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Abstract—Extraction of frequent patterns from a 
transactional database is a fundamental task in data mining. Its 
applications include association rules, time series, etc. The 
Apriori approach is a commonly used generate-and-test 
approach to obtain frequent patterns from a database with a 
given threshold. Many parallel and distributed methods have 
been proposed for frequent pattern mining (FPM) to reduce 
computation time. However, most of them require a Cluster 
system or Grid system. In this study, a graphic processing unit 
(GPU) was used to perform FPM with a GPU-FPM to speed-up 
the process. Because of GPU hardware delimitations, a compact 
data structure was designed to store an entire database on GPU. 
In addition, MemPack and CLProgram template classes were 
also designed. Two datasets with different conditions were used 
to verify the performance of GPU-FPM. The experimental results 
showed that the speed-up ratio of GPU-FPM can achieve 14.857 
with 16 times of threads. 

 Keywords—frequent pattern mining, parallel processing, 
graphic processing unit (GPU), OpenCL 

 

I. INTRODUCTION 
Both in business and scientific research, there has been a 

tremendous growth of data that needs to be processed. 
Extracting information from large amount of data is necessary 
in making correct and effective decisions. Different methods 
have been developed to determine the characteristics and 
interrelationships of data. Association rule learning, 
classification, clustering, and regression commonly need to 
mine data. Extraction of frequent patterns from a transaction-
oriented database is one of the most important of these. 
Frequent patterns represent the number of times an itemset 
appears in a given database. Therefore, if an itemset is frequent 
it means there are strong relationship between items. 

Most frequent patterns mining (FPM) either uses the 
generate-and-test (Apriori-like) [1] or the pattern growth 
approach (FP-growth) [2]. The core concept of the Apriori-like 
approach is that if the length k  pattern is not frequent in the 
database, then the super-pattern (length 1k + ) will not be 
frequent. It uses a bottom-up approach, extending frequent 
subsets one item at a time. Since the generated candidates are 
independent, this approach is suitable for parallelization. 

Although many Apriori-like methods have been proposed [3-4], 
the computation time increases significantly when the database 
contains a large number of transactions. Some studies [5-7] 
apply parallel and distributed techniques to speed-up the 
mining processes. However, most of them require a high 
performance computing system, e.g., a Cluster or Grid System.  

In recent years, the graphic processing unit (GPU) has 
developed from a 3D rendering device for games to a general-
purpose computing device [8]. While the GPU can only 
execute some simple instructions and functions, compared with 
CPU, it has a large number of computing units. Moreover, 
using GPU as a high-performance computing device which 
does not only reduce the deployment cost but also saves on 
maintenance. GPU programming strategies can be classified 
according to either graphic APIs or GPU programming 
language. It is difficult for developers to use the graphic APIs 
since they need understand the graphic hardware and encode 
their data to graphic vectors. The most serious problem is the 
use of previously designed parallel algorithms. Therefore, GPU 
programming language is currently being used to develop 
GPU-enabled programs. NVIDIA and ATI have been proposed 
as GPU programming language by CUDA [9] and Stream [10] 
respectively. Programs can be written in C programming 
language (C99) to use the power of GPU. However, CUDA can 
only be used on NVIDIA’s GPU and vice versa. Therefore, 
OpenCL [11] was proposed in 2009 to deal with this situation. 
The program design with OpenCL not only can be executed on 
different brand GPU devices, but also on multi-core CPUs. 

In this study, the GPU-FPM algorithm was used to speed-
up the mining processes for FPM when using GPU. Although 
GPU is a powerful computing device, there are limitations: like 
memory size, memory latency, etc. Therefore, the data 
structure has to be re-designed for the FPM algorithm on GPU. 
Since the verification time dominates computation time, the 
main goal of GPU-FPM is to use GPU to verify generated 
candidates in order to speed-up the FPM processes. Compact 
Data Structure, MemPack, and CLProgram class were used to 
achieve this. For verifying the GPU-FPM performance, it was 
implemented on Microsoft Windows with OpenCL 1.0, in 
addition, data generated by an IBM Quest Data Generator [12] 
was used. The proposed algorithm was tested under different 
conditions, including different transaction lengths, threads, 
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block sizes, and thresholds. The experimental results showed 
that GPU-FPM significant reduced the computation time with 
increasing threads. The speed-up ratio achieved 14.857 with 16 
times of threads (in case of the T40I10D100K threshold being 
1900, and block size 10). Moreover, even in the worst case, 
GPU used 89.942% of the execution time. This means that 
GPU-FPM efficiently used the GPU computing power.  

