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Abstract

In this paper, we propose parallel graph-grammar-based algorithm for the longest-edge refinements and the pollution simu-

lations in Lesser Poland area. We introduce graph-grammar productions for Rivara’s longest-edged algorithm for the local 

refinement of unstructured triangular meshes. We utilize the hyper-graph to represent the computational mesh and the 

graph-grammar productions to express the longest-edge mesh refinement algorithm. The parallelism in the original Rivara’s 

longest edge refinement algorithm is obtained by processing different longest edge refinement paths in different three ads. 

Our graph-grammar-based algorithm allows for additional parallelization within a single longest-edge refinement path. The 

graph-grammar-based algorithm automatically guarantees the validity and conformity of the generated mesh; it prevents 

the generation of duplicated nodes and edges, elongated elements with Jacobians converging to zero, and removes all the 

hanging nodes automatically from the mesh. We test the algorithm on generating a surface mesh based on a topographic data 

of Lesser Poland area. The graph-grammar productions also generate the layers of prismatic three-dimensional elements on 

top of the triangular mesh, and they break each prismatic element into three tetrahedral elements. Next, we propose graph-

grammar productions generating element matrices and right-hand-side vectors for each tetrahedral element. We utilize the 

Streamline Upwind Petrov–Galerkin (SUPG) stabilization for the pollution propagation simulations in Lesser Poland area. 

We use the advection–diffusion-reaction model, the Crank–Nicolson time integration scheme, and the graph-grammar-based 

interface to the GMRES solver.

Keywords Unstructured grids · Longest edge refinement · Graph-grammar · Pollution simulations · Advection–diffusion 

equation

1 Introduction

Air pollution is receiving a lot of interest nowadays. It is 

visible, especially in Lesser Poland area, as this is one of the 

most polluted cities in Europe [1]. Air pollution depends on 

traffic, climate, heating of building in the winter, the city’s 

architecture, etc. The air quality can vary significantly over 

a distance of even a few hundred meters. Air quality simu-

lation is a multidisciplinary endeavor. It applies numerical 

methods for simulations of different meteorological and 

chemical models [25]. This paper proposes a parallel graph-

grammar-based system for simulation and prediction of air 

pollution over prescribed terrain data.

Most computer-aided simulations start with mesh genera-

tion of the domain with a finite set of elements. For irregular 

geometries, the triangular elements in two dimensions or 
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tetrahedral elements in three dimensions are probably the 

most used finite elements in engineering computations [3]. 

The construction of the computational mesh usually starts 

from an initial mesh. It refines the mesh iteratively towards 

a final mesh, where we can solve our engineering problem 

with the required accuracy.

The process of refinement can generate so-called hang-

ing nodes [4, 5]. In two-dimensions, they represent an edge 

with one triangular element subdivided, and on the other 

side, the large unbroken element. These nodes are difficult to 

handle since we have shape functions spread over the finite 

elements. In the hanging node case, we have to deal with 

the matching of approximation of “small” shape functions 

spread over the two broken elements with the approxima-

tion of “large” shape functions spread over the large unbro-

ken element. In three-dimensions, the situation gets even 

more complicated since we may have an edge adjacent to 

two “small” broken tetrahedra and adjacent to many (even 

hundreds) of unbroken “big” elements.

We can eliminate a hanging node of a triangular element 

by breaking the element and connecting the hanging node 

with the opposite node. We must perform this algorithm in 

a smart way since we do not want to end up with elongated 

elements, where the Jacobians go to zero. One interesting 

example of such an algorithm, which is considered a refer-

ence for two-dimensional grids, is the Rivara longest-edge 

refinement algorithm [20, 31, 32].

In this paper, we express the two-dimensional Rivara 

algorithm using graph-grammar productions, we extend it 

to model the generation of the three-dimensional tetrahe-

dral meshes. We also propose graph-grammar productions 

expressing the stabilized finite element method for the non-

stationary advection–diffusion-reaction simulations. We 

incorporate the Crank–Nicolson time integration scheme 

and interface with GMRES solver. We utilize this parallel 

graph-grammar-based system for the pollution simulations 

in Lesser Poland area.

The authors [7] proposed the first attempt to model mesh 

transformations by applying the graph-grammar concept for 

the regular triangular two-dimensional meshes with the h 

adaptation. The authors used quasi-context sensitive graph 

grammar. This approach, however, generated hanging nodes, 

with all the difficulties related to managing these nodes.

Another attempt utilized the Composite Programmable 

graph grammars (CP-graph grammar) introduced origi-

nally by [11–13] as a tool for a formal description of vari-

ous design processes. The authors [10, 27–29] applied the 

CP-graph grammars to model two- and three-dimensional 

adaptive grids with hanging nodes.

In this paper, we use the concept of a hypergraph, defined 

in Sect. 2. The hypergraphs and their grammars have been 

initially introduced by [15, 16] for applications in com-

puter graphics. There are special algorithms developed and 

optimized for the hypergraphs [19, 22, 26]. This paper uti-

lizes the hypergraphs for modeling mesh refinement algo-

rithm and interfacing with the GMRES iterative solver. We 

have implemented our graph-grammar-based system in 

GALOIS [2, 8, 14, 24, 30] framework, allowing for concur-

rent graph processing.

We use the topographical database Shuttle Radar Topog-

raphy Mission [6] to generate in an adaptive way the two-

dimensional triangular mesh representing Lesser Poland 

area. We utilize the longest-edge refinements, and we 

remove the hanging nodes. We extend the topographic mesh 

to a three-dimensional tetrahedral mesh, representing the air 

above the terrain.

The resulting three-dimensional mesh is subject to the 

computer simulation with the advection–diffusion-reaction 

time-dependent solver modeling the air pollution propaga-

tion. We employ the Streamline Upwind Petrov–Galerkin 

stabilization [21] of the advection–diffusion-reaction prob-

lem. We use the graph-grammar productions, generating 

element matrices and right-hand-side vectors for each tet-

rahedral element. We incorporate the Crank–Nicolson time 

integration scheme and interface with GMRES iterative 

solver.

The motivations for developing the graph-grammar-based 

simulation system are the following. We will compare the 

computational costs of the classical longest-edge refinement 

algorithm [20], to our graph-grammar-based algorithm on 

a model example. We will count the number of basic opera-

tions, such as checking the status of a single triangle and 

breaking a single triangle. While it is impossible to derive 

a formula for the computational cost for a general mesh, 

we will compare the algorithms on a representative model 

example. Classical Rivara’s algorithm allows for paralleli-

zation by assigning each longest edge path to a single core. 

In our graph-grammar-based algorithm, we move forward, 

and we allow for processing a single longest edge path with 

multiple cores.

We also claim that developing a graph-grammar-based 

system has some potential benefit for parallelization of 

the computations. The graph grammar productions are 

basic undividable tasks that can be executed concurrently. 

