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Introduction
A solidification microstructure is generally composed of equiaxed and columnar struc-
tures, which are formed by the competitive growth of a massive number of dendrites. 
As the solidification microstructure determines the macroscopic properties of a cast 
product, it is important to accurately predict the formation process of the solidification 
microstructure considering the competitive growth (Dantzig and Rappaz 2009; Kurz 
et al. 2018, 2020).

There are a few numerical simulation methods that can express dendrite growth, 
such as the cellular automaton method (Brown et al. 1994; Wei et al. 2012; Chen et al. 
2015), front tracking method (Juric and Tryggvason 1996; Al-Rawahi and Tryggvason 
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2002, 2004), and phase-field (PF) method (Gránásy et  al. 2013; Takaki 2014; Plapp 
2016). Among these, the PF method is the most powerful because it does not require 
the explicit tracking of an interface and accurately expresses the free-boundary problem 
through the thin-interface limit. However, the PF method is a diffuse interface model, 
which requires a finer spatial resolution compared to other simulation methods, result-
ing in higher calculation costs. A quantitative solidification model (Ohno 2020) can be 
utilized to perform quantitative simulations using an interface width larger than the 
physical interface. However, even in a quantitative PF model, it is necessary to use a 
numerical grid that is several times smaller than the curvature radius of a dendrite tip. 
Therefore, the PF simulations of dendrite growth were limited to the two-dimensional 
(2D) simulations and three-dimensional (3D) simulations of single dendrite growth until 
the early 2000s (Kobayashi 1994; Karma and Rappel 1998; Karma et al. 2000).

A graphics processing unit (GPU) was first used for PF computation in the early 2000s. 
Currently, GPUs are commonly used in the PF simulations of dendritic solidification 
owing to their high parallel computing performance (Yamanaka et al. 2011; Ohno 2012; 
Tourret and Karma 2015; Clarke et al. 2017; Song et al. 2018). GPU computing is quite 
efficient for implementing discretization methods with simple calculation algorithms, 
such as finite difference or finite volume methods. In addition, the PF computation for 
dendrite growth is easily accelerated by GPU computing because it requires a large num-
ber of floating-point calculations per grid point. Large-scale simulations with multiple 
GPUs (Shimokawabe et al. 2011; Sakane et al. 2015) were performed for the competitive 
growth of multiple 3D columnar dendrites during directional solidification (Takaki et al. 
2016a, b, 2018). Although GPU computing is quite powerful for dendrite growth PF sim-
ulations, it remains limited in scale for the simulations with multiple dendrites when the 
diffusion length is considerably larger than the dendrite tip radius (Bellón et al. 2021).

The adaptive mesh refinement (AMR) method is used to improve the efficiency of PF 
computation for dendritic solidification (Provatas et  al. 1999; Lan et  al. 2003; Takaki 
et al. 2005; Guo et al. 2014). In recent years, multiple dendrite growth in a 3D system has 
been simulated by the PF method using parallel AMR computing on a central processing 
unit (CPU) cluster (Guo and Xiong 2015; Gong et al. 2018; Greenwood et al. 2018; Wang 
et  al. 2021). Recently, the applications of parallel AMR have been extended to multi-
physics problems in dendrite growth, including thermal diffusion (Zhang et  al. 2020), 
melt convection (Zhang et al. 2021a), and gas porosity (Zhang et al. 2021b). Although 
a few physical simulations (Schive et al. 2018; Watanabe and Aoki 2021) implemented 
AMR using parallel computing with multiple GPUs, PF simulations for dendrite growth 
have not yet applied AMR using GPUs. AMR is extremely effective in resolving prob-
lems such as a wide primary arm spacing compared to the curvature radius of a dendrite 
tip. In these conditions, the further acceleration of PF simulations via AMR is required 
to treat a large number of dendrites.

