
Vol.:(0123456789)1 3

Engineering with Computers (2021) 37:3857–3880

https://doi.org/10.1007/s00366-020-01253-y

ORIGINAL ARTICLE

Parallel graph-grammar-based algorithm for the longest-edge
refinement of triangular meshes and the pollution simulations
in Lesser Poland area

Krzysztof Podsiadło1 · Albert Oliver Serra3 · Anna Paszyńska2 · Rafael Montenegro3 · Ian Henriksen4 ·

Maciej Paszyński1 · Keshav Pingali4

Received: 4 August 2020 / Accepted: 18 December 2020 / Published online: 22 January 2021

© The Author(s) 2021

Abstract

In this paper, we propose parallel graph-grammar-based algorithm for the longest-edge refinements and the pollution simu-

lations in Lesser Poland area. We introduce graph-grammar productions for Rivara’s longest-edged algorithm for the local

refinement of unstructured triangular meshes. We utilize the hyper-graph to represent the computational mesh and the

graph-grammar productions to express the longest-edge mesh refinement algorithm. The parallelism in the original Rivara’s

longest edge refinement algorithm is obtained by processing different longest edge refinement paths in different three ads.

Our graph-grammar-based algorithm allows for additional parallelization within a single longest-edge refinement path. The

graph-grammar-based algorithm automatically guarantees the validity and conformity of the generated mesh; it prevents

the generation of duplicated nodes and edges, elongated elements with Jacobians converging to zero, and removes all the

hanging nodes automatically from the mesh. We test the algorithm on generating a surface mesh based on a topographic data

of Lesser Poland area. The graph-grammar productions also generate the layers of prismatic three-dimensional elements on

top of the triangular mesh, and they break each prismatic element into three tetrahedral elements. Next, we propose graph-

grammar productions generating element matrices and right-hand-side vectors for each tetrahedral element. We utilize the

Streamline Upwind Petrov–Galerkin (SUPG) stabilization for the pollution propagation simulations in Lesser Poland area.

We use the advection–diffusion-reaction model, the Crank–Nicolson time integration scheme, and the graph-grammar-based

interface to the GMRES solver.

Keywords Unstructured grids · Longest edge refinement · Graph-grammar · Pollution simulations · Advection–diffusion

equation

1 Introduction

Air pollution is receiving a lot of interest nowadays. It is

visible, especially in Lesser Poland area, as this is one of the

most polluted cities in Europe [1]. Air pollution depends on

traffic, climate, heating of building in the winter, the city’s

architecture, etc. The air quality can vary significantly over

a distance of even a few hundred meters. Air quality simu-

lation is a multidisciplinary endeavor. It applies numerical

methods for simulations of different meteorological and

chemical models [25]. This paper proposes a parallel graph-

grammar-based system for simulation and prediction of air

pollution over prescribed terrain data.

Most computer-aided simulations start with mesh genera-

tion of the domain with a finite set of elements. For irregular

geometries, the triangular elements in two dimensions or

 * Maciej Paszyński

 maciej.paszynski@agh.edu.pl

1 AGH University of Sciences and Technology Faculty

of Computer Science, Electronics and Telecommunication

Institute of Computer Science, al. A Mickiewicza 30,

30-059 Kraków, Poland

2 Jagiellonian University Faculty of Physics, Astronomy

and Applied Computer Science, Kraków, Poland

3 University of Las Palmas de Gran Canaria,

Las Palmas de Gran Canaria, Spain

4 The University of Texas, Oden Institute, Austin, USA

http://orcid.org/0000-0001-7766-6052
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-020-01253-y&domain=pdf

3858 Engineering with Computers (2021) 37:3857–3880

1 3

tetrahedral elements in three dimensions are probably the

most used finite elements in engineering computations [3].

The construction of the computational mesh usually starts

from an initial mesh. It refines the mesh iteratively towards

a final mesh, where we can solve our engineering problem

with the required accuracy.

The process of refinement can generate so-called hang-

ing nodes [4, 5]. In two-dimensions, they represent an edge

with one triangular element subdivided, and on the other

side, the large unbroken element. These nodes are difficult to

handle since we have shape functions spread over the finite

elements. In the hanging node case, we have to deal with

the matching of approximation of “small” shape functions

spread over the two broken elements with the approxima-

tion of “large” shape functions spread over the large unbro-

ken element. In three-dimensions, the situation gets even

more complicated since we may have an edge adjacent to

two “small” broken tetrahedra and adjacent to many (even

hundreds) of unbroken “big” elements.

We can eliminate a hanging node of a triangular element

by breaking the element and connecting the hanging node

with the opposite node. We must perform this algorithm in

a smart way since we do not want to end up with elongated

elements, where the Jacobians go to zero. One interesting

example of such an algorithm, which is considered a refer-

ence for two-dimensional grids, is the Rivara longest-edge

refinement algorithm [20, 31, 32].

In this paper, we express the two-dimensional Rivara

algorithm using graph-grammar productions, we extend it

to model the generation of the three-dimensional tetrahe-

dral meshes. We also propose graph-grammar productions

expressing the stabilized finite element method for the non-

stationary advection–diffusion-reaction simulations. We

incorporate the Crank–Nicolson time integration scheme

and interface with GMRES solver. We utilize this parallel

graph-grammar-based system for the pollution simulations

in Lesser Poland area.

The authors [7] proposed the first attempt to model mesh

transformations by applying the graph-grammar concept for

the regular triangular two-dimensional meshes with the h

adaptation. The authors used quasi-context sensitive graph

grammar. This approach, however, generated hanging nodes,

with all the difficulties related to managing these nodes.