The graph-grammar model allows for implementation in 

the graph processing system like, e.g., GALOIS environ-

ment [30]. The parallelization is obtained for free since the 

GALOIS system automatically manages concurrent process-

ing of graph-grammar productions. In this paper, we imple-

mented a graph-grammar-based model of mesh generation 

and generation of elemental matrices. In future work, we 

plan to develop the graph-grammar model of the iterative 

solver. We will perform matrix-vector multiplications ele-

ment wise, multiplying the elemental matrices by local por-

tions of the right-hand side, without assembling the matrices 

but assembling the resulting vector.
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The structure of the paper is the following. We start 

from the formal introduction of the hypergraph and graph 

grammar in Sect. 2. Next, in Sect. 3, the two-dimensional 

mesh refinement algorithm, initially proposed by Rivara, is 

described. In Sect. 4, we introduce the graph grammar model 

expressing the Rivara mesh refinement algorithm. Section 5 

is devoted to comparing the graph-grammar-based algorithm 

with Rivara’s longest edge refinement algorithm, includ-

ing the discussion on parallelization. Section 6 presents 

the graph-grammar-based productions interfacing with the 

GMRES solver, using the Crank–Nicolson time integration 

scheme. Finally, Sect. 7 is devoted to the numerical results 

of the simulation of pollution in Lesser Poland area. We 

conclude the paper with Sect. 8.

2  Hypergraphs and graph grammar

In this section, the concept of hypergraph and graph gram-

mar are summarized, which are later used to model the 

refinements of the two-dimensional unstructured mesh.

Definition 1 An undirected attributed labeled hypergraph 

over label alphabet C and attribute set A is defined as a sys-

tem G = (V , HE, t, l, at, val) , where:

– V is a finite set of nodes,

– HE is a finite set of hyperedges,

– t ∶ HE → V
∗ is a mapping assigning sequences of target 

nodes to hyperedges,

– l ∶ V ∪ HE → C is a node and hyperedge labeling func-

tion,

– at ∶ V ∪ HE → 2
A is a node and hyperedge attributing 

function, where 2A is a power set of A.

– val ∶ (V ∪ HE) × A → D is a function assigning values of 

attributes of nodes and hyperedges, where D =

⋃

a∈A
D

a
 

where D
a
 is a set of admissible values of attribute a.

Definition 2 A hypergraph G2 = (V2, HE2, t, l, at, val1) 

over C  and A  is a subgraph of a hypergraph 

G1 = (V1, HE1, t, l, at, val2) over C and A, (i.e., G
2
⊆ G

1
 ) if 

V
2
⊆ V

1
 and E

2
⊆ E

1
.

Figure 1 presents an exemplary hypergraph H
1
 and its 

subgraph H
2
.

Definition 3 A production suitable hypergraph of type k is 

a system H = (G, Ext) , where:

– G = (V , HE, t, l, at, val) is a hypergraph over C and A,

– Ext is a sequence of external nodes of V, with |Ext| = k , 

where ( Ext = (Ext1, Ext2,… , Ext
k
)).

Remark 1 Let G
2
 be a subgraph of G

1
 . If we need G

2
 to 

be a production suitable hypergraph H2 = (G2, Ext2) 

then we need to define Ext
2
 in the following way. Let 

G3 = (V3, HE3, t, l, at, val3) where HE
3
= HE

1
− HE

2
 and 

V
3
 are the nodes in V

1
 that are connected to HE

3
 . Then, the 

nodes in Ext
2
 are V

3
∩ V

2
 ; that is, the nodes that connect H

2
 

and H
3
 . See Fig. 2.

Definition 4 A hypergraph production is a pair p = (L, R) , 

where both L and R are production suitable hypergraphs of 

the same type k (both having the same number of external 

nodes k).

Two graphs are isomorphic, if both have the same number 

of nodes and edges, the corresponding nodes of both graphs 

have the same labels and attributes, and the corresponding 

Fig. 1  Hypergraph G
1
 (top) and hypergraph G

2
 (bottom). Notice that 

G
2
 is a subgraph of G

1
 (grayed out)
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edges of both graphs have the same labels, attributes and 

sequences of nodes belonging to them.

Definition 5 Graph G is isomorphic up to attribute val-

ues with graph G′ iff there exist bijections f ∶ V → V � and 

g ∶ EH → EH� such that

– 
(

l(v) = l�(f (v))
)

 ∀v ∈ V ,

– 
(

l(e) = l�(g(e))
)

 ∀e ∈ EH ,

– 
(

at(v) = at�(f (v))
)

 ∀v ∈ V  ,

– 
(

at(e) = at�(g(e))
)

 ∀e ∈ EH ,

– (v1, v2,… , v
k
) = t(e) iff (f (v1), f (v2),… , f (vk)) = t�(g(e)) 

∀e ∈ E , ∀v1 ∈ V , v2 ∈ V ,… , v
k
∈ V .

The application of the graph-grammar production 

p = (L, R) , where L is isomorphic with the hypergraph 

H2 = (G2, Ext2) and R is isomorphic with the hypergraph 

H4 = (G4, Ext4) to the hypergraph G
1
 consists in removing 

the production suitable hypergraph H
2
 from G

1
 , replacing it 

by the production suitable hypergraph H
4
 , and connecting 

external nodes of H
4
 with the hyperedges of the hypergraph 

G
1
∖G

2
 in such a way that each hyperedge which connected 

the node v of G
1
∖G

2
 with the external node Ext

2
i

 of H
2
 before 

application of the production, where i = 1,… , k , now con-

nects node v of G
1
∖G

2
 with the external node Ext

4
i

 of H
4
 . As 

the result, the graph G
1
 is transformed into G

5
 , where the set 

of nodes is equal to V
1
�V

2
∪ V

4
 and the set of edges is equal 

to EH
1
�EH

2
∪ EH

4
 . See Figs. 3, 4.

The definition of graph grammar production can be 

extended by adding a condition over the labels and values 

of the hypergraphs’ attributes, named the applicability predi-

cate, which determines whether a hypergraph production 

can be applied.

Definition 6 A hypergraph production with applicability 

predicate is a triple p = (L, R, r) , where both L and R are 

Fig. 2  Production suitable hypergraph H
2
 (top) and hypergraph G

3
 

(bottom). Notice that the external nodes of H
2
 ( V

1
 , V

2
 , and V

3
 ) are the 

connections with G
3

Fig. 3  Production p = (H2, H4) where the production suitable hyper-

graph H
2
 (top) is substituted by the H

4
 (bottom)
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production suitable hypergraphs of the same type and r is 

applicability predicate defined as: r ∶ F → {TRUE, FALSE} , 

where F  is a set of logical expressions defined over labels 

and values of attributes of the hypergraphs.

A production with applicability predicate can be applied 

to a graph only in such a case in which the applicability 

predicate is fulfilled.

Definition 7 A hypergraph grammar is a system 

GG = (P, G
S
) , where:

– P is a finite set of hypergraph productions of the form 

p = (L, R, r).

– G
S
 is an initial hypergraph.