The rest of the paper is organized as follows: In section 2, 
the FPM, GPU, and OpenCL are described. The proposed 
GPU-FPM is introduced in section 3 and the experimental 
results are illustrated in section 4. Finally, the conclusions 
discussed in section 5. 

II. PRELIMINARIES 

A. Frequent Pattern Mining (FPM) 
The main concept of FPM is to find the number of times a 

given pattern appears in a database. FPM is defined as follows: 

Let D  be a transactional database consisting of a set of 
transactions 1 2, , , nT T T : 1 2{ , ,..., }nD T T T= . Let I  be a set of 
items 1 2, , , mi i i , a set 1 2{ , , , }kX i i i I= ⊆  called an itemset 
or a k -itemset if it consists of k  items. The support of an 
itemset X  is the number of transactions containing X . 

support( , ) { | , }iX D i X T X I= ⊆ ⊆  for 1i n=   

An itemset is called frequent if the support is greater than or 
equal to the given absolute minimal threshold ξ . FPM is given 
a set of items I , a database D , and a minimal threshold ξ , 
then find FP( , )D ξ . 

FP( , ) { | support( , ) }D X I X Dξ ξ= ⊆ ≥  

B. Graphic Processing Unit (GPU) 
GPU is a parallel-oriented computing device. It always 

consists of massive processing units to perform mathematical 
computing. It used to be used as a co-processor CPU for games 
and 3D design applications. The DirectX 9 proposed in 2005, 
has taken graphics cards to the next generation because of 
vertex and pixel shaders being integrated in general-purpose 
processing units—introducing the universal shader. The 
mainstream GPU has hundreds to thousands computing units. 
Each unit can be regarded as a simplified CPU. Compared with 
the multicore CPU, the number of processing units has also 
increased. Consequently, GPU also has a whole new 
application—general-purpose computing on graphics 
processing units (GPGPU).  

C. OpenCL 
The GPU programming language can be classified as 

graphic APIs (DirectX, OpenGL, etc.), GPU programming 
language (NVIDIA CUDA [9], ATI Stream [10], OpenCL [11], 
etc). Previously, GPU programming required developers with 
in-depth knowledge of graphics programming and hardware. In 
order to utilize the computation resources on GPU, developers 
had to encode data to a graphic vector, and then use the 
DirectX or OpenGL functions to perform rendering. After that, 

the rendered data had to be decoded. This procedure not only 
required graphic programming knowledge, but also depended 
on different GPUs. Recently, CUDA and Stream have been 
proposed by NVIDIA and ATI. Both of them provide C 
interface and allow developers to adapt the hardware, e.g., 
number of processing units, size of local and global memory. 
However, previous frameworks could only be used with the 
respective GPUs, e.g., CUDA could only be executed on 
NVIDIA’s GPUs. 

In order to solve this situation, the Khronnos Group and 
many industry-leading companies created the OpenCL. 
OpenCL is an open and cross-platform parallel heterogeneous 
programming system. It provides a uniform programming 
environment for developers to write efficient and portable 
codes using a diverse mix of multi-core CPUs, GPUs, and other 
processors.  

III. GPU-FPM 
The goal of GPU-FPM was using massive processing units 

on GPU to speed-up the FPM procedures. However, each 
processing unit on GPU can only perform simple instructions. 
Another important issue is memory size and access latency. 
Therefore, the algorithm and data structure had to be re-
designed for GPUs to fully utilize its computation resources. 
Figure 1 illustrates the architecture of GPU-FPM. GPU-FPM 
has the following features: (1) data handling between CPU and 
GPU, (2) compact data structure, and (3) highly parallel. 
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Figure 1. Architecture of GPU-FPM 

 

 

A. Compact Data Structure 
The memory access latency on GPU is very high, and it 

limits the computational speed-up ratio. Therefore, reducing 
the number of fetchings of memory improves the performance. 
It fetches the memory many times if used directly on a 
transaction-oriented database. This is because the entire 
transaction needs to be scanned for verifying each single 
itemset. Consequently, a transaction identification set (Tidset) 
was used to directly select transactions instead of scanning 
whole databases. Tid and Tidset were defined as follows: 