Another attempt utilized the Composite Programmable

graph grammars (CP-graph grammar) introduced origi-

nally by [11–13] as a tool for a formal description of vari-

ous design processes. The authors [10, 27–29] applied the

CP-graph grammars to model two- and three-dimensional

adaptive grids with hanging nodes.

In this paper, we use the concept of a hypergraph, defined

in Sect. 2. The hypergraphs and their grammars have been

initially introduced by [15, 16] for applications in com-

puter graphics. There are special algorithms developed and

optimized for the hypergraphs [19, 22, 26]. This paper uti-

lizes the hypergraphs for modeling mesh refinement algo-

rithm and interfacing with the GMRES iterative solver. We

have implemented our graph-grammar-based system in

GALOIS [2, 8, 14, 24, 30] framework, allowing for concur-

rent graph processing.

We use the topographical database Shuttle Radar Topog-

raphy Mission [6] to generate in an adaptive way the two-

dimensional triangular mesh representing Lesser Poland

area. We utilize the longest-edge refinements, and we

remove the hanging nodes. We extend the topographic mesh

to a three-dimensional tetrahedral mesh, representing the air

above the terrain.

The resulting three-dimensional mesh is subject to the

computer simulation with the advection–diffusion-reaction

time-dependent solver modeling the air pollution propaga-

tion. We employ the Streamline Upwind Petrov–Galerkin

stabilization [21] of the advection–diffusion-reaction prob-

lem. We use the graph-grammar productions, generating

element matrices and right-hand-side vectors for each tet-

rahedral element. We incorporate the Crank–Nicolson time

integration scheme and interface with GMRES iterative

solver.

The motivations for developing the graph-grammar-based

simulation system are the following. We will compare the

computational costs of the classical longest-edge refinement

algorithm [20], to our graph-grammar-based algorithm on

a model example. We will count the number of basic opera-

tions, such as checking the status of a single triangle and

breaking a single triangle. While it is impossible to derive

a formula for the computational cost for a general mesh,

we will compare the algorithms on a representative model

example. Classical Rivara’s algorithm allows for paralleli-

zation by assigning each longest edge path to a single core.

In our graph-grammar-based algorithm, we move forward,

and we allow for processing a single longest edge path with

multiple cores.

We also claim that developing a graph-grammar-based

system has some potential benefit for parallelization of

the computations. The graph grammar productions are

basic undividable tasks that can be executed concurrently.

The graph-grammar model allows for implementation in

the graph processing system like, e.g., GALOIS environ-

ment [30]. The parallelization is obtained for free since the

GALOIS system automatically manages concurrent process-

ing of graph-grammar productions. In this paper, we imple-

mented a graph-grammar-based model of mesh generation

and generation of elemental matrices. In future work, we

plan to develop the graph-grammar model of the iterative

solver. We will perform matrix-vector multiplications ele-

ment wise, multiplying the elemental matrices by local por-

tions of the right-hand side, without assembling the matrices

but assembling the resulting vector.

3859Engineering with Computers (2021) 37:3857–3880

1 3

The structure of the paper is the following. We start

from the formal introduction of the hypergraph and graph

grammar in Sect. 2. Next, in Sect. 3, the two-dimensional

mesh refinement algorithm, initially proposed by Rivara, is

described. In Sect. 4, we introduce the graph grammar model

expressing the Rivara mesh refinement algorithm. Section 5

is devoted to comparing the graph-grammar-based algorithm

with Rivara’s longest edge refinement algorithm, includ-

ing the discussion on parallelization. Section 6 presents

the graph-grammar-based productions interfacing with the

GMRES solver, using the Crank–Nicolson time integration

scheme. Finally, Sect. 7 is devoted to the numerical results

of the simulation of pollution in Lesser Poland area. We

conclude the paper with Sect. 8.

2 Hypergraphs and graph grammar

In this section, the concept of hypergraph and graph gram-

mar are summarized, which are later used to model the

refinements of the two-dimensional unstructured mesh.

Definition 1 An undirected attributed labeled hypergraph

over label alphabet C and attribute set A is defined as a sys-

tem G = (V , HE, t, l, at, val) , where:

– V is a finite set of nodes,

– HE is a finite set of hyperedges,

– t ∶ HE → V
∗ is a mapping assigning sequences of target

nodes to hyperedges,

– l ∶ V ∪ HE → C is a node and hyperedge labeling func-

tion,

– at ∶ V ∪ HE → 2
A is a node and hyperedge attributing

function, where 2A is a power set of A.

– val ∶ (V ∪ HE) × A → D is a function assigning values of

attributes of nodes and hyperedges, where D =

⋃

a∈A
D

a

where D
a
 is a set of admissible values of attribute a.

Definition 2 A hypergraph G2 = (V2, HE2, t, l, at, val1)

over C and A is a subgraph of a hypergraph

G1 = (V1, HE1, t, l, at, val2) over C and A, (i.e., G
2
⊆ G

1
) if

V
2
⊆ V

1
 and E

2
⊆ E

1
.

Figure 1 presents an exemplary hypergraph H
1
 and its

subgraph H
2
.

Definition 3 A production suitable hypergraph of type k is

a system H = (G, Ext) , where:

– G = (V , HE, t, l, at, val) is a hypergraph over C and A,

– Ext is a sequence of external nodes of V, with |Ext| = k ,

where (Ext = (Ext1, Ext2,… , Ext
k
)).

Remark 1 Let G
2
 be a subgraph of G

1
 . If we need G

2
 to

be a production suitable hypergraph H2 = (G2, Ext2)

then we need to define Ext
2
 in the following way. Let

G3 = (V3, HE3, t, l, at, val3) where HE
3
= HE

1
− HE

2
 and

V
3
 are the nodes in V

1
 that are connected to HE

3
 . Then, the

nodes in Ext
2
 are V

3
∩ V

2
 ; that is, the nodes that connect H

2

and H
3
 . See Fig. 2.