3  Longest-edge re�nement algorithm

In this section, we are giving a brief description of the 

longest-edge algorithm. The longest-edge algorithm was 

first introduced by Rivara in 1984 [32] as the generalized 

bisection of simplices; be a set q = {a1, a2,… , a
n+1} of 

independent points in ℝn , Rivara defines the diameter of 

the simplex as �(q) = max �(⟨ai, aj⟩)∀i, j ∈ [1, n + 1] where 

�(⟨ai, aj⟩) = ‖ai − aj‖2

Therefore, there exist two points a
k
, a

m
 such that 

�(q) = �(⟨ak, am⟩) . Then, the generalized bisection of the 

simplex q consists in adding a new point a = (a
k
+ a

m
)∕2 , 

and splitting the simplex q in two new simplices qk and 

q
m

 such that

Once the theoretical framework of the general bisection is 

laid out, Rivara develops a practical algorithm to ensure the 

conformity of the mesh: the Longest-Edge Propagation Path 

( LEPP ) [20]. The main idea is to bisect an edge only when 

it is the longest-edge of all its adjacent elements (this edge 

is known as the terminal edge). To this end, when one tri-

angle �
0
 is marked to be refined, we need to traverse all the 

adjacent elements through its longest edge until we find a 

terminal edge. All the traversal elements are known as Long-

est-Edge Propagation Path, and they constitute the set LEPP

(�
0
 ). The algorithm bisects the last two elements of the set 

LEPP(�
0
 ) and reconstructs it again until LEPP(�

0
 ) is empty.

In 2009, Rivara published a review of the longest-edge 

bisection method [17] where she describes the man prop-

erties of the method:

– The iterative and arbitrary use of this method produces 

triangles whose smallest interior angles are always 

greater than or equal to half the initial mesh’s smallest 

internal angle. Furthermore, there exists a similarity 

between generated triangles. This property proves the 

non-degeneracy of the algorithm.

– Longest-edge bisection always terminates in a finite 

number of steps.

– The relationship between the two adjacent triangles’ 

diameter is positive and greater than a constant (K) 

that depends on the initial triangulation. This property 

ensures the smoothness (no abrupt change of size) of 

the new mesh.

– The global iterative application of the method in any 

triangulation generates most of the new triangles quasi-

equilateral (with smallest angles greater than 30◦).

qk ={a1, a2,⋯ , ak−1, a, ak+1,⋯ , am,⋯ , an+1}

qm ={a1, a2,⋯ , ak,⋯ , am−1, a, am+1,⋯ , an+1}

Fig. 4  After executing the production, the original hypergraph G
1
 

(top) is converted into G
5
 (bottom)
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In 2013, a parallel multi-threaded version of the LEPP algo-

rithm was developed by Rivara [18], where each thread man-

ages the LEPP of a single triangle marked to be refined.

The new contributions of our paper can be summarized 

as follows:

– the parallelism in the original Rivara’s longest edge 

refinement algorithm is achieved by processing different 

longest edge refinement paths in different cores, while 

our graph-grammar-based algorithm allows for additional 

parallelization within a single longest-edge refinement 

path,

– we express the Rivara algorithm by graph-grammar pro-

ductions, and use it for the topographic mesh generation,

– we extend it to model the generation of the three-dimen-

sional tetrahedral meshes span over the terrain mesh,

– we express the stabilized finite element method of the 

non-stationary advection–diffusion-reaction simulator 

by graph grammar productions, working on top of the 

three-dimensional tetrahedral finite element mesh,

– we incorporate the Crank–Nicolson time-integration 

scheme and interface our graph-grammar system with 

GMRES solver,

– we perform the pollution simulations in Lesser Poland 

area.

4  Two-dimensional mesh 
re�nement algorithm expressed 
by a hypergraph-grammar

In this section, we express the two-dimensional mesh 

refinement algorithm, initially proposed by Rivara [20] 

using graph-grammars. Instead of following the idea of the 

Longest-Edge Propagation Path algorithm, we will define a 

hypergraph that models an unstructured triangular mesh and 

a set of productions that modify the triangles locally.

Productions are set such that all of them bisect the tri-

angle, so they have to be applied only at triangles marked 

for refinement or triangles that need to be bisected to con-

form to the mesh; i.e., triangles with one, two, or three 

hanging-nodes.

Remark 2 Criteria for longest-edge in equilateral or isosceles 

triangles. The criterion for choosing the longest-edge is to 

prevent propagation, therefore, the priority for edges is: 1. 

Edge with a hanging-node; 2. Edge on the boundary; 3. Rest 

of the edges.

4.1  Hypergraph definition

The hypergraph modelling an unstructured mesh with trian-

gular elements is defined with the set of labels C = {N, E, T} 

and attributes A = {x, y, z, HN, B, L, R} , where

– N is a hypergraph node label that represents a triangular 

element node.

– E is a hyperedge label that denotes an edge of a triangular 

element.

– T is a hyperedge label that denotes an interior of a trian-

gular element.

– x is a hypergraph node attribute which denotes x coordi-

nate of the node, where D
x
⊂ ℝ.

– y is a hypergraph node attribute which denotes y coordi-

nate of the node, where Dy ⊂ ℝ.

– z is a hypergraph node attribute which denotes z coordi-

nate of the node, where Dz ⊂ ℝ.

– HN is a hypergraph node attribute which denotes if the 

corresponding triangular element node is a hanging node, 

where D
HN

= {TRUE, FALSE}.

– B is a hyperedge attribute which denotes if the corre-

sponding triangular element edge is located on the bound-

ary of the triangular mesh, where D
B
= {TRUE, FALSE}.

– L is a hyperedge attribute that denotes the corresponding 

triangular element edge’s length, where D
L
⊂ ℝ.

– R is a hyperedge attribute which denotes if the corre-

sponding triangular element is to be refined, where 

D
R
= {TRUE, FALSE}.

4.2  Productions

We need six productions to perform the longest-edge bisec-

tion algorithm. They can be summarized as follows: 

(P1)  Triangle has no hanging-node and is marked to be 

refined. Predicate prioritizes the longest-edge on the 

border.

(P2)  Triangle has one hanging-node; the longest-edge is 

the one that contains the hanging-node.

(P3)  Triangle has one hanging-node; the longest-edge is 

one that does not contain the hanging-node. Predicate 

prioritizes the longest-edge on the border.

(P4)  Triangle has two hanging-nodes; the longest-edge is 

one that contains a hanging-node.

(P5)  Triangle has two hanging-nodes; the longest-edge is 

the one that does not contain a hanging-node. Predi-

cate prioritizes the longest-edge on the border.

(P6)  Triangle has three hanging-nodes.

Remark 3 The six productions assume that any triangle edge 

can only contain one hanging-node. To ensure this restric-

tion, productions only allow to break one edge that is con-

nected to two regular nodes (no hanging-nodes).

To improve readability in the productions, a new function 

( NL ) has been introduced. This function computes the length 

of a new edge depending on nodes. There are two possibilities 
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depending on the number of arguments. So the two functions 

are:

NL(i, j) =

√

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2

NL(i,j,k)=
√

(
xi+xj

2
− xk)

2 + (
yi+yj

2
− yk)

2 + (
zi+zj

2
− zk)

2.

Next, we describe in more detail the six productions and 

their predicates.

4.2.1  Production 1 (P1)

Production (P1), Fig.  5, expresses the bisection of a triangle 

with no hanging-nodes. This production will bisect the triangle 

by edge 1.

Analysis of the predicate:

(R1 AND ((L1 ≥ L2 ) AND ( L1 ≥ L3))). The first condition 

ensures that the triangle has to be marked for refinement ( R1 ), 

and that the edge 1 is one of the longest-edges ((L1 ≥ L2 ) AND 

( L1 ≥ L3)). If these two conditions are met, there are two cases:

– (B1 ) If edge 1 is on the boundary ( B1 ), then the triangle 

will be bisected; prioritizing the boundary. Note that in this 

case, we don’t have to check if they are any hanging nodes 

at the end of the edge. This is because there are no hanging 

nodes on the boundary.

