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1. Introduction
In [9] we proposed a parallel successive overrelaxation (SOR) method for the solution

of the fundamental symmetric linear complementarity problem
(1.1) Mz+¢g>0,220, 2(Mz+4+4¢)=0

where M is a kx k symmetric matrix and ¢ is a vector in the k-dimensional real space R*.
The significance of this problem arises to a great extent from the fact that the least 2-norm
solution of a linear program can be reduced to such a problem [6, 7, 8]. In order to achieve
convergence in the parallel SOR algorithm of [9], the relaxation factor w had to be reduced
to an interval considerably smaller than (0, 2), depending on the size of the off-diagonal
terms of the matrix M relative to its diagonal elements. This small w interval often led
to very small steps and slow convergence. In the present work we propose a gradient
projection-successive overrelaxation algorithm which overcomes the problem of a small
relaxation factor. We summarize this approach as follows. We consider the associated
quadratic minimization problem on the nonnegative orthant

. .1
zZ)= =2V
(1.2) min f(z) min 22A[z+qz

and note that the symmetric linear complementarity condition (1.1) is a necessary opti-
mality condition for (1.2). Our basic method consists of modifying the gradient of f(z)
by an SOR step so as to use the latest information when computing each component of
the gradient, relaxing the modified gradient by a factor w, projecting the relaxed modi-
fied gradient on the nonnegative orthant and finally taking a feasible step in the direction
of the projection which minimizes f(z). A key difference between the present approach
and that of [9] is that the projected point in [9] was a point that decreased the objective
function f(z), whereas in the present approach the projected point merely constitutes a
descent direction for f(z) and in fact may not be a point with a decreased f(z). Although
the direction generated by the SOR algorithm of [9] is also a descent direction, it is too
restrictive a direction which may impose an extremely small bound on the relaxation factor
w that may lead to a very slow algorithm when parallelized. By contrast when the present
algorithm is parallelized, the relaxation factor interval remains (0, 2) for the case when M
is positive semidefinite with a positive diagonal. This is an important case that includes

the least 2-norm linear programming problem. We outline the contents of the paper now.
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In Section 2 we begin with Theorem 2.1 which gives an optimality condition for an
SOR-relaxed projected gradient p(z) defined by (2.2) for a nonsymmetric linear comple-
mentarity problem. Theorem 2.2 shows that p(z) exists and is unique and continuous
under appropriate assumptions. The continuity of p(z) depends on a recently established
Lipschitz continuity result for linear complementarity problems with P -matrices [10]. In
Section 3 we describe a serial version of a gradient projection successive overrelaxation
(GP-SOR) algorithm for the solution of (1.1) and establish its convergence in Theorem
3.2. In Corollary 3.3 we show that when M is positive semidefinite the relaxation factor
interval remains (0, 2), the same as in classical SOR. for the solution of linear equations
[12]. In Section 4 we give a parallel version of our GP-SOR algorithm by dividing the
matrix M of (1.1) into r contiguous horizontal blocks and applying our GP-SOR algo-
rithm to the principal submatrix of each horizontal block simultaneously. This generates
a descent direction for the overall problem which can be used to generate the next iterate.
A key property of this approach given in Corollary 4.4 is that when applied to a positive
semidefinite M, the relaxation w for each subproblem can take any value in (0, 2). In
Section 5 of the paper we reduce the standard linear programming problem to a symmetric
linear complementarity problem via a least 2-norm solution [6] and solve it by the parallel

GP-SOR algorithm proposed in Section 4.

Computational experiments were performed on the CRYSTAL [1] multicomputer and
the Sequent Balance 21000 multiprocessor. Encouraging results were obtained on both
machines. The results show that for each problem size the number of machines that solve
the problem in least time increases with density (Figures 1 and 5). We also obtain a closely
fitting empirical formula (5.5) for the time-per-iteration on CRYSTAL for various densities
(Figure 2). These results again indicate that the number of processors giving the smallest
time per iteration increases with density. Efficiency for r processors was measured by the
ratio of (1/r)th the running time on one processor to the running time on r processors.
This gave a surprising efficiency of over 100% in certain instances, such as shown in Figure
4. This can be explained because even though the same computer program was used on 1
processor and r processors, the underlying algorithm was not identical in both instances.
When the program was revised so that the identical algorithm was used on 1 processor

and r processors, the efficiencies were all below 100%. This is explained in more detail in
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Section 5.
We briefly describe our notation now. For a vector z in the n-dimensional real space
R", z, will denote the vector in R™ with components (z4); = max {z;, 0}, i = 1,...,n.