Definition 4 A hypergraph production is a pair p = (L, R) ,

where both L and R are production suitable hypergraphs of

the same type k (both having the same number of external

nodes k).

Two graphs are isomorphic, if both have the same number

of nodes and edges, the corresponding nodes of both graphs

have the same labels and attributes, and the corresponding

Fig. 1 Hypergraph G
1
 (top) and hypergraph G

2
 (bottom). Notice that

G
2
 is a subgraph of G

1
 (grayed out)

3860 Engineering with Computers (2021) 37:3857–3880

1 3

edges of both graphs have the same labels, attributes and

sequences of nodes belonging to them.

Definition 5 Graph G is isomorphic up to attribute val-

ues with graph G′ iff there exist bijections f ∶ V → V � and

g ∶ EH → EH� such that

–
(

l(v) = l�(f (v))
)

 ∀v ∈ V ,

–
(

l(e) = l�(g(e))
)

 ∀e ∈ EH ,

–
(

at(v) = at�(f (v))
)

 ∀v ∈ V ,

–
(

at(e) = at�(g(e))
)

 ∀e ∈ EH ,

– (v1, v2,… , v
k
) = t(e) iff (f (v1), f (v2),… , f (vk)) = t�(g(e))

∀e ∈ E , ∀v1 ∈ V , v2 ∈ V ,… , v
k
∈ V .

The application of the graph-grammar production

p = (L, R) , where L is isomorphic with the hypergraph

H2 = (G2, Ext2) and R is isomorphic with the hypergraph

H4 = (G4, Ext4) to the hypergraph G
1
 consists in removing

the production suitable hypergraph H
2
 from G

1
 , replacing it

by the production suitable hypergraph H
4
 , and connecting

external nodes of H
4
 with the hyperedges of the hypergraph

G
1
∖G

2
 in such a way that each hyperedge which connected

the node v of G
1
∖G

2
 with the external node Ext

2
i

 of H
2
 before

application of the production, where i = 1,… , k , now con-

nects node v of G
1
∖G

2
 with the external node Ext

4
i

 of H
4
 . As

the result, the graph G
1
 is transformed into G

5
 , where the set

of nodes is equal to V
1
�V

2
∪ V

4
 and the set of edges is equal

to EH
1
�EH

2
∪ EH

4
 . See Figs. 3, 4.

The definition of graph grammar production can be

extended by adding a condition over the labels and values

of the hypergraphs’ attributes, named the applicability predi-

cate, which determines whether a hypergraph production

can be applied.

Definition 6 A hypergraph production with applicability

predicate is a triple p = (L, R, r) , where both L and R are

Fig. 2 Production suitable hypergraph H
2
 (top) and hypergraph G

3

(bottom). Notice that the external nodes of H
2
 (V

1
 , V

2
 , and V

3
) are the

connections with G
3

Fig. 3 Production p = (H2, H4) where the production suitable hyper-

graph H
2
 (top) is substituted by the H

4
 (bottom)

3861Engineering with Computers (2021) 37:3857–3880

1 3

production suitable hypergraphs of the same type and r is

applicability predicate defined as: r ∶ F → {TRUE, FALSE} ,

where F is a set of logical expressions defined over labels

and values of attributes of the hypergraphs.

A production with applicability predicate can be applied

to a graph only in such a case in which the applicability

predicate is fulfilled.

Definition 7 A hypergraph grammar is a system

GG = (P, G
S
) , where:

– P is a finite set of hypergraph productions of the form

p = (L, R, r).

– G
S
 is an initial hypergraph.

3 Longest-edge re�nement algorithm

In this section, we are giving a brief description of the

longest-edge algorithm. The longest-edge algorithm was

first introduced by Rivara in 1984 [32] as the generalized

bisection of simplices; be a set q = {a1, a2,… , a
n+1} of

independent points in ℝn , Rivara defines the diameter of

the simplex as �(q) = max �(⟨ai, aj⟩)∀i, j ∈ [1, n + 1] where

�(⟨ai, aj⟩) = ‖ai − aj‖2

Therefore, there exist two points a
k
, a

m
 such that

�(q) = �(⟨ak, am⟩) . Then, the generalized bisection of the

simplex q consists in adding a new point a = (a
k
+ a

m
)∕2 ,

and splitting the simplex q in two new simplices qk and

q
m

 such that

Once the theoretical framework of the general bisection is

laid out, Rivara develops a practical algorithm to ensure the

conformity of the mesh: the Longest-Edge Propagation Path

(LEPP) [20]. The main idea is to bisect an edge only when

it is the longest-edge of all its adjacent elements (this edge

is known as the terminal edge). To this end, when one tri-

angle �
0
 is marked to be refined, we need to traverse all the

adjacent elements through its longest edge until we find a

terminal edge. All the traversal elements are known as Long-

est-Edge Propagation Path, and they constitute the set LEPP

(�
0
). The algorithm bisects the last two elements of the set

LEPP(�
0
) and reconstructs it again until LEPP(�

0
) is empty.

In 2009, Rivara published a review of the longest-edge

bisection method [17] where she describes the man prop-

erties of the method:

– The iterative and arbitrary use of this method produces

triangles whose smallest interior angles are always

greater than or equal to half the initial mesh’s smallest

internal angle. Furthermore, there exists a similarity

between generated triangles. This property proves the

non-degeneracy of the algorithm.

– Longest-edge bisection always terminates in a finite

number of steps.

– The relationship between the two adjacent triangles’

diameter is positive and greater than a constant (K)

that depends on the initial triangulation. This property

ensures the smoothness (no abrupt change of size) of

the new mesh.

