Verification ...

CPU

Candidate Generator ...

MemPack

Host2Device

Device2Host

Parameter Parser

Kernel Launcher

Figure 1. Architecture of GPU-FPM

A. Compact Data Structure
The memory access latency on GPU is very high, and it

limits the computational speed-up ratio. Therefore, reducing
the number of fetchings of memory improves the performance.
It fetches the memory many times if used directly on a
transaction-oriented database. This is because the entire
transaction needs to be scanned for verifying each single
itemset. Consequently, a transaction identification set (Tidset)
was used to directly select transactions instead of scanning
whole databases. Tid and Tidset were defined as follows:

Tid() { }j j ki i T= ∩ ≠∅ for 1k n= 

Tidset {Tid()}ji= for 1j m= 

For example, if transactions 1 and 3 contain item 1i ,

1Tid() {1,3}i = , then a whole transaction-oriented database is
represented by Tidset. In order to store the Tidset to memory
on GPU, TidValue and TidIndex arrays were used to represent
Tidset. Figure 2 is an example of TidValue and TidIndex
arrays. The TidValue array stored the Tid of each item, e.g.,

1Tid() {1,3}i = , 2Tid() {1,2,5}i = , 3Tid() {2}i = , etc. (Figure 2
(a)) The boundary of each item on the TidValue array was
determined by the TidIndex array. The TidIndex stored each
items start and end position, e.g., item 4i ranging from 6 to 10
means six cells were used for 4i in TidValue array and values
were stored from TidValue[6] to TidValue[11]. Therefore, the
information required for mining was transformed from
database to two arrays.

1 3 1 2 5 2 4 5 7 10 15 18 …

Tid(i1) Tid(i2) Tid(i3) Tid(i4)

(a) TidValue

0 1 2 4 5 5 6 11 ...

i1 i2 i3 i4

(b) TidIndex

Figure 2. Example of TidValue and TidIndex

B. GPU-FPM
Compared with CPU, GPU is special hardware with

massive processing units. GPU processing is in single
instruction, multiple data (SIMD) and there is no support
recursion on it. Therefore, a compact data structure was
designed and implemented to store necessary data for mining
on GPU. The FPM could be roughly summarized to the
following steps: load database, generate candidate itemset, and
verify the candidate itemset frequently or not. Candidate
itemset verification usually dominates computing time.
Therefore, in this study, GPU was used to reduce candidate
verification time.

GPU-FPM was an Apriori-based mining algorithm and it
generated and verified the itemset to produce frequent patterns.
Since memory access between CPU and GPU is a common
operation, MemPack was designed to lower GPU programming
complexities. MemPack is C++ class template that provided
abilities to store different types of data, e.g., int, float,
customized structure, class, etc. Two transfer functions:
Host2Device and Device2Host and two memory control
functions: ReleaseHost and ReleaseDevice were also provided.
Moreover, the CLProgram class was also designed to have the

following abilities: allow arbitrary number of parameters, bind
arbitrary of MemPack, launch with arbitrary number of threads,
and launch with CPU. The GPU-FPM algorithm follows:

Algorithm GPU-FPM

Input: a transaction database D and a given minimum
threshold ξ .
Output: a complete set of frequent patterns FP(,)D ξ .

1. Load D from disk.
2. Generate Tidset via scanning the D and store it on hash

table.
3. Transform hash table to compact array structure—

TidValue and TidIndex.
4. Create MemPacks mpTidValue and mpTidIndex to store

TidValue and TidIndex.
5. Perform Host2Device to copy mpTidValue and

mpTidIndex to GPU.
6. Use prefix tree data structure to generated candidate

itemset.
7. Create MemPack mpCandIS to store generated candidates.
8. Perform Host2Device to copy mpCandIS to GPU.
9. Create MemPack mpResults for storing results.
10. Create CLProgram clProg to store related parameters and

bind the mpTidValue, mpTidIndex, mpCandIS, and
mpResults.

11. Perform launch kernel of clProg (on GPU)
a. Each processing unit (PU) allocated a set of candidate

itemsets (CIs)
b. for each CI in CIs

i. PU compute the support of CI according to
mpTidValue and mpTidIndex

ii. If support of CI greater than or equal to given
threshold ξ then set it is frequent on mpResults,
else is not frequent.

12. Wait until kernel code executed.
13. Perform Device2Host of mpResults to store the results.
14. Perform Step 6 until all candidates generated and verified.

IV. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed

algorithm, GPU-FPM was implemented along with OpenCL
library and Visual C++ on Microsoft Windows. Synthesized
datasets generated by IBM’s Quest Synthetic Data Generator
were used to verify the algorithm. The hardware and software
configurations are given in Table 1. The algorithm evaluated
with different transaction lengths, different threads, different
block sizes, and different thresholds. Table 2 gives the details of
the dataset testing.