Tid( ) { }j j ki i T= ∩ ≠∅  for 1k n=   

Tidset {Tid( )}ji=  for 1j m=   

For example, if transactions 1 and 3 contain item 1i , 

1Tid( ) {1,3}i = , then a whole transaction-oriented database is 
represented by Tidset. In order to store the Tidset to memory 
on GPU, TidValue and TidIndex arrays were used to represent 
Tidset. Figure 2 is an example of TidValue and TidIndex 
arrays. The TidValue array stored the Tid of each item, e.g., 

1Tid( ) {1,3}i = , 2Tid( ) {1,2,5}i = , 3Tid( ) {2}i = , etc. (Figure 2 
(a)) The boundary of each item on the TidValue array was 
determined by the TidIndex array. The TidIndex stored each 
items start and end position, e.g., item 4i  ranging from 6 to 10 
means six cells were used for 4i  in TidValue array and values 
were stored from TidValue[6] to TidValue[11]. Therefore, the 
information required for mining was transformed from 
database to two arrays. 

 

1 3 1 2 5 2 4 5 7 10 15 18 …

Tid(i1) Tid(i2) Tid(i3) Tid(i4)

 
(a) TidValue 

0 1 2 4 5 5 6 11 ...

i1 i2 i3 i4
 

(b) TidIndex 

Figure 2. Example of TidValue and TidIndex 
 

B. GPU-FPM 
Compared with CPU, GPU is special hardware with 

massive processing units. GPU processing is in single 
instruction, multiple data (SIMD) and there is no support 
recursion on it. Therefore, a compact data structure was 
designed and implemented to store necessary data for mining 
on GPU. The FPM could be roughly summarized to the 
following steps: load database, generate candidate itemset, and 
verify the candidate itemset frequently or not. Candidate 
itemset verification usually dominates computing time. 
Therefore, in this study, GPU was used to reduce candidate 
verification time.  

GPU-FPM was an Apriori-based mining algorithm and it 
generated and verified the itemset to produce frequent patterns. 
Since memory access between CPU and GPU is a common 
operation, MemPack was designed to lower GPU programming 
complexities. MemPack is C++ class template that provided 
abilities to store different types of data, e.g., int, float, 
customized structure, class, etc. Two transfer functions: 
Host2Device and Device2Host and two memory control 
functions: ReleaseHost and ReleaseDevice were also provided. 
Moreover, the CLProgram class was also designed to have the 

following abilities: allow arbitrary number of parameters, bind 
arbitrary of MemPack, launch with arbitrary number of threads, 
and launch with CPU. The GPU-FPM algorithm follows: 

 

Algorithm GPU-FPM 
 
Input: a transaction database D  and a given minimum 
threshold ξ . 
Output: a complete set of frequent patterns FP( , )D ξ . 
 
1. Load D  from disk. 
2. Generate Tidset via scanning the D  and store it on hash 

table.  
3. Transform hash table to compact array structure—

TidValue and TidIndex. 
4. Create MemPacks mpTidValue and mpTidIndex to store 

TidValue and TidIndex. 
5. Perform Host2Device to copy mpTidValue and 

mpTidIndex to GPU. 
6. Use prefix tree data structure to generated candidate 

itemset. 
7. Create MemPack mpCandIS to store generated candidates.  
8. Perform Host2Device to copy mpCandIS to GPU. 
9. Create MemPack mpResults for storing results. 
10. Create CLProgram clProg to store related parameters and 

bind the mpTidValue, mpTidIndex, mpCandIS, and 
mpResults. 

11. Perform launch kernel of clProg (on GPU) 
a. Each processing unit (PU) allocated a set of candidate 

itemsets (CIs) 
b. for each CI in CIs 

i. PU compute the support of CI according to 
mpTidValue and mpTidIndex 

ii. If support of CI greater than or equal to given 
threshold ξ  then set it is frequent on mpResults, 
else is not frequent. 

12. Wait until kernel code executed. 
13. Perform Device2Host of mpResults to store the results. 
14. Perform Step 6 until all candidates generated and verified. 
 

IV. EXPERIMENTAL RESULTS 
In order to evaluate the performance of the proposed 

algorithm, GPU-FPM was implemented along with OpenCL 
library and Visual C++ on Microsoft Windows. Synthesized 
datasets generated by IBM’s Quest Synthetic Data Generator 
were used to verify the algorithm. The hardware and software 
configurations are given in Table 1. The algorithm evaluated 
with different transaction lengths, different threads, different 
block sizes, and different thresholds. Table 2 gives the details of 
the dataset testing. 