– ( NOT B1 AND ( NOT HN1 AND NOT HN2 ) AND ( NOT  

(( B2 AND L2 = L1 ) OR ( B3 AND L3 = L1))) ) If edge 1 

is not on the boundary ( NOT B1), we need to ensure that 

the two nodes of edge 1 are not hanging nodes ( NOT HN1 

AND NOT HN2 ); if they are, we cannot break edge 1 yet. 

Finally, we should ensure that there is no other longest-

edge on the boundary ( NOT (( B2 AND L2 = L1 ) OR ( B3 

AND L3 = L1))).

This production breaks the longest edge, generating a new 

node in its midpoint (x = (x1 + x2)∕2, y = (y1 + y2)∕2 , 

z = (z1 + z2)∕2) ; this new node will be hanging if the edge 

is not on the boundary or a regular node if it is on the bound-

ary ( HN=!B1 ). The breaking of the edge also generates two 

new edges whose lengths are half the length of the broken 

edge (L=L1/2), and inherit the boundary flag (B=B1 ). Then, 

the triangle has to be bisected; to this end, it generates a new 

edge that connects the newly created node with the opposite 

node, computing the length of this new edge (L=NL(1,2,3)) 

and setting it as an interior edge (B=FALSE ). Finally, it gen-

erates the new two triangles that are not marked to be refined 

(R=FALSE).

4.2.2  Production 2 (P2)

Production (P2), Fig. 6, expresses the bisection of a trian-

gle with one hanging-nodes by the edge that contains the 

hanging-node.

Analysis of the predicate:

((L4+L5 ) ≥ L2 ) AND ((L4+L5 ) ≥ L3 ). The only condition 

in this production ensures that the broken edge (edge 4 + 

edge 5) is one of the longest-edges (((L4+L5 ) ≥ L2 ) AND 

((L4+L5 ) ≥ L3)). We don’t need to check if the triangle is 

marked to be refined since this bisection is needed for con-

formity. No other conditions are required since an edge with 

a hanging-node has a higher priority.

This production does not break the longest edge since it’s 

already broken. The production does bisect the triangle; to 

this end, it generates a new edge that connects the newly cre-

ated node with the opposite node, computing the length of 

this new edge (L=NL(4,3)) and setting it as an interior edge 

Fig. 5  Production (P1) for the refinement of the marked element
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(B=FALSE ). And finally, it generates the new two triangles 

that are not marked to be refined (R=FALSE).

4.2.3  Production 3 (P3)

Production (P3), Fig.  7, expresses the bisection of a triangle 

with one hanging-nodes by one edge that does not contain 

the hanging-node. This production will bisect the triangle 

by edge 3.

Analysis of the predicate:

( ( L3 ≥ L2 ) AND ( L3 > ( L4+L5 )) ). The first condition 

ensures that edge 3 is longer or equal to edge 2 ( L3 ≥ L2 ). 

It also ensures that edge 3 is strictly longer than the edge 

that is broken ( L3 > ( L4+L5)); it should be strictly longer 

because if they have the same length, the broken edge has 

higher priority.

We don’t need to check if the triangle is marked to be 

refined since this bisection is needed for conformity.

Once we know that edge 3 is suitable for being broken, 

there are two cases:

Fig. 6  Production (P2) for the additional refinement of the element 

with the longest edge already broken with the hanging node, replac-

ing the hanging node with the regular node

Fig. 7  Production (P3) for the additional refinements of the element 

with one hanging node
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– (B3 ) If edge 3 is on the boundary ( B3 ), then the triangle 

will be bisected; prioritizing the boundary. Note that we 

don’t have to check if they are any hanging nodes at the 

end of this edge. This is because there are no hanging 

nodes on the boundary.

– ( ( NOT  B3 ) AND ( NOT  HN1 AND NOT  HN3 ) AND 

( NOT  ( B2 AND L2 = L3 )) ) If edge 3 is not on the 

boundary ( NOT  B3 ), we need to ensure that the two 

nodes of edge 3 are not hanging nodes ( NOT  HN1 AND 

NOT  HN3 ); if they are, we cannot break edge 3 yet. 

Finally, we should ensure that edge 2 is not a longest-

edge on the boundary ( NOT  ( B2 AND L2 = L3 ) ).

This production breaks edge 3, generating a new node 

i n  i t s  m i d p o i n t  (x = (x1 + x3)∕2, y = (y1 + y3)∕2, 

z = (z1 + z3)∕2) ; this new node will be hanging if the edge 

is not on the boundary or a regular node if it is on the bound-

ary ( HN=!B3 ). The breaking of the edge also generates two 

new edges whose lengths are half the length of the broken 

edge (L=L3/2), and inherit the boundary flag (B=B3 ). Then, 

the triangle has to be bisected; to this end, it generates a new 

edge that connects the newly created node with the opposite 

node, computing the length of this new edge (L=NL(1,3,2)) 

and setting it as an interior edge (B=FALSE ). Finally, it gen-

erates the new two triangles that are not marked to be refined 

(R=FALSE).

4.2.4  Production 4 (P4)

Production (P4), Fig.  8, expresses the bisection of a triangle 

with two hanging-nodes by one of the edges that contain a 

hanging-node. This production will bisect the triangle by the 

node connected to edge 4 and edge 5.

Analysis of the predicate:

( ((L4+L5 ) ≥ ( L6+L7 )) AND ((L4+L5 ) ≥ L3 ) ). The only 

condition in this production ensures that the broken edge 

(edge 4 + edge 5) is one of the longest-edges ( ((L4+L5 ) ≥ 

( L6+L7 )) AND ((L4+L5 ) ≥ L3 ) ). We don’t need to check 

if the triangle is marked to be refined since this bisection 

is needed for conformity. No other conditions are required 

since an edge with a hanging-node has a higher priority.

This production does not break the longest edge since it’s 

already broken. The production does bisect the triangle; to 

this end, it generates a new edge that connects the newly cre-

ated node with the opposite node, computing the length of 

this new edge (L=NL(4,3)) and setting it as an interior edge 

(B=FALSE ). And finally, it generates the new two triangles 

that are not marked to be refined (R=FALSE).

4.2.5  Production 5 (P5)

Production (P5), Fig.  9, expresses the bisection of a triangle 

with two hanging-nodes by the edge that does not contain 

a hanging-node. This production will bisect the triangle by 

edge 3.

Analysis of the predicate:

( ( ( L3 > ( L4+L5 )) AND ( L3 > ( L6+L7 )) ) AND ( NOT  

HN1 AND NOT  HN3 ) ). The first condition in this produc-

tion ensures that the edge 3 is strictly longer than the other 

two broken edges ( ( L3 > ( L4+L5 )) AND ( L3 > ( L6+L7 )) ); 

both comparisons are strictly greater because broken edges 

have priority. The second condition ensures that the two 

nodes of edge 3 are not hanging nodes ( NOT  HN1 AND 

NOT HN3 ); if they are, we cannot break edge 3 yet. We don’t 

need to check if the triangle is marked to be refined since this 

bisection is needed for conformity.