Table 1. Hardware and Software configuration
Item Description
CPU AMD Phenom II X4 965 3.4 GHz
Memory 8G DDR3 memory

GPU ATI Radeon HD 5850 with 1440 stream
processing units and 1G DDR5 memory

OS Microsoft Windows 7
Compiler Microsoft Visual C++ 2008 w/ SP1
SDK ATI Stream SDK 2.0 w/ OpenCL 1.0 support

Table 2. Statistical Characteristic of Datasets
Dataset Avg Trans

Len
Avg Len of
Max Pattern

No of Trans

T10I4D100K 10 4 100
T40I10D100K 40 10 100

A. Various Thread NumberrsQuantities
In this section, two datasets with different threads and

thresholds were used to verify the performance of GPU-FPM.
Figure 3 and Figure 4 illustrate the computation time of various
thresholds and threads. The computation time of the same
threads was affected by the threshold. A smaller threshold
refers to a smaller degree of support becoming a frequent
pattern. There were 385 and 13,253 frequent itemsets with

1000ξ = and 200ξ = , respectively. The speed-up ratio is
depicted in Figure 5 and Figure 6. For 16 times of threads, the
best speed-up ratio was 13.066. Even in the worst case, it was
11.037. The average speed-up ratio was 12.576.

B. Various Block Sizes
In this section, GPU-FPM used different block sizes to

verify the performance. The block size is the number of
candidates that each processing unit on GPU deals with at each
kernel launch. A small block size implied that the kernel had to
be launched more times. Figure 7 and Figure 8 show the
computation time of various block sizes. The Var stands for the
block size changing with the number of threads, and the block
size (blockSize) and number of threads (noOfThread) had the
following relationship.

* 1024blockSize noOfThread =

Although a larger block size saved a bit on computation
time (block size from 2 to 10, saving 0.826 second in case of
T10I4D100K with 1024 threads), it only had a small influence
on computation time. In some cases, larger block size even
caused more computation time. The speed-up ratio is shown in
Figure 9 and Figure 10. The trend of the speed-up ratio could
not be observed from the results. According to the experimental
results, the block size had no significant effect on the
computation time.

C. Computation Time used by CPU and GPU
Finally, the computation time used by CPU and GPU is

depicted in Figure 11 and Figure 12. GPU occupied most of the
computation time in all cases. This means that the GPU-FPM

algorithm on GPU had the biggest workload. It also pointed out
that pattern verification required much computing resources
than pattern generation. For 1,024 threads, GPU occupied
93.837% computation time on average.

0
50

100
150
200
250
300
350
400
450
500

64 128 256 512 1024

Ti
m

e (
se

c.
)

Number of Threads

Computation Time: Various Threshold
(T10I4D100K,B10)

1000

800

600

400

200

Figure 3. Computation Time of Various Thresholds (T10I4D100K,

B10)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

64 128 256 512 1024

Ti
m

e (
se

c.
)

Number of Threads

Computation Time: Various Threshold
(T40I10D100K,B10)

2000

1900

1800

1700

1600

Figure 4. Computation Time of Various Thresholds (T40I10D100K,

B10)

0

2

4

6

8

10

12

14

64 128 256 512 1024

Sp
ee

d-
up

 R
at

io

Number of Threads

Speed-up Ratio: Various Threshold (T10I4D100K,B10)

1000

800

600

400

200

Figure 5. Speed-up Ratio of Various Thresholds (T10I4D100K, B10)

0

2

4

6

8

10

12

14

16

64 128 256 512 1024

Sp
ee

d-
up

 R
at

io

Number of Threads

Speed-up Ratio: Various Threshold (T40I10D100K,B10)

2000

1900

1800

1700

1600

Figure 6. Speed-up Ratio of Various Thresholds (T40I10D100K,

B10)

0

20

40

60

80

100

120

64 128 256 512 1024

Ti
m

e (
se

c.
)

Number of Threads

Computation Time: Various Block Size
(T10I4D100K,T1000)

2

4

6

8

10

Var

Figure 7. Computation Time of Various Block Sizes (T10I4D100K,

T1000)

0

100

200

300

400

500

600

64 128 256 512 1024

Ti
m

e (
se

c.
)

Number of Threads

Computation Time: Various Block Size
(T10I4D100K,T200)

2

4

6

8

10

Var

Figure 8. Computation Time of Various Block Sizes (T10I4D100K,

T200)

0

2

4

6

8

10

12

14

64 128 256 512 1024

Sp
ee

d-
up

 R
at

io

Number of Threads

Speed-up Ratio: Various Block Size (T10I4D100K,T1000)

2

4

6

8

10

Var

Figure 9. Speed-up Ratio of Various Block Sizes (T10I4D0100K,

T1000)