The scalar product of two vectors z and y in R™ will be simply denoted by zy. For

n

1 < p< oo, the p-norm (leilp)l/p of a vector in R™ will be denoted by Haz“p For the
2-norm the subscript 2 Wizl—lbz%ae dropped. R} will denote the nonnegative orthant or the
set of points in R™ with nonnegative components, while R™*" will denote the set of all
m X n real matrices. For A € R™*", AT will denote the transpose, A; will denote the ith
row, A;; the element in row ¢ and column j, and for I C {1,...,m}, J C {1,...,n}, As
will denote the submatrix of A with rows A4;, ¢ € I, while A;y will denote the submatrix
of A with elements 4;j, 1 € I, j € J. Similarly for ¢ € R™ and I, C {1,...,n}, 27, will
denote z;, ¢ € I;. Theset {I1,Is,...,Ix} is said to be a consecutive partition of {1,...,n}
if it is a partition of {1,...,n} such that : < j for1 € Iy, j € Ij31 and £ =1,..., K — 1.
A matrix in RF** is said to be a P—matrix if it has positive principal minors. Here and
throughout the symbols := and =: denote definition of the term on the left and right

sides of each symbol respectively. For z € R and M € RF*F ”z”?w =zMz.



2. GP-SOR Optimality Conditions for the LCP

An important role in obtaining our GP-SOR algorithms will be played by a gradient
projection optimality condition that has been modified by an additional SOR term. We
motivate this optimality condition as follows. It is well known [5] that the LCP (1.1) is

equivalent to finding a z € R* such that
(2.1) z=(z —w(Mz+ q))+ for some w >0

When M is symmetric this condition can be considered as a “gradient projection” con-
dition, that is, the projection on Rfi of z perturbed by any negative multiple of Mz + ¢
is z itself. The equivalence between (2.1) and (1.1) is of course valid for any M € R**%
symmetric or not [5, Lemma 2.1]. Hence for the rest of this section we will not assume
that M is symmetric. We will be interested in perturbing the “gradient” Mz + ¢ to
Mz 4 q+ K(y — z) where K is some matrix in RF*¥ and y is some vector in R*. The
point of this perturbation is to enable us to replace the data in each computed component
of Mz + g by the “latest” information as must be done in an SOR iteration. We there-
fore wish to replace (2.1) by the following more general GP-SOR optimality condition.
For a point z € R™ define a “relaxed projected modified gradient” relative to the linear

complementarity problem (1.1) as any p(z) in R* such that
(2.2) p(z) = (z —wE(Mz + g+ K(p(z) —z)))+

where w is some positive number, E is a positive diagonal matrix in R*** and K is
some matrix in R¥**F . We note immediately that (2.2) is equivalent to the following linear

complementarity problem in p(z)
w(z) = (WE)™ + K)p(z) + (M — K) = (wE) ™)z +¢ 20
p(2) >0, p(z)w(z) =0

This equivalence is a direct consequence of the following trivially verifiable equivalence for

(2.3)

a pair of real numbers a and b
(2.4) a=by <=>a~0>0,a>0,a(a—0)=0

We also note that (2.3) can also be obtained as a splitting ((wE)™'+K)+(M—K—(wE)™)

of the matrix M in the sense of [3]. However our algorithmic approach is fundamentally
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different from both that of [3] and [5] where p(z) is taken as the next iterate to succeed
z, whereas in our approach p(z) — z is merely taken as a direction along which a stepsize
procedure is performed. This is a basic difference which allows us to have a much better
relaxation factor in the parallel version of the algorithm. We also note that (2.3) need
not be solvable in general for p(z). We shall however impose sufficient conditions (such
as (wE)™' + K is positive definite) to ensure that it is. We begin with the following

characterization of the linear complementarity problem (1.1).

2.1 Theorem (GP-SOR optimality condition) Let M, K, E € R*** ¢ ¢ R¥ w >0,
and let E be a positive diagonal matrix.
(a) If z solves the LCP (1.1) and (wFE)™! + K is positive definite then p(z) = z is the

unique solution of (2.2).