This production breaks edge 3, generating a new node in its 

midpoint (x = (x1 + x3)∕2, y = (y1 + y3)∕2 , z = (z1 + z3)∕2) ; 

Fig. 8  Production (P4) for an additional refinement of an element 

with two hanging nodes, breaking the element towards one of the bro-

ken edges
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this new node will be hanging if the edge is not on the bound-

ary, or a regular node if it is on the boundary ( HN=!B3 ). The 

breaking of the edge also generates two new edges whose 

lengths are half the length of the broken edge (L=L3/2), and 

inherit the boundary flag (B=B3 ). Then, the triangle has to 

be bisected; to this end, it generates a new edge that connects 

the newly created node with the opposite node, computing 

the length of this new edge (L=NL(1,3,2)) and setting it as an 

interior edge (B=FALSE ). Finally, it generates the new two 

triangles that are not marked to be refined (R=FALSE).

4.2.6  Production 6 (P6)

Production (P6), Fig. 10, expresses the bisection of a trian-

gle with three hanging-nodes. This production will bisect the 

triangle by the node connected to edge 4 and edge 5.

Analysis of the predicate:

( ((L4+L5 ) ≥ ( L6+L7 )) AND ((L4+L5 ) ≥ ( L8+L9 )) ). 

The only condition in this production ensures that the broken 

edge (edge 4 + edge 5) is one of the longest-edges ( ((L4

+L5 ) ≥ ( L6+L7 )) AND ((L4+L5 ) ≥ ( L8+L9 )) ). We don’t 

need to check if the triangle is marked to be refined since this 

bisection is needed for conformity. No other conditions are 

required since an edge with a hanging-node has the higher 

priority.

This production does not break the longest edge, since it’s 

already broken. The production does bisect the triangle; to 

this end, it generates a new edge that connects the newly cre-

ated node with the opposite node, computing the length of 

Fig. 9  Production (P5) for an additional refinement of the element 

with two hanging nodes, breaking the element towards the unbroken 

edge

Fig. 10  Production (P6) removing the hanging node from the longest 

edge of the element with three hanging nodes
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this new edge (L=NL(4,3)) and setting it as an interior edge 

(B=FALSE ). And finally, it generates the new two triangles 

that are not marked to be refined (R=FALSE).

5  Comparison of the longest-edge 
re�nement algorithm 
and graph-grammar-based re�nement 
algorithm

In this section, we will compare two algorithms, the classical 

Rivara’s lonest-edge refinement algorithm, and our graph-

grammar-based refinement algorithm.

To describe the Rivara algorithm, we recall the definition 

of LEPP(t) , the definition of a pair of terminal triangles, and 

the definition of a terminal boundary triangle.

For any triangle t
0
 of any conforming triangulation T, 

the LEPP(t
0
) consists of the ordered list of all triangles 

t0, t1, t2, ..., t
n−1 , such that triangle t

i
 is the neighbour triangle 

of t
i−1

 by the longest edge of t
i−1

 , for i = 1, 2, ..., n.

A pair of terminal triangles are two adjacent triangles 

(t, t
∗) with a common longest edge.

A terminal boundary triangle is a triangle whose longest-

edge is a boundary edge.

We describe the pseudocode of the so-called Rivara Back-

ward-Longest-Edge-Bisection algorithm in Algorithm 1.

Algorithm 1 Backward-Longest-Edge-Bisection

Require: t triangle to refine, T mesh of triangular elements

1: while t remains without being bisected do

2: Find theLEPP(t)
3: t

∗ = the last triangle of LEPP(t)
4: if t

∗ is a terminal boundary triangle then

5: bisect t
∗

6: else

7: bisect the last pair of terminal triangle of LEPP(t)
8: end while

We summarize in Fig. 11 the Rivara algorithm. The green 

triangle is the triangle denoted to break ( t
0
 ). The triangles 

belonging to the LEPP(t
0
) are denoted by blue color (tri-

angles “touched” by the algorithm), the red edges are the 

terminal edges, the new edges created during the refinement 

process.

We count the number of basic operations as performed 

by the algorithm, defined as checking a triangle ( CHECK ) 

(triangles denoted by blue color), or breaking a triangle 

( BREAK ) (triangles broken at the end of the LEPP ). The 

number of CHECK s and BREAK s is summarized in Table 1. 

While the single longest edge path algorithm has no potential 

for parallelization, all these CHECK s are executed sequen-

tially in each step. The longest-edge refinement algorithm for 

a single LEPP is sequential. Even breaking the two triangles 

located at the end of the path is sequential since the common 

edge has to be locked until the first break is finished. The 

parallel processing time is identical. The parallelism in the 

classical Rivara algorithm is obtained by processing multiple 

LEPP s in parallel, each LEPP in sequential [18].

The graph-grammar-based algorithm is summarized in 

the pseudo-code Algorithm 2. We summarize in Fig. 12 the 

graph-grammar-based algorithm. The initially broken tri-

angle is denoted by green color. The checked neighbors are 

denoted by blue color. A red breaking line denotes the bro-

ken triangles. In Table 2 we count the number of triangles 

where we tried to execute the productions ( CHECK ) and 

the number of triangles modified by the execution of the 

productions ( BREAKs). The graph-grammar algorithm has 

potential for parallelization even when the Rivara algorithm 

uses a single LEPP . The number of sequential CHECK s for 

graph-grammar-based algorithm is 44, but when we utilize 

Fig. 11  The steps of the Rivara algorithm

Table 1  The number of touched and split triangles in each step of the 

Rivara algorithm presented in Fig. 11

step CHECK BREAK

1 4 2

2 3 2

3 5 2

4 4 2

5 3 2

6 2 2

Total 21 12

Total parallel 21 12
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eight cores, it is equal to 10 steps. The number of BREAK s 

can be reduced to 9, since we break in parallel triangles that 

do not share the broken edge.

Algorithm 2 Graph-grammar-based mesh refinement

Require: t0 triangle to refine, List list of triangles to refine

1: Execute production (P1)(t 0)
2: Add to List neighbors broken edges of triangle t 0
3: while Non empty List do
4: RefList = List

5: Clear(List))
6: Execute production (P2) on triangles from RefList

7: if any triangle broken then
8: Add to List neighbors of broken edges
9: continue

10: Execute production (P3) on triangles from RefList

11: if any triangle broken then
12: Add to List neighbors of broken edges
13: continue
14: (similarly for other productions (P4), (P5), (P6))
15: end while

While it is impossible to derive a formula for the com-

putational cost for a general mesh broken by classical and 

graph-grammar-based algorithms, we estimated the costs on 

a representative model example. The classical longest-edge 

refinement algorithm processes a single LEPP in sequential. 

Our graph-grammar-based algorithm can check several trian-

gles simultaneously, and it also performs multiple breaks at 

the same time.

6  Graph-grammar-based interface 
with advection–di�usion-reaction solver

At the end of the two-dimensional mesh generation, we exe-

cute production (Pmesh) in parallel over each triangular ele-

ment. It generates the three-dimensional tetrahedral elements 

on top of the two-dimensional triangular element.

It plots a vertical line over each of the vertices of the tri-

angle, it partitions it into M equally distances intervals, and it 

constructs M prismatic elements, and it divides each prismatic 

element into three tetrahedral elements (see Fig. 13).