– The global iterative application of the method in any

triangulation generates most of the new triangles quasi-

equilateral (with smallest angles greater than 30◦).

qk ={a1, a2,⋯ , ak−1, a, ak+1,⋯ , am,⋯ , an+1}

qm ={a1, a2,⋯ , ak,⋯ , am−1, a, am+1,⋯ , an+1}

Fig. 4 After executing the production, the original hypergraph G
1

(top) is converted into G
5
 (bottom)

3862 Engineering with Computers (2021) 37:3857–3880

1 3

In 2013, a parallel multi-threaded version of the LEPP algo-

rithm was developed by Rivara [18], where each thread man-

ages the LEPP of a single triangle marked to be refined.

The new contributions of our paper can be summarized

as follows:

– the parallelism in the original Rivara’s longest edge

refinement algorithm is achieved by processing different

longest edge refinement paths in different cores, while

our graph-grammar-based algorithm allows for additional

parallelization within a single longest-edge refinement

path,

– we express the Rivara algorithm by graph-grammar pro-

ductions, and use it for the topographic mesh generation,

– we extend it to model the generation of the three-dimen-

sional tetrahedral meshes span over the terrain mesh,

– we express the stabilized finite element method of the

non-stationary advection–diffusion-reaction simulator

by graph grammar productions, working on top of the

three-dimensional tetrahedral finite element mesh,

– we incorporate the Crank–Nicolson time-integration

scheme and interface our graph-grammar system with

GMRES solver,

– we perform the pollution simulations in Lesser Poland

area.

4 Two-dimensional mesh
re�nement algorithm expressed
by a hypergraph-grammar

In this section, we express the two-dimensional mesh

refinement algorithm, initially proposed by Rivara [20]

using graph-grammars. Instead of following the idea of the

Longest-Edge Propagation Path algorithm, we will define a

hypergraph that models an unstructured triangular mesh and

a set of productions that modify the triangles locally.

Productions are set such that all of them bisect the tri-

angle, so they have to be applied only at triangles marked

for refinement or triangles that need to be bisected to con-

form to the mesh; i.e., triangles with one, two, or three

hanging-nodes.

Remark 2 Criteria for longest-edge in equilateral or isosceles

triangles. The criterion for choosing the longest-edge is to

prevent propagation, therefore, the priority for edges is: 1.

Edge with a hanging-node; 2. Edge on the boundary; 3. Rest

of the edges.

4.1 Hypergraph definition

The hypergraph modelling an unstructured mesh with trian-

gular elements is defined with the set of labels C = {N, E, T}

and attributes A = {x, y, z, HN, B, L, R} , where

– N is a hypergraph node label that represents a triangular

element node.

– E is a hyperedge label that denotes an edge of a triangular

element.

– T is a hyperedge label that denotes an interior of a trian-

gular element.

– x is a hypergraph node attribute which denotes x coordi-

nate of the node, where D
x
⊂ ℝ.

– y is a hypergraph node attribute which denotes y coordi-

nate of the node, where Dy ⊂ ℝ.

– z is a hypergraph node attribute which denotes z coordi-

nate of the node, where Dz ⊂ ℝ.

– HN is a hypergraph node attribute which denotes if the

corresponding triangular element node is a hanging node,

where D
HN

= {TRUE, FALSE}.

– B is a hyperedge attribute which denotes if the corre-

sponding triangular element edge is located on the bound-

ary of the triangular mesh, where D
B
= {TRUE, FALSE}.

– L is a hyperedge attribute that denotes the corresponding

triangular element edge’s length, where D
L
⊂ ℝ.

– R is a hyperedge attribute which denotes if the corre-

sponding triangular element is to be refined, where

D
R
= {TRUE, FALSE}.

4.2 Productions

We need six productions to perform the longest-edge bisec-

tion algorithm. They can be summarized as follows:

(P1) Triangle has no hanging-node and is marked to be

refined. Predicate prioritizes the longest-edge on the

border.

(P2) Triangle has one hanging-node; the longest-edge is

the one that contains the hanging-node.

(P3) Triangle has one hanging-node; the longest-edge is

one that does not contain the hanging-node. Predicate

prioritizes the longest-edge on the border.

(P4) Triangle has two hanging-nodes; the longest-edge is

one that contains a hanging-node.

(P5) Triangle has two hanging-nodes; the longest-edge is

the one that does not contain a hanging-node. Predi-

cate prioritizes the longest-edge on the border.

(P6) Triangle has three hanging-nodes.

Remark 3 The six productions assume that any triangle edge

can only contain one hanging-node. To ensure this restric-

tion, productions only allow to break one edge that is con-

nected to two regular nodes (no hanging-nodes).

To improve readability in the productions, a new function

(NL) has been introduced. This function computes the length

of a new edge depending on nodes. There are two possibilities

3863Engineering with Computers (2021) 37:3857–3880

1 3

depending on the number of arguments. So the two functions

are:

NL(i, j) =

√

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2

NL(i,j,k)=
√

(
xi+xj

2
− xk)

2 + (
yi+yj

2
− yk)

2 + (
zi+zj

2
− zk)

2.

Next, we describe in more detail the six productions and

their predicates.

4.2.1 Production 1 (P1)

Production (P1), Fig. 5, expresses the bisection of a triangle

with no hanging-nodes. This production will bisect the triangle

by edge 1.

Analysis of the predicate:

(R1 AND ((L1 ≥ L2) AND (L1 ≥ L3))). The first condition

ensures that the triangle has to be marked for refinement (R1),

and that the edge 1 is one of the longest-edges ((L1 ≥ L2) AND

(L1 ≥ L3)). If these two conditions are met, there are two cases:

– (B1) If edge 1 is on the boundary (B1), then the triangle

will be bisected; prioritizing the boundary. Note that in this

case, we don’t have to check if they are any hanging nodes

at the end of the edge. This is because there are no hanging

nodes on the boundary.