(b) If p(2) solves (2.2) and p(z) = z then z solves the LCP (1.1).

Proof (a) Let z solve the LCP (1.1) and let (wE)™! + K be positive definite. Then
(2.3) or equivalently (2.2) has a unique solution p(z) [11]. Since z solves the LCP (1.1),
it follows that p(z) = z solves (2.3) or equivalently (2.2). Hence z is the unique solution
of (2.2).

(b) If p(z) solves (2.2) or equivalently (2.3) and p(z) = z, it follows from (2.3) that
z solves that the LCP (1.1). |}

We now give sufficient conditions that will ensure that p(z) of (2.2) exists and is a

continuous function of z. This is an interesting result but is not needed in the convergence

proof of the GP-SOR algorithms.

2.2 Theorem (Uniqueness and continuity of the SOR projected gradient p(z)). Let
w > 0, and let E be a positive diagonal matrix and let K be a strictly lower or upper
triangular matrix, or let (wWE)™! + K be a P—matrix. Then for z in R* there exists a

unique continuous function p(z) satisfying (2.2).

Proof For the case when I is strictly lower (upper) triangular, p(z) can be computed
componentwise p;(z), j = 1,..,k(j = k,...,1) as a unique piecewise linear, and hence
continuous, function of z. For the case when (wE)™! + K is a P—matrix, p(z) exists and

is unique [11], and by Theorem 3.3 [10] is Lipschitz continuous and hence continuous in

z. 1



Note that the cases of K = 0 and (wE)~! + K positive definite are included as special

cases of the above theorem.



3. Serial GP-SOR Algorithm for the LCP

From this point onward we specialize to the case of symmetric M. Hence the LCP
(1.1) can be considered as a necessary optimality condition for the problem (1.2). With
this connection in mind we specify our algorithm.

3.1 GP-SOR Algorithm for LCP Let 2% >0

Direction Generation Define the direction

(3.1) di: = p(z’) — 2
such that

(3.2) p(z') = (z’ — wE? (.I\/[zi +q+ K (p(z*) - z’))>

-+

where {E'}, {(E*)™'}{K'} are bounded sequences of matrices in RF¥** with each E’

being a positive diagonal matrix, w > 0 and such that for some v > 0

(3.3) 2((WEH)™ ' + K¥)z > 7||z| 2 Vi, Yz € R*

Stop if di = 0, else continue.

Stepsize Generation zT! = 27 4+ \id!

where
(3.4) f('+ M) = m}\in{f(zi + AdY)|2* + Ad* > 0}

Note that because f is quadratic (3.4) is essentially equivalent to solving a linear
equation in one variable. Remark also that if E* =1, K* =0, M =1, and w € (0, 2/
p(M)), where p(M) is the spectral radius of M, then the above algorithm becomes the
classical Levitin-Poljak gradient projection algorithm [2], which for our method (3.1) can
be considered a projected Jacobi method [5]. This method in general is not as effective
as a projected SOR method. If on the other hand we let \* = 1 and w, E* and K*
satisfy the assumptions of Algorithm 2.1 [5] then we have a projected SOR scheme which
when parallelized [9] may lead to a very small relaxation factor w that may cause slow

convergence. The parallel version of Algorithm 3.1 on the other hand which we will describe
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in the next section, will have w € (0, 2) when M is positive semidefinite with a positive
diagnonal. This is the key difference from [9] which critically improves the convergence of

the parallel scheme.

We state now and prove a fundamental convergence result for Algorithm 3.1 which

will serve as a vehicle for our parallel scheme.

3.2 Theorem (Serial GP-SOR convergence) Let M be symmetric. Either the sequence
{#%} generated by Algorithm 3.1 terminates at a solution of the LCP (1.1) or each accu-

mulation point of {2*} solves the LCP (1.1).

Proof The sequence {z!} terminates only if for some i, p(z!) = 2%, in which case by
Theorem 2.1, z¢ solves the LCP (1.1). Suppose now {z'} does not terminate and that z

is an accumulation point of {z*}. Let p’:= p(2*). We then have for i = 0,1,... that
=V f(Z)d == v {0 - 2)
= [¢' — WEH(MZ + g+ Ki(p — 2Y)) — pi](wE) ™ [pf — #i]
17 = iy
> Hp’ - Zi”?wEi)~1+I(i (By (3.2) and Lemma 2.2 [5])
>qllp - #°  (By (3.3)).
Hence

(3.5) — v f(z)d =t =" 20, i=0,1,...