We construct M prismatic elements, and we divide 

each prismatic element into three tetrahedral elements (see 

Fig. 13). This operation is performed by graph-grammar 

production (Pmesh). Next, we take a references tetrahedral 

element M̂ span over (0, 0, 0) − (1, 0, 0) , (0, 0, 0) − (0, 1, 0) , 

(0, 0, 0) − (0, 0, 1) . We introduce the four basis functions

(1)�̂1(�1, �2, �3) =�1(�1, �2, �3) = 1 − �1 − �2 − �3

(2)�̂2(�1, �2, �3) =�2(�1, �2, �3) = �1

(3)�̂3(�1, �2, �3) =�3(�1, �2, �3) = �2

(4)�̂4(�1, �2, �3) =�4(�1, �2, �3) = �3

Table 2  Number of trials ( CHECK s) and applications ( BREAK s) of 

particular productions executed by graph-grammar-based algorithm 

in nine steps presented in Fig. 12

CHECKs BREAKs

step (P1) (P2) (P3)

1 1 1 0 0

2 1 0 0 1

3 5 0 0 1

4 5 0 1 0

5 4 0 1 0

6 4 0 0 1

7 5 0 1 1

8 8 0 1 1

9 7 0 1 1

10 4 0 1 0

Total 44 1 5 6

Total parallel 10 9

Fig. 12  The steps of the graph-grammar-based algorithm
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related to tetrahedral element vertices, six basis functions 

related to finite element edges

four basis function related to finite element faces

and one basis function related to element interior

(5)�̂5(�1, �2, �3) =�1(�1, �2, �3)�2(�1, �2, �3)

(6)�̂6(�1, �2, �3) =�1(�1, �2, �3)�3(�1, �2, �3)

(7)�̂7(�1, �2, �3) =�1(�1, �2, �3)�4(�1, �2, �3)

(8)�̂8(�1, �2, �3) =�2(�1, �2, �3)�3(�1, �2, �3)

(9)�̂9(�1, �2, �3) =�2(�1, �2, �3)�4(�1, �2, �3)

(10)�̂10(�1, �2, �3) =�3(�1, �2, �3)�4(�1, �2, �3),

(11)
�̂11(�1, �2, �3) =

�1(�1, �2, �3)�2(�1, �2, �3)�3(�1, �2, �3)

(12)
�̂12(�1, �2, �3) =

�1(�1, �2, �3)�2(�1, �2, �3)�4(�1, �2, �3)

(13)
�̂13(�1, �2, �3) =

�1(�1, �2, �3)�3(�1, �2, �3)�4(�1, �2, �3)

(14)
�̂14(�1, �2, �3) =

�2(�1, �2, �3)�3(�1, �2, �3)�4(�1, �2, �3),

The basis functions over an arbitrary element are obtained 

by using the transformation from the reference element into 

an arbitrary element.

We focus on the pollution propagation equations

where u(x,  y,  z,  t) is the pollutant concentration field, 

�(x, y, z, t) = 
(

�x(x, y, z, t), �y(x, y, z, t), �z(x, y, z, t)
)

 is a given 

wind velocity, and � is the diffusion coefficient, and cu is the 

reaction term, see [34] for more details.

We introduce time steps 0 = t
0
< t

1
< t

2
< ⋅ < t

N
= T  

and we approximate the time derivative in a finite differ-

ence manner, with Crank–Nicolson scheme applied for time 

discretization.

We introduce the weak formulation. We seek u ∈ V = H
1(Ω) 

such that

where

where (u, v)Ω = ∫
Ω

uvdxdydz , and (u, v)Γ = ∫
Γ

uvds denotes 

the L2 scalar product on Ω , Γ = �Ω , and n = (n
x
, n

y
, n

z
) is 

the versor normal to Γ.

We introduce the finite element discretization. We seek 

for u
h
∈ V

h
⊂ V

where V
h
 is span by the tetrahedral finite elements and basis 

functions obtained from glueing together the element basis 

functions.

(15)
�̂15(�1, �2, �3) =�1(�1, �2, �3)�2(�1, �2, �3)

�3(�1, �2, �3)�4(�1, �2, �3).

(16)
M̂ ∋ (�1, �2, �3) → xM(x, y, z) ∈ M

�i(x, y, z) = �̂i(x
−1

M
(x, y, z))

(17)
�u

�t
+ � ⋅ ∇u − ∇ ⋅ (�∇u) + cu = f

(18)

ut+1 − ut

dt
+ � ⋅ ∇

ut+1 + ut

2
−

∇ ⋅

(

�∇
ut+1 + ut

2

)

+ c
ut+1 + ut

2
= f t

(19)
ut+1 − ut

�t
+

b(ut, v) + b(ut+1, v)

2
= l(v) ∀v ∈ V

(20)
b(u, v) =(� ⋅ ∇u, v)Ω − (�∇u,∇v)Ω+

(�n ⋅ ∇u, v)Γ + (cu, v)Ω

(21)l(v) =(f , v)Ω

(22)

(

u
t+1

h
− u

t

h

�t
, v

h

)

+
b(ut

h
, v

h
) + b(ut+1

h
, v

h
)

2
= l(v

h
)

∀v
h
∈ V

h
⊂ V

Fig. 13  Generation of three-dimensional mesh starting from 2D mesh 

representing the terrain, followed by the generation of element matri-

ces
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A commonly used stabilization technique is the Stream-

line-upwind Petrov–Galerkin (SUPG) method [21]. In this 

method, we modify the weak form as follows

w h e r e  R(ut+1

h
) = � ⋅ ∇u

t+1

h
+ ��u

t+1

h
 ,  a n d 

�−1
= � ⋅

(

1

hx
K

,
1

h
y

K

,
1

hz

K

)

+ 3p2�
1

hx
K

2
+h

y

K

2
+hz

K

2
 , where � stands for 

the diffusion term, and � = (�
x
, �

y
, �

z
) for the convection 

term, and hx
K

, h
y

K
 and hz

K
 are three dimensions of an element 

K. Thus, we have

Finally, we iterate with time steps with implicite 

Crank–Nicolson method

We introduce a graph grammar productions (PgenSUPG), 

(PgenRHS), (PgenMass) that generate the element matrix, 

(23)

b(ut+1

h
, vh) +

∑

K

(R(ut+1

h
), �� ⋅ ∇vh)K =

l(vh) +
∑

K

(f , �� ⋅ ∇vh)K ∀v ∈ V

(24)

bSUPG(u
t+1

h
, vh) = lSUPG(vh) ∀vh ∈ Vh

bSUPG(u
t+1

h
, vh) = �x

�
�ut+1

h

�x
, vh

�

Ω

+

�y

�
�ut+1

h

�y
, vh

�

Ω

+ �z

�
�ut+1

h

�z
, vh

�

Ω

+

�

�
�ut+1

h

�x
,
�vh

�x

�

Ω

+ �

�
�ut+1

h

�y
,
�vh

�y

�

Ω

+

�

�
�ut+1

h

�z
,
�vh

�z

�

Ω

+ (cuh, vh)Ω −

�
�
�ut+1

h

�x
nx, vh

�

Γ

−

�
�
�ut+1

h

�y
ny, vh

�

Γ

−

�
�
�ut+1

h

�z
nz, vh

�

Γ

+

�
�x

�ut+1

h

�x
+ �y

�ut+1

h

�y
+ �z

�ut+1

h

�z
+ ��ut+1

h
,

+

�
1

hx

+ 3�
p2

hx
K

2 + h
y

K

2

�−1

�x

�vh

�x
+ �y

�vh

�y
+ �z

�vh

�z

⎞
⎟⎟⎠Ω

lSUPG(vh) = (f , vh)Ω

+

⎛
⎜⎜⎝
f ,

�
1

hx

+ 3�
p2

hx
K

2 + h
y

K

2

�−1

�
�x

�vh

�x
+ �y

�vh

�y
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�vh

�z

��

Ω

.