– (NOT B1 AND (NOT HN1 AND NOT HN2) AND (NOT

((B2 AND L2 = L1) OR (B3 AND L3 = L1)))) If edge 1

is not on the boundary (NOT B1), we need to ensure that

the two nodes of edge 1 are not hanging nodes (NOT HN1

AND NOT HN2); if they are, we cannot break edge 1 yet.

Finally, we should ensure that there is no other longest-

edge on the boundary (NOT ((B2 AND L2 = L1) OR (B3

AND L3 = L1))).

This production breaks the longest edge, generating a new

node in its midpoint (x = (x1 + x2)∕2, y = (y1 + y2)∕2 ,

z = (z1 + z2)∕2) ; this new node will be hanging if the edge

is not on the boundary or a regular node if it is on the bound-

ary (HN=!B1). The breaking of the edge also generates two

new edges whose lengths are half the length of the broken

edge (L=L1/2), and inherit the boundary flag (B=B1). Then,

the triangle has to be bisected; to this end, it generates a new

edge that connects the newly created node with the opposite

node, computing the length of this new edge (L=NL(1,2,3))

and setting it as an interior edge (B=FALSE). Finally, it gen-

erates the new two triangles that are not marked to be refined

(R=FALSE).

4.2.2 Production 2 (P2)

Production (P2), Fig. 6, expresses the bisection of a trian-

gle with one hanging-nodes by the edge that contains the

hanging-node.

Analysis of the predicate:

((L4+L5) ≥ L2) AND ((L4+L5) ≥ L3). The only condition

in this production ensures that the broken edge (edge 4 +

edge 5) is one of the longest-edges (((L4+L5) ≥ L2) AND

((L4+L5) ≥ L3)). We don’t need to check if the triangle is

marked to be refined since this bisection is needed for con-

formity. No other conditions are required since an edge with

a hanging-node has a higher priority.

This production does not break the longest edge since it’s

already broken. The production does bisect the triangle; to

this end, it generates a new edge that connects the newly cre-

ated node with the opposite node, computing the length of

this new edge (L=NL(4,3)) and setting it as an interior edge

Fig. 5 Production (P1) for the refinement of the marked element

3864 Engineering with Computers (2021) 37:3857–3880

1 3

(B=FALSE). And finally, it generates the new two triangles

that are not marked to be refined (R=FALSE).

4.2.3 Production 3 (P3)

Production (P3), Fig. 7, expresses the bisection of a triangle

with one hanging-nodes by one edge that does not contain

the hanging-node. This production will bisect the triangle

by edge 3.

Analysis of the predicate:

((L3 ≥ L2) AND (L3 > (L4+L5))). The first condition

ensures that edge 3 is longer or equal to edge 2 (L3 ≥ L2).

It also ensures that edge 3 is strictly longer than the edge

that is broken (L3 > (L4+L5)); it should be strictly longer

because if they have the same length, the broken edge has

higher priority.

We don’t need to check if the triangle is marked to be

refined since this bisection is needed for conformity.

Once we know that edge 3 is suitable for being broken,

there are two cases:

Fig. 6 Production (P2) for the additional refinement of the element

with the longest edge already broken with the hanging node, replac-

ing the hanging node with the regular node

Fig. 7 Production (P3) for the additional refinements of the element

with one hanging node

3865Engineering with Computers (2021) 37:3857–3880

1 3

– (B3) If edge 3 is on the boundary (B3), then the triangle

will be bisected; prioritizing the boundary. Note that we

don’t have to check if they are any hanging nodes at the

end of this edge. This is because there are no hanging

nodes on the boundary.

– ((NOT B3) AND (NOT HN1 AND NOT HN3) AND

(NOT (B2 AND L2 = L3))) If edge 3 is not on the

boundary (NOT B3), we need to ensure that the two

nodes of edge 3 are not hanging nodes (NOT HN1 AND

NOT HN3); if they are, we cannot break edge 3 yet.

Finally, we should ensure that edge 2 is not a longest-

edge on the boundary (NOT (B2 AND L2 = L3)).

This production breaks edge 3, generating a new node

i n i t s m i d p o i n t (x = (x1 + x3)∕2, y = (y1 + y3)∕2,

z = (z1 + z3)∕2) ; this new node will be hanging if the edge

is not on the boundary or a regular node if it is on the bound-

ary (HN=!B3). The breaking of the edge also generates two

new edges whose lengths are half the length of the broken

edge (L=L3/2), and inherit the boundary flag (B=B3). Then,

the triangle has to be bisected; to this end, it generates a new

edge that connects the newly created node with the opposite

node, computing the length of this new edge (L=NL(1,3,2))

and setting it as an interior edge (B=FALSE). Finally, it gen-

erates the new two triangles that are not marked to be refined

(R=FALSE).

4.2.4 Production 4 (P4)

Production (P4), Fig. 8, expresses the bisection of a triangle

with two hanging-nodes by one of the edges that contain a

hanging-node. This production will bisect the triangle by the

node connected to edge 4 and edge 5.

Analysis of the predicate:

(((L4+L5) ≥ (L6+L7)) AND ((L4+L5) ≥ L3)). The only

condition in this production ensures that the broken edge

(edge 4 + edge 5) is one of the longest-edges (((L4+L5) ≥

(L6+L7)) AND ((L4+L5) ≥ L3)). We don’t need to check

if the triangle is marked to be refined since this bisection

is needed for conformity. No other conditions are required

since an edge with a hanging-node has a higher priority.

This production does not break the longest edge since it’s

already broken. The production does bisect the triangle; to

this end, it generates a new edge that connects the newly cre-

ated node with the opposite node, computing the length of

this new edge (L=NL(4,3)) and setting it as an interior edge

(B=FALSE). And finally, it generates the new two triangles

that are not marked to be refined (R=FALSE).