In this study, the AMR method is implemented using multiple-GPU parallel comput-
ing to increase the computational scale and efficiency of 3D PF dendrite growth sim-
ulations. In multiple-GPU computing, if a fixed subdomain is assigned to one GPU, 
the number of grid points for each GPU differs depending on the state of simulations, 
thereby reducing the parallel computation performance. Thus, dynamic load balanc-
ing is introduced in domain subdivision to equalize the number of grid points for each 
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GPU. The developed multiple-GPU parallel computing method for AMR is evaluated 
by simulating columnar dendrite growth during the directional solidification of a binary 
alloy. First, an AMR condition is evaluated by performing single-GPU computation. 
Next, dynamic load balancing is evaluated through multiple-GPU parallel computation. 
Finally, the parallel computation performance is investigated by conducting weak scaling 
tests by increasing the number of GPUs.

Method
PF model

A quantitative PF model for the directional solidification of dilute binary alloys (Ohno 
and Matsuura 2009) is employed for the simulations. In this model, the temperature field 
is assumed to be T = Tr + Gz − Rt on the basis of the frozen temperature approximation 
(Diepers et al. 2002). Here, Tr is the reference temperature, G is the temperature gradi-
ent, and R is the cooling rate. The morphological evolution of dendrites is expressed by 
solving the PF equation. The solid and liquid phases are expressed by the PF variable, 
φ, where φ = + 1 and φ = − 1 in the solid and liquid phases, respectively, and φ varies 
smoothly at the solid–liquid interface. Nonlinear preconditioning, φ = tanh(ψ/

√
2 ), is 

applied to the PF variable (Gong et al. 2018; Glasner 2001) to perform stable computa-
tions using a large grid size. The solute concentration is treated as dimensionless super-
saturation, i.e., u = (Cl − Cl

e)/(Cl
e − Cs

e), where Cl and Cs denote the solute concentrations 
and Cl

e and Cs
e denote the equilibrium solute concentrations in the liquid and solid 

phases, respectively. The solute concentration, C, is expressed as C = (1 − tanh(ψ/
√
2))Cl 

/2 + (1 + tanh(ψ/
√
2))Cs/2. It is assumed that the relation for the partition coefficient, 

k = Cs
e/Cl

e = Cs/Cl, is satisfied on the basis of the dilute solution approximation (Kim 
et al. 1999).

The time evolution equations for the preconditioned PF variable, ψ, and dimensionless 
solute concentration, u, are expressed as

where τ = τ0as(n)2 is the PF relaxation time and W = W0as(n) is the interface width. as(n) 
is a crystal anisotropy function:
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where ε4 is the anisotropic strength. u’ in Eq. (1) represents directional solidification, and 
it is expressed as u’ = − (Gz − Rt)/(m(Cl

e − Cs
e)). Here, m is the liquidus slope. Dl and Ds 

are the diffusion coefficients of the solute in the liquid and solid phases, respectively, and 
q(ψ) is the interpolation function, q(ψ) = [kDs + Dl + (kDs − Dl) tanh(ψ/

√
2)]/(2Dl). ∇ ⋅ J is 

the noise term for generating higher-order dendrite arms. JAT is an antitrapping current 
term for correcting the solute flux at the interface:

The time and spatial derivative terms in Eqs. (1) and (2) are calculated using the finite 
difference method. The first-order forward difference scheme is used for the time deriva-
tive term. The isotropic difference scheme (Shimokawabe et al. 2011) and second-order 
central difference scheme are used for the spatial second-order derivative terms in Eqs. 
(1) and (2), respectively.

AMR method

An adaptive mesh is generated on the basis of the block-structured AMR method 
(Schive et  al. 2018). In this method, as shown on the left in Fig. 1, the entire compu-
tational domain is first divided into the coarsest cubic blocks. The refinement level of 
these blocks is defined as 0, and a level n block is obtained by recursively dividing a level 
0 block into eight blocks n times based on the octree structure. In Fig. 1, for example, 
a level 2 block is the finest block. Here, the difference in the refinement level between 
two adjacent blocks is constrained to be no greater than 1. As shown by the red frame 
in Fig. 1, each block is divided into N3 grids, where the finite difference computations of 
Eqs. (1) and (2) are performed. According to the maximum refinement level, nmax, and 
the minimum grid size, Δxmin, the size of the grids belonging to a level n block is Δxn 
= 2(nmax−n) Δxmin and the size of a level 0 block is X0 = NΔx0 = 2(nmax−n)NΔxmin. Here, 
the lengths of each side of the computational domain (Lx, Ly, and Lz) are set as integral 
multiples of X0. The block information, such as the refinement level, position, and adja-
cent blocks, is stored on the GPU to reduce the data communication between the GPU 
and CPU. The information is updated when the refinement and coarsening of the mesh 
are performed on the GPU. At the beginning of the simulations, fixed-length memory 
arrays are allocated for storing physical data in each GPU. The length of the memory 
array is set to be as long as possible within the limits of the GPU memory. Each GPU 
must contain all the information in the allocated subdomain in the GPU memory arrays. 
When the GPU memory is insufficient to contain the subdomain information, the simu-
lation is paused. The simulation can be continued by further dividing the subdomains 
and increasing the number of GPUs used for the simulation. For each block, the physical 
data of (N + 2)3 points, including the halo region, are lined up on the allocated memory 
array. At the beginning of each time step, the physical data of the grid points located on 
the boundary of a block are transferred to the halo region of the adjacent block.