Now let {z%} be a subsequence converging to the accumulation point z. We claim that

{p'i} is bounded. For if it were not bounded it would follow from (3.2) that

. P(zij) . ( i i p(zij) )
1 e 1 | —whY Y et
oo I~ e\ T oG]

and hence for some accumulation point (p, E, K) we would have
(3.6) p=(-wEKp)y, p#0.

This however is equivalent by (2.4) to 0 # p > 0, p((wE) 1+ K)p=0, ((wE)"1+K)p >0
which contradicts (3.3). Consequently without loss of generality, let {z%, pi, B Kt} —

(%, p, E, K) and hence {d%} — d = p— z. Now, since p' > 0 it follows that
29 AdY = (1= N)z% +Ap' >0 for 0< AL
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Consequently
f(29 4+ Ad) > f(257) > f(Z4+)  for 0< AL
Letting j — oo we have that
fZ4+Xd)> f(2) for 0<A<1
Hence 7 f(2)d > 0. Combining this with (3.5) gives

0> —v f(2)d= jlixgo - vf(zij )dif > lim 'prij — 2t “2 = 7”]3_ Z||2 >0
. J—Foo

But since
o= (2% — WEY (MY 4+ Kh(ph — g%
i = (s — B (5 4 g4 G — o))

it follows that

i=p=(z—wEMz+q+K(p—%2

Z=p (z wE(Mz+q+ K(p z)))+

= (2-wB(Mz+9q)),

By the positivity of wFE and (2.4) we have that Z solves the LCP (1.1). 1
3.3 Corollary (GP-SOR special cases) Condition (3.3) of Algorithm 3.1 holds under

either of the following two assumptions:

(i) Ki=LorU, EE=FEand 0<w< mln 9/( i Z ‘M]g|>

j=1
K#J
(ii) K*=1L or U, E' = D™! > 0, M is positive semidefinite and 0 < w < 2

where
(3.7) L+D+U:.= M,

L is the strictly lower triangular part of M, U is the strictly upper triangular part of M
and D is the diagonal of M.

Proof
(i) z(WEH)™' + K¥)z = 2(wE)™! + &)z > 'y”zH?' where the last inequality follows
from the strict diagonal dominance of (wE)™! + _L_-;_Q and positivity of E.
(i) z(WE) '+ K¥)z=z(w D+ &)z = La(2w™ - 1)D+ M)z > fszHZ where the
last inequalilty follows from the positive semidefiniteness of M, the positivity of D

and 0<w<?2. 1



4. Parallel GP-SOR Algorithm for the LCP

By appropriately choosing the matrix K* of the GP-SOR Algorithm 3.1, the algorithm
can be split into a parallel algorithm that can be run simultaneously on a number of
processors. To see this consider the principal step (3.2) of the GP-SOR Algorithm 3.1.
In this step K*® can be considered as a substitution operator which replaces the old data
z' by the new data p(z’). Thus in the serial GP-SOR procedure K¢ = L where L is
the strictly lower triangular part of the whole matrix M. In this case p;(z) replaces z;
during the computation of ps(z?) for all £ > j. This algorithm is sequential and cannot
be split among simultaneous processors. If however we choose K to be a block diagonal
matrix consisting of the strictly lower triangular part of the principal submatrix of each
horizonal partition of the matrix M, then Algorithm 3.1 can be performed simultaneously
on a number of processors equal to the number of submatrices in the horizontal partition
of M. Such a choice for K* was first proposed in [9] for a different SOR algorithm which
did not involve a stepsize generation procedure. This is a key difference. In the present
parallel algorithm the relaxation factor w depends only on the local matrices E* and K* of
each block but not on the remaining global parts of the matrix M. This can be easily seen
from the main condition (3.3) of Algorithm 3.1 in which only E! and K appear but not
M . As we shall see in Theorem 4.3 below, this allows w to range over the interval (0, 2)
when M is positive semidefinite. In contrast in Algorithm 3.1 of [9] w was restricted to a
considerably smaller interval which depended critically on the coupling terms of the matrix
M . This was a consequence of the appearance of M in the key convergence condition [9,
equation (5)] in addition to E¢ and I*. To specify our parallel algorithm, partition the

matrix M into r contiguous horizontal blocks as follows:

M,
My,

(4.1) M =:
M

where the blocks My; correspond to the variables z;;, and {Iy,Is,...,I;} is a consecutive

>

partition of {1,2,...,k}. Now partition Mj, as follows
(4.2) M[J. == []\/[[j[j ]WIJ_L,]

where I; is the complement of I; in {1,2,...,k}. Thus My, ; is a principal square subma-

trix of M with elements M,;, s € I; and t € I;. We further partition M 1;1; into the sum
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of its strictly lower triangular part Ly, , its diagonal part Dy,;, and its strictly upper

triangular part Uy, 1, as follows
(4'3) ]VIIJ'IJ' = ijfj "I"ijlj +UIJ'IJ'

Now let K of Algorithm 2.1 be defined by a block diagonal matrix as follows

LI1I1

. Lpr
(4.4) K'=K:= o

L1

where each Ly;y; is the strictly lower triangular part of M, 1; - Algorithm 3.1 can now

be performed for each row block I;, j = 1,...,r, simultaneously, that is in parallel. More

specifically we have the following.

4.1 Parallel GP-SOR Algorithm for the LCP Let {I3,I,...,I,} be a consecutive
partition of {1,2,...k}, let E be a positive diagonal matrix in R*** and let z° > 0. For

t=0,1,2,..., do the following:

Direction Generation Define the direction

le(zz) - 2;1
(4.5) d': = p(2t) — 2t =

pr.(2%) — zj,
such that p(z*) satisfies
(4.6) pr; (%) = (Z}J ~wEr, 1, (Mr; 2 + q1; + L1, (pr; (z*) — zj-j))>+, j=1,.,r
where w > 0 is chosen such that for some v > 0
- 2 .
(4:.7) 2J; ((w,E]jIj) 1y L[j[j)Z]j > ’)/”Z]j ” , VZI]., 3=1,..,r

Stop if d* = 0, else continue.

Stepsize Generation 2! = 2zt + A\

where
(4.8) f(24 + \idh) = m}\in{f(zi + AdY)|zt + Ad* > 0}
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4.2 Remark The principal part of this algorithm consists of the direction generation part
(4.6), which can be performed in parallel on r processors. Once this is done the stepsize
generation (4.8) is performed and the new value zi*! is shared between the r processors.

By applying Theorem 3.2 to Algorithm 4.1 with the identifications E* = E and

K* = K as defined by (4.4) we have the following convergence result.

4.3 Theorem (Convergence of the Parallel GP-SOR Algorithm) Either the sequence
{z'} generated by the Parallel GP-SOR Algorithm 4.1 terminates at a solution of the LCP
(1.1) or each of its accumulation points solves the LCP (1.1).

Two important special cases of the convergence Algorithm 4.1 are worth noting ex-

plicitly and are given in the following.

4.4 Corollary (Parallel GP-SOR special cases) Condition 4.7 of Algorithm 4.1 holds

under either of the following two assumptions:

2
(4.9) 0<w< min min ——e—s——
Jj=1,...,r ZEIJ E“Z ]Mzel
Lel;
%
(4.10) 0<w<2 E=D"' and M is positive semidefinite

Proof If (4.9) holds then
Z1; ((""E—’j.fj)_l + LIij>ZIj = 2I; ((“’Efj-’j)_l + (Lg;1; + Ufjfj)/z)zfi 2 'YHZIJ' “2

where the last inequality follows from the strict diagonal dominance of (wEr, )™ + (L, 1; +
Uy, 1;)/2 induced by (4.9). Hence (4.9) implies (4.7) and Theorem 4.3 applies.
When (4.10) holds we have that

1
o, (WELn) ™ + Lip )2, = 5“1 (2w™ =1)Dy;1; + Myy1;)21; 2 ’YHZIJ' “2

where the last inequality follows from the positive semidefiniteness of My, r; (which is a
consequence of the positive semidefiniteness of M ), the positivity of Dr;r, and 0 < w < 2.