4.2.5 Production 5 (P5)

Production (P5), Fig. 9, expresses the bisection of a triangle

with two hanging-nodes by the edge that does not contain

a hanging-node. This production will bisect the triangle by

edge 3.

Analysis of the predicate:

(((L3 > (L4+L5)) AND (L3 > (L6+L7))) AND (NOT

HN1 AND NOT HN3)). The first condition in this produc-

tion ensures that the edge 3 is strictly longer than the other

two broken edges ((L3 > (L4+L5)) AND (L3 > (L6+L7)));

both comparisons are strictly greater because broken edges

have priority. The second condition ensures that the two

nodes of edge 3 are not hanging nodes (NOT HN1 AND

NOT HN3); if they are, we cannot break edge 3 yet. We don’t

need to check if the triangle is marked to be refined since this

bisection is needed for conformity.

This production breaks edge 3, generating a new node in its

midpoint (x = (x1 + x3)∕2, y = (y1 + y3)∕2 , z = (z1 + z3)∕2) ;

Fig. 8 Production (P4) for an additional refinement of an element

with two hanging nodes, breaking the element towards one of the bro-

ken edges

3866 Engineering with Computers (2021) 37:3857–3880

1 3

this new node will be hanging if the edge is not on the bound-

ary, or a regular node if it is on the boundary (HN=!B3). The

breaking of the edge also generates two new edges whose

lengths are half the length of the broken edge (L=L3/2), and

inherit the boundary flag (B=B3). Then, the triangle has to

be bisected; to this end, it generates a new edge that connects

the newly created node with the opposite node, computing

the length of this new edge (L=NL(1,3,2)) and setting it as an

interior edge (B=FALSE). Finally, it generates the new two

triangles that are not marked to be refined (R=FALSE).

4.2.6 Production 6 (P6)

Production (P6), Fig. 10, expresses the bisection of a trian-

gle with three hanging-nodes. This production will bisect the

triangle by the node connected to edge 4 and edge 5.

Analysis of the predicate:

(((L4+L5) ≥ (L6+L7)) AND ((L4+L5) ≥ (L8+L9))).

The only condition in this production ensures that the broken

edge (edge 4 + edge 5) is one of the longest-edges (((L4

+L5) ≥ (L6+L7)) AND ((L4+L5) ≥ (L8+L9))). We don’t

need to check if the triangle is marked to be refined since this

bisection is needed for conformity. No other conditions are

required since an edge with a hanging-node has the higher

priority.

This production does not break the longest edge, since it’s

already broken. The production does bisect the triangle; to

this end, it generates a new edge that connects the newly cre-

ated node with the opposite node, computing the length of

Fig. 9 Production (P5) for an additional refinement of the element

with two hanging nodes, breaking the element towards the unbroken

edge

Fig. 10 Production (P6) removing the hanging node from the longest

edge of the element with three hanging nodes

3867Engineering with Computers (2021) 37:3857–3880

1 3

this new edge (L=NL(4,3)) and setting it as an interior edge

(B=FALSE). And finally, it generates the new two triangles

that are not marked to be refined (R=FALSE).

5 Comparison of the longest-edge
re�nement algorithm
and graph-grammar-based re�nement
algorithm

In this section, we will compare two algorithms, the classical

Rivara’s lonest-edge refinement algorithm, and our graph-

grammar-based refinement algorithm.

To describe the Rivara algorithm, we recall the definition

of LEPP(t) , the definition of a pair of terminal triangles, and

the definition of a terminal boundary triangle.

For any triangle t
0
 of any conforming triangulation T,

the LEPP(t
0
) consists of the ordered list of all triangles

t0, t1, t2, ..., t
n−1 , such that triangle t

i
 is the neighbour triangle

of t
i−1

 by the longest edge of t
i−1

 , for i = 1, 2, ..., n.

A pair of terminal triangles are two adjacent triangles

(t, t
∗) with a common longest edge.

A terminal boundary triangle is a triangle whose longest-

edge is a boundary edge.

We describe the pseudocode of the so-called Rivara Back-

ward-Longest-Edge-Bisection algorithm in Algorithm 1.

Algorithm 1 Backward-Longest-Edge-Bisection

Require: t triangle to refine, T mesh of triangular elements

1: while t remains without being bisected do

2: Find theLEPP(t)
3: t

∗ = the last triangle of LEPP(t)
4: if t

∗ is a terminal boundary triangle then

5: bisect t
∗

6: else

7: bisect the last pair of terminal triangle of LEPP(t)
8: end while

We summarize in Fig. 11 the Rivara algorithm. The green

triangle is the triangle denoted to break (t
0
). The triangles

belonging to the LEPP(t
0
) are denoted by blue color (tri-

angles “touched” by the algorithm), the red edges are the

terminal edges, the new edges created during the refinement

process.

We count the number of basic operations as performed

by the algorithm, defined as checking a triangle (CHECK)

(triangles denoted by blue color), or breaking a triangle

(BREAK) (triangles broken at the end of the LEPP). The

number of CHECK s and BREAK s is summarized in Table 1.

While the single longest edge path algorithm has no potential

for parallelization, all these CHECK s are executed sequen-

tially in each step. The longest-edge refinement algorithm for

a single LEPP is sequential. Even breaking the two triangles

located at the end of the path is sequential since the common

edge has to be locked until the first break is finished. The

parallel processing time is identical. The parallelism in the

classical Rivara algorithm is obtained by processing multiple

LEPP s in parallel, each LEPP in sequential [18].