In the following evaluations of the implemented dynamic load balancing, the moving 
frame algorithm (MFA) (Diepers et al. 2002; Boettinger and Warren 1999) is used in the 
directional solidification simulations to intentionally shift the distribution of dendrites in 
the computational domain. Figure  2 shows the images of the columnar dendrite growth 
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during directional solidification with and without the MFA. Figure 2a shows a typical direc-
tional solidification simulation without the MFA, where the dendrite tip moves upward in 
the computational domain. In simulations with the MFA, the dendrite tip position is main-
tained at a position in the growth direction. The procedure of removing the bottom region 
(green region) and adding the top region (orange region) is repeated to maintain the den-
drite length at hz or lower. When a uniform grid is used, the domain is typically moved by 
one grid. In contrast, in the present AMR, the domain is moved by the level 0 block size, 
X0, as shown in Fig. 2b. The Dirichlet boundary condition (φ = − 1, u = u0) and zero-flux 
boundary condition are applied to the top and bottom boundaries, respectively.

Multiple‑GPU parallelization

Parallel computation is implemented using multiple GPUs to increase the computational 
scale of the 3D-AMR-PF simulations. At the beginning of the simulation, the computa-
tional domain is evenly divided into Mx, My, and Mz subdomains in the x, y, and z direc-
tions, respectively, and one GPU is assigned to each subdomain. As the number of grid 
points is different for each subdomain owing to the application of AMR, the subdomain 
boundaries dynamically slide based on the slice-grid method (Tsuzuki and Aoki 2016) such 
that the number of grid points for each GPU becomes the same. We select the slice-grid 
method because of its simplicity; however, there are more complicated schemes (Watan-
abe et al. 2020). Here, the slide distances of the subdomain boundaries are set as integral 
multiples of X0. Figure 3 shows an example of how the subdomain boundary positions are 
determined in the dynamic load balancing, when Mx = My = Mz = 4. First, the position of 
the three subdomain boundaries in the x direction is determined such that the ratio of the 
number of grid points in the two regions separated by the ith boundary becomes approxi-
mately i:Mx − i. Next, the same procedure is repeated for the y direction, in the four regions 
sandwiched by two boundaries in the x direction, as shown in Fig. 3c. Finally, the boundary 
positions in the z direction are determined in the same manner for the 16 regions sand-
wiched between the x-direction and y-direction boundaries, as shown in Fig.  3d. In the 
multiple-GPU computation, it is necessary to share the physical data of the blocks adjacent 
to subdomain boundaries. The sharing procedure is performed as follows. At the begin-
ning of each time step, the physical data of each block adjacent to a subdomain boundary 
are transferred from a GPU to the host CPU. Then, the transferred data are individually 
sorted according to the adjacent subdomain boundary, after which they are transferred to 
the CPU assigned to the corresponding adjacent subdomain through a message-passing 
interface. Finally, the received data are transferred from the adjacent subdomain CPU to 
the corresponding GPU. The computational code is written in CUDA C, and OpenMPI is 
used for internode communication. The subsequent simulations are performed using the 
TSUBAME3.0 GPU supercomputer (Tokyo Institute of Technology). TSUBAME3.0 con-
sists of 540 computing nodes with 2 CPUs (Intel Xeon E5-2680 V4 Processor) and 4 GPUs 
(NVIDIA Tesla P100) per node.