(

ut+1 − ut

�t
, w

h

)

Ω

+ b
SUPG

(

u
t

h
+ u

t+1

h

2
, v

h

)

= l
SUPG

(v
h
) ∀v

h
∈ V

h

(

u
t+1

, w
h

)

Ω
+

�t

2
b

SUPG

(

u
t+1

h
, v

h

)

=
(

u
t
, w

h

)

Ω
+

�t

2
b

SUPG

(

u
t

h
, v

h

)

+ l
SUPG

(v
h
)∀v

h
∈ V

h

the right-hand-side, and the mass matrix with the solution 

from the previous time step

These productions are executed in parallel over each element 

at the beginning of each time step. The results of these pro-

ductions are some matrices and vectors, and they are used to 

construct the local system over each element, with matrices

and right-hand-sides

This is done by the production (Psystem) which constructs

The resulting local systems are submitted to the GMRES 

iterative solver.

We propose the following space refinements - time 

progression algorithm. We start from an initial mesh 

approximating the topography of the terrain roughly. We 

solve the first time step of the advection–diffusion-reac-

tion problem with initial conditions. Next, we run one 

(25)

(PgenSUPG)

⎡
⎢
⎢
⎣

bK
SUPG

(�1,�1) ⋯ bK
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iteration of the longest-edge refinement algorithm. Then, 

we solve the second time step of the advection–diffusion-

reaction problem using the solution obtained in the previ-

ous step on the coarser mesh. We continue with the space 

iterations of the longest-edge refinement algorithm, and, 

at the same time, we iterate with time step with the advec-

tion–diffusion-reaction simulations. The general idea of 

the algorithm can be summarized in the pseudo-code pre-

sented in Algorithm 3. Notice that we assume some accu-

racy � of the terrain approximation, and after reaching 

this accuracy, we do not perform more refinements there.

Algorithm 3 Space refinement - time progression al-

gorithm

Require: ǫ, mesh, initial configuration

1: previous u:=initial configuration

2: Refine mesh with accuracy ǫ

3: for time step=1,...,MAX TIME STEP do
4: Execute (Pmesh) over mesh

5: Execute (PgenSUPG) on mesh

6: Execute (PgenRHS) on mesh

7: Execute (PgenMass) on mesh

8: Project previous u into the mesh

9: Execute (Psystem) with (27), (28) and previous u

10: call GMRES solver to get current solution

11: previous u:=current solution

12: end for

7  Numerical results

7.1  Manufactured solution advection–diffusion 
problem

In this section, we verify our solver by testing on the man-

ufactured advection-dominated diffusion solver. We select 

the advection vector � = (1, 1)T  , and Pe = 1∕� = 100 and 

solve the advection–diffusion equation with homogeneous 

Dirichlet boundary conditions. We utilize a manufactured 

solution

enforced by the forcing term f. We set the reaction term to 

zero c = 0 . This analytic expression of the solution limits 

the Péclet number to Pe = 100 due to machine precision.

We report in Figs. 14, 15, 16 the sequence of meshes 

generated by the adaptive algorithm. Figure 17 presents 

the final mesh and the final results. We also report the 

convergence in L2 norm in Table 3.

(30)u(x, y) =

(

x +
ePe∗x − 1

1 − ePe

)(

y +
ePe∗y − 1

1 − ePe

)

Fig. 14  Sequence of adaptive meshes (1/3) generated for advection–

diffusion manufactured solution problem stabilized with SUPG
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Fig. 15  Sequence of adaptive meshes (2/3) generated for advection–

diffusion manufactured solution problem stabilized with SUPG

Fig. 16  Sequence of adaptive meshes (3/3) generated for advection–

diffusion manufactured solution problem stabilized with SUPG
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7.2  Mesh generation for the pollution simulations 
in Lesser Poland area

We run four different experiments, starting from four different 

initial meshes, presented in Fig. 18. The first initial mesh is 

a regular triangular mesh. The second mesh is the Delaunay 

mesh obtained from GMSH mesh generator [9]. The third 

mesh is obtained from the MeshAdapt algorithm, also from 

the GMSH generator. The fourth one is the Frontal–Delaunay 

mesh from the GMSH generator. For the regular initial mesh 

case, the longest-edge refinement algorithm coincides with the 

Kossaczky refinement algorithm [23]; for other meshes, it is 

not equivalent to the Kosaczky algorithm.

These initial meshes are not the exact rectangles since the 

Earth is not flat, and the input data are taken from the Earth 

database [6]. The initial mesh elements have vertices adjusted 

to the three-dimensional points located in the R3 space, as read 

from the Earth’s topography database.

We run 24 iterations of our graph-grammar based algo-

rithm. Figures 19, 20 presents some snapshots from the refine-

ment process. The triangulation of the terrain surface is pre-

sented in Fig. 21.

7.3  Computations of the wind vector field

We generate a 3D mesh on top of a 2D meshes with four 

layers of prisms, each divided into three tetrahedrons. We 

first focus on the computations of the wind distribution 

in the entire area, based o two fixed values of the veloc-

ity based on the real measurements from the station in 

Kasprowy Wierch mountain and the station in Zakopane 

city. We generalize these measurements into the entire 

domain by solving the divu = 0 equation. The results are 

presented in Fig. 22. We have the north-western wind 

slightly changing in time.

7.4  Computations of the pollution propagation

Having the advection field, representing the wind, we 

focus on the advection–diffusion-reaction problem.

where ui(x, y, z, t) are the unknown concentrations of the four 

components of the pollution in the area, namely the vector 

of four unknowns, representing the chemical components 

u1 = [SO2], u2 = [SO4], u3 = [NO4], u4 = [NO3] , �(x, y, z, t) 

is a wind velocity vector computed above, representing the 

north-western wind, s(u) is the chemical reactions part, 

where we assume linear model s(u) = Au where A is the 

chemical reactions matrix,

and K is the diagonal diffusion matrix

where the horizontal diffusion coefficient is equal to 

8 ∗ 10
−6

m
2∕s , and the vertical diffusion coefficient 

4 ∗ 10
−6

m
2∕s . The diffusion matrix is assumed to be identi-

cal for all the four species of the concentration field u. Since 

we have four components of the pollution, our basis func-

tions, and element matrices and right-hand-side vectors are 

“duplicated” four times, and they are coupled now through 

the chemical reactions matrix. We assume that the pollutant 

comes from the north boundary, and it is blown inside the 

domain from the north boundary by the north-western wind 

computed based on the real measurements.