 

 

 



Table 1. Hardware and Software configuration 
Item Description 
CPU AMD Phenom II X4 965 3.4 GHz 
Memory 8G DDR3 memory 

GPU ATI Radeon HD 5850 with 1440 stream 
processing units and 1G DDR5 memory 

OS Microsoft Windows 7 
Compiler Microsoft Visual C++ 2008 w/ SP1 
SDK ATI Stream SDK 2.0 w/ OpenCL 1.0 support 

 

Table 2. Statistical Characteristic of Datasets 
Dataset Avg Trans 

Len 
Avg Len of 
Max Pattern 

No of Trans 

T10I4D100K 10 4 100 
T40I10D100K 40 10 100 

 

A. Various Thread NumberrsQuantities 
In this section, two datasets with different threads and 

thresholds were used to verify the performance of GPU-FPM. 
Figure 3 and Figure 4 illustrate the computation time of various 
thresholds and threads. The computation time of the same 
threads was affected by the threshold. A smaller threshold 
refers to a smaller degree of support becoming a frequent 
pattern. There were 385 and 13,253 frequent itemsets with 

1000ξ =  and 200ξ = , respectively. The speed-up ratio is 
depicted in Figure 5 and Figure 6. For 16 times of threads, the 
best speed-up ratio was 13.066. Even in the worst case, it was 
11.037. The average speed-up ratio was 12.576.  

B. Various Block Sizes 
In this section, GPU-FPM used different block sizes to 

verify the performance. The block size is the number of 
candidates that each processing unit on GPU deals with at each 
kernel launch. A small block size implied that the kernel had to 
be launched more times. Figure 7 and Figure 8 show the 
computation time of various block sizes. The Var stands for the 
block size changing with the number of threads, and the block 
size ( blockSize ) and number of threads ( noOfThread ) had the 
following relationship. 

* 1024blockSize noOfThread =  

Although a larger block size saved a bit on computation 
time (block size from 2 to 10, saving 0.826 second in case of 
T10I4D100K with 1024 threads), it only had a small influence 
on computation time. In some cases, larger block size even 
caused more computation time. The speed-up ratio is shown in 
Figure 9 and Figure 10. The trend of the speed-up ratio could 
not be observed from the results. According to the experimental 
results, the block size had no significant effect on the 
computation time. 

C. Computation Time used by CPU and GPU 
Finally, the computation time used by CPU and GPU is 

depicted in Figure 11 and Figure 12. GPU occupied most of the 
computation time in all cases. This means that the GPU-FPM 

algorithm on GPU had the biggest workload. It also pointed out 
that pattern verification required much computing resources 
than pattern generation. For 1,024 threads, GPU occupied 
93.837% computation time on average. 
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Figure 3. Computation Time of Various Thresholds (T10I4D100K, 

B10) 
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Figure 4. Computation Time of Various Thresholds (T40I10D100K, 

B10) 
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Figure 5. Speed-up Ratio of Various Thresholds (T10I4D100K, B10) 
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Figure 6. Speed-up Ratio of Various Thresholds (T40I10D100K, 

B10) 
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Figure 7. Computation Time of Various Block Sizes (T10I4D100K, 

T1000) 
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Figure 8. Computation Time of Various Block Sizes (T10I4D100K, 

T200) 
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Figure 9. Speed-up Ratio of Various Block Sizes (T10I4D0100K, 

T1000) 
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Figure 10. Speed-up Ratio of Various Block Sizes (T10I4D0100K, 

T200) 
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Figure 11. Computation Time Occupied by GPU and CPU 

(T10I4D100K, T1000, B10) 
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Figure 12. Computation Time Occupied by GPU and CPU 

(T10I4D100K, T200, B10) 
 

V. CONCLUSIONS 
Frequent pattern mining (FPM) is important and 

fundamental in data mining. Most FPM methods can be 
classified as Apriori-like or FP-growth-like. However, the 
computation time increased significantly when the number of 
transactions grew. In this study, a GPU based parallel 
algorithm—GPU-FPM was used to speed-up the mining 
processes. In order to conform to GPU hardware delimitation, a 
compact data structure was used to store entire database in 
GPU. Moreover, two template classes, MemPack and 
CLProgram were also used. Two datasets with different 
conditions were used to verify the performance of GPU-FPM. 
The speed-up ratio was 12.57 and 7.11 for 16 and 8 times of 
threads on average. In addition, most computation time was 
occupied by GPU because of all pattern verification processes 
being performed by it.  
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