Simulations
The accuracy of the AMR refinement condition used in this study and the performance 
of the dynamic load balancing are evaluated using single-GPU and multiple-GPU com-
putations, respectively. Finally, weak scaling tests are performed to evaluate the parallel 
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computation performance. In the simulations, Fe-5.4wt.%Si is used as the sample mate-
rial, and its material properties are shown in Table 1. The simulation conditions are also 
listed in Table 1.

AMR refinement condition

The AMR refinement condition is set as that the blocks with the highest level are 
arranged to cover only the interface region (− 0.8 < φ < 0.8) and the difference between 
the levels of adjacent blocks is 1 or lower. The accuracy of the refinement condition and 
acceleration due to AMR are evaluated by performing the single-GPU computations of 
columnar dendrite growth during directional solidification. The maximum refinement 
level is set as nmax = 0, 1, 2, 3, 4, and 5, where nmax = 0 implies that the entire domain is 
divided into the finest mesh, which is a uniform mesh. The number of grids per block 
is set as N = 8. The AMR operation, i.e., the refinement and coarsening of the mesh, is 
conducted every 100 steps. The computational domain size is set as Lx × Ly × Lz = 0.19
2 × 0.192 × 0.384 mm3 (256Δxmin × 256Δxmin × 512Δxmin; Δxmin = 0.75 μm). The zero-flux 
boundary condition is imposed on all boundaries. At the beginning of the simulation, 
the dimensionless supersaturation at the bottom of the domain is set as u0 = − 0.1, and 
a spherical solid with a radius of 6Δxmin is placed in the corner of the domain. For com-
parison, simulations are performed using a uniform mesh with Δx = Δxmin.

Figure 4a shows the result at t = 2.0 × 105Δt in the simulation with nmax = 3, where the 
solute concentration on the xy, yz, and zx planes passing through the origin is indicated 
by color contours, the outlines of the blocks on the planes are shown by a white line, 
and the solid–liquid interface morphology is shown as a contour plane with φ = 0. The 
fine mesh is adaptively arranged only around the interface region. Figure 4b compares 
the solid–liquid interface morphologies on the yz plane at t = 2.0 × 105Δt (green line for 
nmax = 3, red line for nmax = 5, and black line for uniform mesh). All the morphologies 
agree, and sufficient computational accuracy can be achieved using the simple refine-
ment conditions for nmax = 3 and 5. Figure 4c shows the plot of the execution time up 
to 2 × 105Δt vs. nmax. The black dashed line shows the execution time for the uniform 
mesh. The execution time decreases as nmax increases. At nmax ≥ 1, the execution time for 
AMR is less than that for the uniform mesh. In addition, the execution time converges 

Table 1  Material properties of Fe-5.4wt.%Si and simulation conditions

Quality Symbol Value Reference

Diffusion coefficient in liquid Dl 4.40 × 10−9 m2/s (Calderon et al. 1971)

Diffusion coefficient in solid Ds 3.44 × 10− 11 m2/s (Borg and Lai 1970)

Partition coefficient k 0.79 (Cui and Jung 2017)

Anisotropic strength ε4 0.02

Gibbs–Thomson constant (Fe) Γ 2.88 × 10−7 Km (Karrasch 2016)

Liquidus slope m − 884 K/at.frac. (Cui and Jung 2017)

Cooling rate R 5 K/min

Temperature gradient G 3 K/mm

Minimum grid spacing Δxmin 0.75 μm

Interface width W0 1.25 μm

Time increment Δt 1.826 × 10−5 s
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to an almost constant value at nmax ≥ 3. At nmax = 0, the execution time for AMR is 2.6 
times larger than that for the uniform mesh, even though the number of grid points is 
the same for both cases. This is because the computation with AMR requires data trans-
fer to the halo region of each block at every time step. At nmax ≥ 3, the computation with 
AMR is approximately 10.3 times faster than that with the uniform mesh because the 
number of grid points is significantly reduced. At the initial stage of solidification, in 
which the solid fraction is extremely small, the acceleration ratio is approximately 50. 
As dendrites grow, the number of grids gradually increases and the acceleration due to 
AMR gradually decreases.