(31)
�u

i

�t
+ � ⋅ ∇u

i
− ∇ ⋅

(

K∇u
i

)

= s(u
i
)

(32)A =

⎡
⎢
⎢
⎢
⎣

−0.15 0 0 0

0.15 0 0 0

0 0 − 0.3 0

0 0 0.3 0

⎤
⎥
⎥
⎥
⎦

(33)K =

⎡
⎢
⎢
⎣

8 ∗ 10
−6

0 0

0 8 ∗ 10
−6

0

0 0 4 ∗ 10
−6

⎤
⎥
⎥
⎦

m
2∕s

Fig. 17  Result to the manufactured solution problem computed on the 

final mesh

Table 3  Convergence in L2 

norm
Iteration 1 2 3 4 5 6 7

L
2 norm 69.2 41.9 36.8 20.8 16.3 8.14 5.47

Iteration 8 9 10 11 12 13 14

L
2 norm 2.24 1.09 0.38 0.12 0.03 0.009 0.003
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and we have

(34)u
i
= �,

Fig. 18  The initial coarse meshes. The first initial mesh is a regu-

lar triangular mesh, the second mesh is the Delunay mesh obtained 

from the GMSH mesh generator, the third mesh is obtained from the 

MeshAdapt algorithm, also from the GMSH generator

Fig. 19  Snapshots (1/2) from the terrain 2D mesh generation



3875Engineering with Computers (2021) 37:3857–3880 

1 3

at the wind outlet. Moreover, we have

(35)u(x, y, z, t) = 0,

at the terrain level, where Vd
= 1.3 ∗ 10

−3 m/s (so-called 

diagonal term of the deposition matrix).

We run the entire simulation on a single Linux cluster 

node. In Figs. 23, 24, 25, 26, we present some snapshots of 

the simulation. They present the propagation from the north 

boundary over the terrain by the north-western wind.

We have implemented our graph-grammar-based sys-

tem in GALOIS [8, 30] framework, allowing for concur-

rent graph processing. The code is compiled on node13 

on the Atari Linux cluster from the Adaptive Algorithms 

and Systems (a2s.agh.edu.pl) research group from the 

Department of Computer Science, AGH University. The 

(36)n ⋅

(

K∇u
i

)

= −V
d
u

i

Fig. 20  Snapshots (2/2) from the terrain 2D mesh generation

Fig. 21  Final mesh representing Lesser District of Poland (South of 

Poland)

Fig. 22  The wind vector field computed by solving divu = 0 based on 

two stations point measurements. The maximum wind speed varies 

between 33 and 49 km/s
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node13 has Intel(R) Xeon(R) CPU E5-2680 v4 proces-

sor with 2.40GHz clock and 28 cores. The code requires 

gcc/8.1, boost, and cmake. The code can be downloaded 

from https://github.com/Podsiadlo/TerrainMesh Genera-

tor/ lonestar/graphgrammar2. Here, we present the scal-

ability results for the concurrent code for 24 iterations. 

The scalability of the code running from any of the four 

initial meshes is similar. We report here the timings for the 

regular initial mesh. It transforms the initial mesh of 24 

triangles into the final mesh with over 10,000,000 trian-

gles. In Table 4 and Fig. 27, we report the execution time 

on the last 15 iterations of the mesh generation algorithm, 

with the number of used cores increasing from 1 to 28. 

In Table 5 and Fig. 28, we report the speedup on the last 

15 iterations of the mesh generation algorithm, with the 

number of used cores increasing from 1 to 28. We report 

the timings and speedup for iterations 15–24. The pre-

vious iterations took less than 100 milliseconds, so we 

neglect them from our analysis. Notice that after reaching 

the assumed accuracy for the terrain approximation in step 

20, a single step’s computational cost goes down since we 

do not perform massive refinements over the entire mesh.

8  Conclusions

This paper shows how to express by graph-grammar pro-

ductions the longest-edge mesh refinement algorithm for 

a two-dimensional mesh with triangular elements. The 

graph-grammar-based algorithm allows for better paral-

lelization than classical Rivara’s algorithm. We also show 

how to extend it to the three-dimensional grids and interface 

with GMRES solver and Crank–Nicolson time integration 

scheme. The mesh generation algorithm removes all the 

hanging nodes automatically from the mesh. The stabilized 

advection–diffusion-reaction solver executed on the compu-

tational mesh based on topographic data of Lesser Poland 

area provides a tool for the pollution propagation simula-

tions. The future work will include the simulation of the 

pollution resulting from point sources in the Kraków city 

Fig. 23  Pollution propagated by north-western wind, front view (1/2) Fig. 24  Pollution propagated by north-western wind, front view (2/2)
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Fig. 25  Pollution propagated by north-western wind, zoom towards 

right top corner, and plotting the cross-section and contours (1/2) Fig. 26  Pollution propagated by north-western wind, zoom towards 

right top corner, and plotting the cross-section and contours (2/2)
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area, e.g., from the factories’ chimneys. We also would like 

to have the thermal inversion effects simulated with Navier-

Stokes-Boussinesq equations [35].

Table 4  Execution times of the 

GALOIS mesh generator for 

up to 28 cores on Atari Linux 

cluster node, for the mesh 

adaptation iterations 10–24. The 

previous iterations took less 

than 100 milliseconds

Cores 1 2 4 8 16 24

Step10 51 52 115 51 51 25

Step11 92 59 52 52 49 73

Step12 208 135 77 51 64 61

Step13 434 298 131 61 52 51

Step14 855 535 226 177 88 155

Step15 1780 1091 479 250 220 198

Step16 3482 2140 1026 524 438 454

Step17 7031 4232 1984 1072 974 762

Step18 12425 7536 3588 1907 1581 1354

Step19 18985 11427 5156 2865 2512 2578

Step20 22582 13450 5807 3052 2768 2848

Step21 19113 10923 4726 2411 2149 1947

Step22 18527 10925 4521 2226 2034 1929

Step23 18451 10664 4504 2204 1992 1908

Step24 18418 10746 4494 2212 2031 1941

Total: 144s 85s 38s 21s 18s 17s

Table 5  Speedup of the 

GALOIS mesh generator for 

up to 28 cores on Atari Linux 

cluster node, for the mesh 

adaptation iterations 10-24. The 

previous iterations took in total 

less than 100 milliseconds

Cores 1 2 4 8 16 24

Step10 1 0,98 0,44 1,00 1,00 2,04

Step11 1 1,56 1,77 1,77 1,88 1,26

Step12 1 1,54 2,70 4,08 3,25 3,41

Step13 1 1,46 3,31 7,11 8,35 8,51

Step14 1 1,60 3,78 4,83 9,72 5,52

Step15 1 1,63 3,72 7,12 8,09 8,99

Step16 1 1,63 3,39 6,65 7,95 7,67

Step17 1 1,66 3,54 6,56 7,22 9,23

Step18 1 1,65 3,46 6,52 7,86 9,18

Step19 1 1,66 3,68 6,63 7,56 7,36

Step20 1 1,68 3,89 7,40 8,16 7,93

Step21 1 1,75 4,04 7,93 8,89 9,82

Step22 1 1,70 4,10 8,32 9,11 9,60

Step23 1 1,73 4,10 8,37 9,26 9,67

Step24 1 1,71 4,10 8,33 9,07 9,49

Fig. 27  Execution times for GALOIS code on the last 15 iterations of 

mesh generation process
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