The graph-grammar-based algorithm is summarized in

the pseudo-code Algorithm 2. We summarize in Fig. 12 the

graph-grammar-based algorithm. The initially broken tri-

angle is denoted by green color. The checked neighbors are

denoted by blue color. A red breaking line denotes the bro-

ken triangles. In Table 2 we count the number of triangles

where we tried to execute the productions (CHECK) and

the number of triangles modified by the execution of the

productions (BREAKs). The graph-grammar algorithm has

potential for parallelization even when the Rivara algorithm

uses a single LEPP . The number of sequential CHECK s for

graph-grammar-based algorithm is 44, but when we utilize

Fig. 11 The steps of the Rivara algorithm

Table 1 The number of touched and split triangles in each step of the

Rivara algorithm presented in Fig. 11

step CHECK BREAK

1 4 2

2 3 2

3 5 2

4 4 2

5 3 2

6 2 2

Total 21 12

Total parallel 21 12

3868 Engineering with Computers (2021) 37:3857–3880

1 3

eight cores, it is equal to 10 steps. The number of BREAK s

can be reduced to 9, since we break in parallel triangles that

do not share the broken edge.

Algorithm 2 Graph-grammar-based mesh refinement

Require: t0 triangle to refine, List list of triangles to refine

1: Execute production (P1)(t 0)
2: Add to List neighbors broken edges of triangle t 0
3: while Non empty List do
4: RefList = List

5: Clear(List))
6: Execute production (P2) on triangles from RefList

7: if any triangle broken then
8: Add to List neighbors of broken edges
9: continue

10: Execute production (P3) on triangles from RefList

11: if any triangle broken then
12: Add to List neighbors of broken edges
13: continue
14: (similarly for other productions (P4), (P5), (P6))
15: end while

While it is impossible to derive a formula for the com-

putational cost for a general mesh broken by classical and

graph-grammar-based algorithms, we estimated the costs on

a representative model example. The classical longest-edge

refinement algorithm processes a single LEPP in sequential.

Our graph-grammar-based algorithm can check several trian-

gles simultaneously, and it also performs multiple breaks at

the same time.

6 Graph-grammar-based interface
with advection–di�usion-reaction solver

At the end of the two-dimensional mesh generation, we exe-

cute production (Pmesh) in parallel over each triangular ele-

ment. It generates the three-dimensional tetrahedral elements

on top of the two-dimensional triangular element.

It plots a vertical line over each of the vertices of the tri-

angle, it partitions it into M equally distances intervals, and it

constructs M prismatic elements, and it divides each prismatic

element into three tetrahedral elements (see Fig. 13).

We construct M prismatic elements, and we divide

each prismatic element into three tetrahedral elements (see

Fig. 13). This operation is performed by graph-grammar

production (Pmesh). Next, we take a references tetrahedral

element M̂ span over (0, 0, 0) − (1, 0, 0) , (0, 0, 0) − (0, 1, 0) ,

(0, 0, 0) − (0, 0, 1) . We introduce the four basis functions

(1)�̂1(�1, �2, �3) =�1(�1, �2, �3) = 1 − �1 − �2 − �3

(2)�̂2(�1, �2, �3) =�2(�1, �2, �3) = �1

(3)�̂3(�1, �2, �3) =�3(�1, �2, �3) = �2

(4)�̂4(�1, �2, �3) =�4(�1, �2, �3) = �3

Table 2 Number of trials (CHECK s) and applications (BREAK s) of

particular productions executed by graph-grammar-based algorithm

in nine steps presented in Fig. 12

CHECKs BREAKs

step (P1) (P2) (P3)

1 1 1 0 0

2 1 0 0 1

3 5 0 0 1

4 5 0 1 0

5 4 0 1 0

6 4 0 0 1

7 5 0 1 1

8 8 0 1 1

9 7 0 1 1

10 4 0 1 0

Total 44 1 5 6

Total parallel 10 9

Fig. 12 The steps of the graph-grammar-based algorithm

3869Engineering with Computers (2021) 37:3857–3880

1 3

related to tetrahedral element vertices, six basis functions

related to finite element edges

four basis function related to finite element faces

and one basis function related to element interior

(5)�̂5(�1, �2, �3) =�1(�1, �2, �3)�2(�1, �2, �3)

(6)�̂6(�1, �2, �3) =�1(�1, �2, �3)�3(�1, �2, �3)

(7)�̂7(�1, �2, �3) =�1(�1, �2, �3)�4(�1, �2, �3)

(8)�̂8(�1, �2, �3) =�2(�1, �2, �3)�3(�1, �2, �3)

(9)�̂9(�1, �2, �3) =�2(�1, �2, �3)�4(�1, �2, �3)

(10)�̂10(�1, �2, �3) =�3(�1, �2, �3)�4(�1, �2, �3),

(11)
�̂11(�1, �2, �3) =

�1(�1, �2, �3)�2(�1, �2, �3)�3(�1, �2, �3)

(12)
�̂12(�1, �2, �3) =

�1(�1, �2, �3)�2(�1, �2, �3)�4(�1, �2, �3)

(13)
�̂13(�1, �2, �3) =

�1(�1, �2, �3)�3(�1, �2, �3)�4(�1, �2, �3)

(14)
�̂14(�1, �2, �3) =

�2(�1, �2, �3)�3(�1, �2, �3)�4(�1, �2, �3),

The basis functions over an arbitrary element are obtained

by using the transformation from the reference element into

an arbitrary element.

We focus on the pollution propagation equations

where u(x, y, z, t) is the pollutant concentration field,

�(x, y, z, t) =
(

�x(x, y, z, t), �y(x, y, z, t), �z(x, y, z, t)
)

 is a given

wind velocity, and � is the diffusion coefficient, and cu is the

reaction term, see [34] for more details.

We introduce time steps 0 = t
0
< t

1
< t

2
< ⋅ < t

N
= T

and we approximate the time derivative in a finite differ-

ence manner, with Crank–Nicolson scheme applied for time

discretization.