To compare the computational performance between GPUs and CPUs, we performed 
the simulation shown in Fig. 4a with the uniform mesh using a single CPU (Intel Xeon 
E5-2680 V4 processor) core on TSUBAME3.0. The execution time was approximately 
12,700 min. Assuming that the ideal execution time with all cores of a single CPU is the 
execution time with a single CPU core divided by the number of cores per CPU, the 
ideal execution time was 912 min (as the Xeon E5-2680 V4 processor has 14 CPU cores). 
Compared to the ideal execution time for the single CPU, the GPU computation with 
the uniform mesh was 10 times faster, while the GPU computations with the adaptive 
mesh (nmax ≥ 3) were 100 times faster.

Dynamic load balancing

Directional solidification simulations are performed using multiple GPUs to evaluate the 
performance of dynamic load balancing. For this task, we change the heterogeneity of 
the density of the grid points in the computational domain by changing the maintained 
dendrite length in the computational domain with the MFA. The computational domain 
is a cuboid with dimensions of ​​Lx × Ly × Lz = 0.768 × 0.768 × 1.536 mm3 (1024Δxmin × 10
24Δxmin × 2048Δxmin; Δxmin = 0.75 μm). At the beginning of the simulations, the super-
saturation at the bottom of the domain is set as u0 = − 0.2, and a planar solid phase with 
a thickness of 6Δxmin is placed at the bottom of the domain. We perform three simu-
lations with different dendrite placements (Cases 1, 2, and 3) in the domain to evalu-
ate the effect of dynamic load balancing. Case 1 uses a static domain without the MFA. 
Cases 2 and 3 use the MFA with the maximum dendrite tip position at hz = 0.4Lz and 
hz = 0.2Lz, respectively. In Case 1, the grid points are uniformly distributed throughout 
the computational domain. In Case 2, the grid points are concentrated in the lower half 
of the domain. Finally, in Case 3, the grid points are concentrated near the bottom of the 
domain. Thus, the heterogeneity of the density of the grid points gradually increases in 
the order of Case 1, Case 2, and Case 3. Sixteen GPUs are used for the parallel comput-
ing, and the entire domain is divided into 2 × 4 × 2 subdomains in the x, y, and z direc-
tions. For comparison, the simulation with the uniform mesh (Δx = Δxmin) is performed 
in the same parallel computing condition with the 2D division (1 × 4 × 4 subdomains) 
(Sakane et al. 2015).

Figure  5 shows the solid–liquid interface morphologies and solute concentration 
on the xy, yz, and zx planes at different time steps for Cases 1–3. In all simulations, 
a typical growth procedure during directional solidification is observed: initial pla-
nar interface (initial state), perturbation (t = 1.0 × 106Δt), competitive growth of 
cells (t = 1.8 × 106Δt), and competitive growth of dendrites (t ≥ 2.3 × 106Δt). In 
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Case 1 (Fig.  5a), the tip of the columnar dendrite reaches the top of the domain at 
t = 2.49 × 106Δt. At this time, the memory required for the computation reaches the 
maximum GPU memory owing to the increase in the number of grid points. In Case 
2 (Fig. 5b), the computational domain starts moving from t = 1.89 × 106Δt, and then, 
the dendrite tip positions remain lower than hz. At t = 3.0 × 106Δt, dendrites A and 
B become particularly large and other dendrites start to be eliminated. In Case 3 
(Fig.  5c), the domain starts moving from t = 1.65 × 106Δt, and after t = 2.3 × 106Δt, 
mainly dendrites A and B remain.