Hence (4.10) implies (4.7) and again Theorem 4.3 applies. 1
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5. Parallel Solution of Linear Programs
As in previous works [6, 7, 8, 9], the linear programming problem can be converted
to a symmetric linear complementarity problem by solving for the least 2-norm solution of

the linear program. More specifically if we consider the linear program
(5.1) min cx s.t. Az >b, >0

where ¢ € R*, b € R™ and A € R™*™, then its unique least 2-norm solution % is a

solution of the quadratic program

(5.2) min cz + ga:a: st. Az >0, 22>0

4

for any e € (0, &] for some & > 0 [6]. The quadratic dual [4] of (5.2) leads to the following
quadratic minimization on the nonnegative orthant R7+"

(5.3) min 6(u, v):= min L

i S §HATu v - CH; — egbu

Any solution (u(e), v(e)) of (5.3) with & € (0, £] leads to the unique least 2-norm solution
Z of (5.1) through the relationship

(5.4) %= é(.ATu(s) +u(e) - c), Ve € (0, €]

Problem (5.3) is exactly of the form (1.2) and hence can be solved by the parallel GP-SOR
procedures of the previous section.

We describe now some of our numerical experiments on the Parallel GP-SOR Algo-
rithm 4.1 for the solution of the linear program (5.1) by converting it to the quadratic
minimization problem (5.3) for a sufficiently small but fixed ¢. The linear programs were
randomly generated with various densities d of the constraint matrix A, with the values
of the nonzero elements of the matrix distributed uniformly in the interval [-100, 100]. A
density coefficient d € [0, 1] indicates that on the average dn of the elements of each row
of A are nonzero and are randomly distributed throughout the row. Thus a d close to
zero means lots of zeros in A while a d close to 1 means very few zeros in A. The vectors
¢ and b were chosen so that the linear program (5.1) had a pre-specified solution which

was not necessarily unique. The stopping criterion for Algorithm 4.1 was that the norm of
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the difference between successive iterates was less than a certain tolerance, usually 107°.
With a fixed € = 1.5 and an w € [1.2, 1.8] the parallel algorithm led to a solution of the
linear program z which was primal feasible to within a 1075 relative tolerance, that is
”(A:v - b)+”oo/”(~b)+”00 < 107% and an objective function value accurate to 3 signifi-
cant places. Since the main purpose of the numerical experiments was comparison of the
effectiveness of the parallel algorithm with different number of machines and densities, the

issue of having very accurate solutions was not of great importance.

Algorithm 4.1 was implemented both on the CRYSTAL multicomputer [1] and the
Sequent Balance 21000. CRYSTAL consists of 20 Vax 11/750’s each with 2 megabytes of
memory, connected by an 80 megabit/second token ring. The Sequent Balance 21000 is a
multiprocessor that incorporates eight NS32032 processors running at 10MHz, each with
a floating point unit, memory management and an 8-kbyte cache sharing a global memory
via a 32-bit wide pipelined bus. The machine has 8-Mbytes of physical memory. The
operating system DYNIX, is a version of Berkeley 4.2 bsd unix. The computational results
for the CRYSTAL machine are depicted in Figures 1 to 4, while those for the Balance

21000 are shown in Figures 5 and 6.

Figure 1 shows the total computing time for four different densities d: 5, 10, 20 and 40
percent for a linear program with 100 constraints and 400 variables. For the low density of
5% the use of parallel computing is not beneficial because the relatively slow communication
time between machines on the loosely coupled CRYSTAL multicomputer dominates the
individual computation time on each machine. However for a density bigger than 5% we
observe that as we increase the number of parallel machines, the total computing time
decreases to a minimum for that specific density. We also note that the optimum number
of machines that solves the problem in minimum time increases with density. Thus for d
= 5, 10, 20 and 40 percent, the optimal number of machines is 1, 2, 3 and 4 respectively.
Figure 2 shows the effect of parallelism on the time per iteration for Algorithm 4.2. The
solid lines depict computationally observed times per iteration for each of the four different
cases. We note that the number of machines that gives the least time per iteration again
increases with density as expected, because the fraction of communication time relative to
computing time per iteration decreases with increasing density. The dashed lines in Figure

2 show predicted time per iteration as a function of number of machines and is based on
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the following formula derived from a simple operation count

(5.5) T [a('Tm 5+ 4dm

ot (4 )|+ [ - 1)]
where 7 is the number of machines employed. The first square bracket represents comput-
ing time per iteration for each machine including the line search, while the second square
bracket represents the communication time between r machines. The constants « and B
are determined by an a posteriori least square fit to the observed time per iteration. The
closeness of the fit indicates that formula (5.5) is a reasonable approximation for time per
iteration. Figure 3 shows total time and time per iteration for the case of 1000 constraints
and 4000 variables with a density of 1%. Three machines is the optimal number which
minimizes total time, while 4 machines minimize the time per iteration. This shows that
for larger problems parallelism is useful in cutting computing time even for very sparse
problems such as this one.