0

2

4

6

8

10

12

14

64 128 256 512 1024

Sp
ee

d-
up

 R
at

io

Number of Threads

Speed-up Ratio: Various Block Size (T10I4D100K,T200)

2

4

6

8

10

Var

Figure 10. Speed-up Ratio of Various Block Sizes (T10I4D0100K,

T200)

64 128 256 512 1024
GPU 99.746 50.653 26.255 13.776 7.395
CPU 0.812 0.796 0.765 0.779 0.827

0

20

40

60

80

100

120

Ti
m

e (
se

c.
)

Number of Threads

Computation Time Occupied by G PU and CPU
(T10I4D100K,T1000,B10)

GPU

CPU

Figure 11. Computation Time Occupied by GPU and CPU

(T10I4D100K, T1000, B10)

64 128 256 512 1024
GPU 446.801 251.613 120.636 62.975 34.976
CPU 0.826 0.842 0.826 0.845 0.811

0
50

100
150
200
250
300
350
400
450
500

Ti
m

e (
se

c.
)

Number of Threads

Computation Time Occupied by G PU and CPU
(T10I4D100K,T200,B10)

GPU

CPU

Figure 12. Computation Time Occupied by GPU and CPU

(T10I4D100K, T200, B10)

V. CONCLUSIONS
Frequent pattern mining (FPM) is important and

fundamental in data mining. Most FPM methods can be
classified as Apriori-like or FP-growth-like. However, the
computation time increased significantly when the number of
transactions grew. In this study, a GPU based parallel
algorithm—GPU-FPM was used to speed-up the mining
processes. In order to conform to GPU hardware delimitation, a
compact data structure was used to store entire database in
GPU. Moreover, two template classes, MemPack and
CLProgram were also used. Two datasets with different
conditions were used to verify the performance of GPU-FPM.
The speed-up ratio was 12.57 and 7.11 for 16 and 8 times of
threads on average. In addition, most computation time was
occupied by GPU because of all pattern verification processes
being performed by it.

REFERENCES
[1] R. Agrawal, and R. Srikant, “Fast algorithms for mining

association rules,” in International Conference on Very
Large Data Bases, 1994, pp. 487-499.

[2] J. Han, J. Pei, Y. Yin et al., “Mining frequent patterns
without candidate generation: A frequent-pattern tree
approach,” Data Mining and Knowledge Discovery, vol. 8,
no. 1, pp. 53-87, 2004.

[3] E. Lazcorreta, F. Botella, and A. Fernández-Caballero,
“Towards personalized recommendation by two-step
modified Apriori data mining algorithm,” Expert Systems
with Applications, vol. 35, no. 3, pp. 1422-1429, 2008.

[4] J. Park, M. Chen, and P. Yu, “An effective hash-based
algorithm for mining association rules,” ACM SIGMOD
Record, vol. 24, no. 2, pp. 175-186, 1995.

[5] A. Javed, and A. Khokhar, “Frequent pattern mining on
message passing multiprocessor systems,” Distributed and
Parallel Databases, vol. 16, no. 3, pp. 321-334, 2004.

[6] K.-M. Yu, J. Zhou, T.-P. Hong et al., “A Load-Balanced
Distributed Parallel Mining Algorithm,” Expert Systems
with Applications, vol. 37, no. 3, pp. 2486-2494, 2009.

[7] M. Chen, C. Huang, K. Chen et al., “Aggregation of orders
in distribution centers using data mining,” Expert Systems
with Applications, vol. 28, no. 3, pp. 453-460, 2005.

[8] D. Luebke, M. Harris, N. Govindaraju et al., "GPGPU:
general-purpose computation on graphics hardware." p. 208.

[9] NVIDIA. "Compute Unified Device Architecture
(CUDA)," http://www.nvidia.com/object/cuda_home_new.h
tml.

[10] ATI. "Stream
SDK," http://developer.amd.com/gpu/ATIStreamSDK/.

[11] OpenCL. "OpenCL," http://www.khronos.org/opencl/.
[12] R. Agrawal, and R. Srikant, "Quest Synthetic Data

Generator. IBM Almaden Research Center, San Jose,
California," 2009.

http://www.nvidia.com/object/cuda_home_new.html�
http://www.nvidia.com/object/cuda_home_new.html�
http://developer.amd.com/gpu/ATIStreamSDK/�
http://www.khronos.org/opencl/�

	Introduction
	Preliminaries
	Frequent Pattern Mining (FPM)
	Graphic Processing Unit (GPU)
	OpenCL

	GPU-FPM
	Compact Data Structure
	GPU-FPM

	Experimental Results
	Various Thread NumberrsQuantities
	Various Block Sizes
	Computation Time used by CPU and GPU

	Conclusions
	References