Figure  6 shows the changes in subdomain decompositions for the dendrite mor-
phologies at different time steps for Cases 1–3 (shown in Fig. 5). In all cases, at the 
initial state, the z-direction subdomain boundaries are located below because the grid 
points are concentrated in the lower part of the domain. At t = 1.0 × 106Δt, the bound-
aries move upward but remain in the lower part of the domain. At t = 1.8 × 106Δt for 
Cases 1 and 2, the subdomain boundaries move further upward owing to the growth 
of numerous cells. Moreover, the domain is divided almost evenly in the x and y direc-
tions because there is almost no shift in the distribution of grid points along these 

Fig. 5  Time evolutions of dendrite morphologies and solute concentration distributions during the 
simulations of the directional solidification from a planar solid seed, using parallel computation with 16 
GPUs. In the simulations, a a static domain (Case 1) and domains that move in the z-direction to maintain 
the dendrite tip position at the z-direction positions b hz = 0.4Lz (Case 2) and c hz = 0.2Lz (Case 3) using MFA 
were used. The dendrite morphologies are indicated by the contours of φ = 0. The distributions of solute 
concentration and AMR block decompositions on the xy, yz, and zx planes are indicated by the colored 
contours and white lines
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directions. In Case 1 (Fig. 6a), at t = 2.49 × 106Δt, the ratio of the maximum and aver-
age number of grid points assigned to 16 GPUs is approximately 1.30.

In Case 2 (Fig. 6b), after t = 2.3 × 106Δt, the grid points are shifted around dendrites A 
and B. Accordingly, the x-direction subdomain boundary is located between dendrites 
A and B. In the y direction, the small subdomain (2nd from the back) is formed around 
the largest dendrite, i.e., dendrite A. In the z direction, the subdomain boundaries are 
located at a lower point compared to Case 1. The ratio of the maximum and average 
number of grid points assigned to 16 GPUs at t = 3.0 × 106Δt is approximately 1.67.

In Case 3 (Fig. 6c), almost all the grid points are concentrated around dendrites A 
and B after t = 2.3 × 106Δt. Therefore, the smallest subdomain in the y direction is 
thinner than that in Case 2, and the z-direction subdomain boundary is located at a 
lower position than that in Case 2. At t = 3.0 × 106Δt, the ratio of the maximum and 
average number of grid points assigned to 16 GPUs is approximately 1.84.

In the above three cases, the ratio of the maximum and average number of grid 
points assigned to each GPU is less than two. This value is reasonable considering the 
remarkable heterogeneity of the grid points in Cases 2 and 3 and the use of the rela-
tively simple slice-grid method. Thus, it can be concluded that appropriate domain 
subdivision using dynamic load balancing is conducted.

Fig. 6  Domain decomposition considering the dynamic load balancing for parallel computation using 16 
GPUs during the directional solidification simulations shown in Fig. 5. In the simulations, the entire domain is 
divided into 2 × 4 × 2 subdomains in the x, y, and z directions. The outline of each subdomain is indicated by 
a different color
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Figure 7a and b show the change in the total number of active grid points and execu-
tion time per 2000 steps, respectively, for Cases 1–3. Grid points are considered active 
if they are included in the AMR block placed in the computational domain. The vertical 
axis in Fig. 7a represents the ratio of the total number of active grid points for Cases 1–3 
to the number of grid points for the uniform mesh (= 1024 × 1024 × 2048), and the ver-
tical axis in Fig. 7b shows the execution time per 2000 steps in the simulation. In Fig. 7b, 
for comparison, the results obtained using the uniform mesh are indicated by the black 
dashed line. As shown in Fig. 7a, the number of grid points is almost constant and less 
than 5% of that in the uniform mesh until t = 1.2 × 106Δt, when the primary arms start 
growing from the flat interface. After around t = 1.5 × 106Δt, the number of grid points 
and execution time increase monotonically as the primary and secondary arms grow. In 
Case 1, the computation stops owing to the lack of GPU memory at t = 2.49 × 106Δt. In 
Case 2, the computational domain starts moving from t = 1.89 × 106Δt. Thereafter, the 
number of grid points remains at approximately 10% of that in the uniform mesh, and 
the execution time is approximately half of that for the uniform mesh. The fluctuations 
in the curves for cases 2 and 3 in Fig. 7 are caused by removing the bottom blocks in the 
MFA. In Case 3, the domain starts moving from t = 1.65 × 106Δt. Then, the number of 
grid points converges to approximately 3% of that in the uniform mesh, and the execu-
tion is approximately six times faster.