We now make some observations regarding the efficiency E(r) of our algorithm which

we define as follows:

(5.6) E(r):=

where T'(r) is the total time for solving a given problem with r parallel machines. If we let
7 denote the optimal number of machines which solve the problem in least total time we
observe from Figure 1 that E(F) ranges between 60% and 44% for densities in the 10% to
40% range. However from Figure 3 we observe that E(3)=137% for the problem with 1000
constraints, 4000 variables and a density of 1%. This is a very encouraging result which
indicates that for large sparse problems efficiency may be quite high. However we need to
give an explanation why the efficiency exceeds 100%. The explanation is that our Parallel
GP-SOR 4.1 changes with the number of machines used because the matrix K defined by
(4.4) changes with the number of blocks into which M is divided. Thus strictly speaking
we are not comparing the exact same algorithm when we evaluate the ratio T(1) /rT(r) of
(5.6). Nevertheless the expression is a valid measure of efficiency in the sense of comparing
the anticipated reduced time of T'(1)/r to the observed time T(r) for an algorithm with a
variable K* that depends on the partition of M. If the matrix K is held fixed for i = 1

and : = r then we obtain efficiencies for exactly the same algorithm. These efficiencies are
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shown in Figure 4, where an r-block algorithm on one machine is defined as the GP-SOR
Algorithm 4.1 with the matrix K* given by (4.4). We then have precisely the identical
algorithm running on one machine and r machines and the efficiency will indeed be less
than 100%. This efficiency is denoted by E(1,r) and is defined by

(5.7) E(l,r):= %7-‘)—)-

where T'(1,7) is the time to solve the problem on one machine using the r-block algorithm.

Similar experiments were also performed on the much more closely coupled Balance
21000 multiprocessor. The key distinguishing features of these experiments are that we can
handle larger problems (up to 10,000 constraints and 40,000 variables) and the efficiencies
are higher on the Balance 21000 then those obtained on CRYSTAL. The Balance 21000

results are shown in Figures 5 and 6.
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Fig. 1. CRYSTAL: Total time for parallel GP-SOR to solve linear program versus number of

machines for various densities d. (Average of 5 randomly generated cases with 100

constraints and 400 variables.)
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Fig. 2. CRYSTAL: Time per iteration for parallel GP-SOR to solve linear program versus
number of machines for various densities d. Solid lines denote observed times while
dashed lines represent a fit by formula (5.5). (Average of 5 randomly generated cases

with 100 constraints and 400 variables.)
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Fig. 3. CRYSTAL: Total time and time per iteration for parallel GP-SOR to solve a linear
program versus number of machines with 1% density, 1000 constraints and 4000 vari-

ables. Solid line denotes observed time while dashed line represents a fit by Formula

(5.5).
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T(1,r) T(r) E(r) E(1,r)
No. of Time Sec. Time Sec.
T(1) T(1,r)
B -Block Alg. -Bl .
locks r-Block Alg r-Block Alg () T ()
r Single Processor r Processors
1 5976 5976 — —_—
2 2607 1772 169% 74%
3 2705 1459 137% 62%
4 4013 2071 72% 48%
5 3898 1964 61% 40%

Fig. 4. CRYSTAL: Efficiency table for parallel GP-SOR for r machines versus 1 machine
for linear program with 1% density, 1000 constraints and 4000 variables.
E(r): Efficiency comparing single-block single-machine algorithm with r-block
r-machine algorithm.
E(1,r): Efficiency comparing r-block single-machine algorithm with r-block

r-machine algorithm.
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Fig. 5. Balance 21000: Total time for parallel GP-SOR to solve linear program versus number

of processors for various densities d. (Average of 5 randomly generated cases with

1000 constraints and 4000 variables.)
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Fig. 6. Balance 21000: Total time for parallel GP-SOR to solve linear program versus number
of processors (d = density, m = number of constraints, n = number of variables),

for the largest problems solved on the Balance 21000.
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