According to Fig. 7, the execution time of the adaptive mesh (case 1) and that of the 
uniform mesh are equal at t = 2.2 × 106Δt. Within the same time, the number of active 
grid points of the adaptive mesh (case 1) is 21% of that of the uniform mesh. Thus, the 
execution time per active grid point for the adaptive mesh is approximately five times 
larger than the execution time per grid point for the uniform mesh, owing to AMR and 
dynamic load balancing in the multiple-GPU computation. Nevertheless, the accel-
eration of the computation by two times (Case 2) and six times (Case 3) due to AMR 
exhibiting a major advantage, particularly in extremely large-scale or long-duration 
simulations.

Parallel computation performance

Weak scaling tests are performed to evaluate the parallel computation performance of 
the developed method. In the evaluations, the computational domain is set as Lx × Ly 
× Lz = 1024PΔxmin × 1024QΔxmin × 2048Δxmin, where P and Q are integers. A total of 
16PQ GPUs are used for the evaluations. The computational conditions for φ and u are 
created by periodically arranging the results at t = 3.0 × 106Δt in Fig.  5b. An example 
for 256 GPUs (P = Q = 8) is shown in Fig. 8. In this example, the computational condi-
tions shown in Fig. 8a are periodically repeated in the x and y directions, as shown in 
Fig. 8b. The execution times for 2000 time steps from t = 3.0 × 106Δt are measured using 
16, 32, 64, 128, and 256 GPUs. During the evaluations, the refinement and coarsening 
of the mesh were conducted 20 times in total. It was also judged 20 times whether it 
was necessary to move the subdomain boundaries for dynamic load balancing; however, 
no boundary movement occurred during the evaluations. Because the movement of the 
subdomain boundaries was conducted only slightly less than 100 times throughout the 
simulations, the execution time for movement of subdomain boundaries is negligible in 
the parallel performance evaluations.
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Figure  9 shows the parallel efficiency, which is expressed as the execution time per 
2000 time steps from t = 3.0 × 106Δt. As shown in the figure, the execution time with 
256 GPUs is only 1.7% longer than that with 16 GPUs. Thus, the execution time is almost 
constant for 16–256 GPUs, and good parallel computation performance is obtained. 
When 256 GPUs are used, a large-scale simulation of the growth of a massive number of 
dendrites with dimensions of 4096Δxmin × 4096Δxmin × 2048Δxmin (Fig. 8b) can be per-
formed with almost the same computational efficiency as that of the simulation with 16 

Fig. 8  Dendrite morphologies at t = 3.0 × 106Δt used for weak scaling tests using a 16 and b 256 GPUs. 
In the weak scaling tests, the execution times for 2000 time steps from t = 3.0 × 106Δt are measured. The 
distributions of φ and u at t = 3.0 × 106Δt with 16 GPUs were obtained from the simulation shown in Fig. 5b. 
The distributions at t = 3.0 × 106Δt with 256 GPUs were obtained by periodically arranging the results at 
t = 3.0 × 106Δt in Fig. 5b

Fig. 9  Weak scaling test results of AMR-PF computation with multiple GPUs using the distributions shown in 
Fig. 8
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GPUs. We conclude that the developed method is a powerful scheme for simulating the 
growth of numerous dendrites.

Conclusions
We developed a simulation scheme to improve the computational efficiency and scale 
of PF simulations for binary alloy solidification. The scheme employed multiple-GPU 
parallel computation and AMR. In the parallel implementation of multiple GPUs, we 
utilized domain subdivision considering dynamic load balancing. We evaluated the 
performance of the developed scheme by simulating columnar dendrite growth dur-
ing the directional solidification of a binary alloy. The refinement conditions for AMR 
were evaluated through single-GPU computation, and it was confirmed that the com-
putational accuracy was the same as that obtained using a uniform mesh. Next, we 
confirmed reasonable performance of dynamic load balancing in the domain subdivi-
sion through the multiple-GPU parallel simulations of directional solidification with 
the MFA. Finally, we performed weak scaling tests to evaluate the parallel computa-
tion performance and confirmed that good parallel computation performance was 
obtained for 16–256 GPUs.

The developed scheme can significantly improve the efficiency of simulations under 
solidification conditions with a large solute diffusion length and/or large primary arm 
spacing. Furthermore, in the future, we will apply this scheme to solidification condi-
tions with melt convection and solid motion.
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