We introduce the weak formulation. We seek u ∈ V = H
1(Ω)

such that

where

where (u, v)Ω = ∫
Ω

uvdxdydz , and (u, v)Γ = ∫
Γ

uvds denotes

the L2 scalar product on Ω , Γ = �Ω , and n = (n
x
, n

y
, n

z
) is

the versor normal to Γ.

We introduce the finite element discretization. We seek

for u
h
∈ V

h
⊂ V

where V
h
 is span by the tetrahedral finite elements and basis

functions obtained from glueing together the element basis

functions.

(15)
�̂15(�1, �2, �3) =�1(�1, �2, �3)�2(�1, �2, �3)

�3(�1, �2, �3)�4(�1, �2, �3).

(16)
M̂ ∋ (�1, �2, �3) → xM(x, y, z) ∈ M

�i(x, y, z) = �̂i(x
−1

M
(x, y, z))

(17)
�u

�t
+ � ⋅ ∇u − ∇ ⋅ (�∇u) + cu = f

(18)

ut+1 − ut

dt
+ � ⋅ ∇

ut+1 + ut

2
−

∇ ⋅

(

�∇
ut+1 + ut

2

)

+ c
ut+1 + ut

2
= f t

(19)
ut+1 − ut

�t
+

b(ut, v) + b(ut+1, v)

2
= l(v) ∀v ∈ V

(20)
b(u, v) =(� ⋅ ∇u, v)Ω − (�∇u,∇v)Ω+

(�n ⋅ ∇u, v)Γ + (cu, v)Ω

(21)l(v) =(f , v)Ω

(22)

(

u
t+1

h
− u

t

h

�t
, v

h

)

+
b(ut

h
, v

h
) + b(ut+1

h
, v

h
)

2
= l(v

h
)

∀v
h
∈ V

h
⊂ V

Fig. 13 Generation of three-dimensional mesh starting from 2D mesh

representing the terrain, followed by the generation of element matri-

ces

3870 Engineering with Computers (2021) 37:3857–3880

1 3

A commonly used stabilization technique is the Stream-

line-upwind Petrov–Galerkin (SUPG) method [21]. In this

method, we modify the weak form as follows

w h e r e R(ut+1

h
) = � ⋅ ∇u

t+1

h
+ ��u

t+1

h
 , a n d

�−1
= � ⋅

(

1

hx
K

,
1

h
y

K

,
1

hz

K

)

+ 3p2�
1

hx
K

2
+h

y

K

2
+hz

K

2
 , where � stands for

the diffusion term, and � = (�
x
, �

y
, �

z
) for the convection

term, and hx
K

, h
y

K
 and hz

K
 are three dimensions of an element

K. Thus, we have

Finally, we iterate with time steps with implicite

Crank–Nicolson method

We introduce a graph grammar productions (PgenSUPG),

(PgenRHS), (PgenMass) that generate the element matrix,

(23)

b(ut+1

h
, vh) +

∑

K

(R(ut+1

h
), �� ⋅ ∇vh)K =

l(vh) +
∑

K

(f , �� ⋅ ∇vh)K ∀v ∈ V

(24)

bSUPG(u
t+1

h
, vh) = lSUPG(vh) ∀vh ∈ Vh

bSUPG(u
t+1

h
, vh) = �x

�
�ut+1

h

�x
, vh

�

Ω

+

�y

�
�ut+1

h

�y
, vh

�

Ω

+ �z

�
�ut+1

h

�z
, vh

�

Ω

+

�

�
�ut+1

h

�x
,
�vh

�x

�

Ω

+ �

�
�ut+1

h

�y
,
�vh

�y

�

Ω

+

�

�
�ut+1

h

�z
,
�vh

�z

�

Ω

+ (cuh, vh)Ω −

�
�
�ut+1

h

�x
nx, vh

�

Γ

−

�
�
�ut+1

h

�y
ny, vh

�

Γ

−

�
�
�ut+1

h

�z
nz, vh

�

Γ

+

�
�x

�ut+1

h

�x
+ �y

�ut+1

h

�y
+ �z

�ut+1

h

�z
+ ��ut+1

h
,

+

�
1

hx

+ 3�
p2

hx
K

2 + h
y

K

2

�−1

�x

�vh

�x
+ �y

�vh

�y
+ �z

�vh

�z

⎞
⎟⎟⎠Ω

lSUPG(vh) = (f , vh)Ω

+

⎛
⎜⎜⎝
f ,

�
1

hx

+ 3�
p2

hx
K

2 + h
y

K

2

�−1

�
�x

�vh

�x
+ �y

�vh

�y
+ �z

�vh

�z

��

Ω

.

(

ut+1 − ut

�t
, w

h

)

Ω

+ b
SUPG

(

u
t

h
+ u

t+1

h

2
, v

h

)

= l
SUPG

(v
h
) ∀v

h
∈ V

h

(

u
t+1

, w
h

)

Ω
+

�t

2
b

SUPG

(

u
t+1

h
, v

h

)

=
(

u
t
, w

h

)

Ω
+

�t

2
b

SUPG

(

u
t

h
, v

h

)

+ l
SUPG

(v
h
)∀v

h
∈ V

h

the right-hand-side, and the mass matrix with the solution

from the previous time step

These productions are executed in parallel over each element

at the beginning of each time step. The results of these pro-

ductions are some matrices and vectors, and they are used to

construct the local system over each element, with matrices

and right-hand-sides

This is done by the production (Psystem) which constructs

The resulting local systems are submitted to the GMRES

iterative solver.

We propose the following space refinements - time

progression algorithm. We start from an initial mesh

approximating the topography of the terrain roughly. We

solve the first time step of the advection–diffusion-reac-

tion problem with initial conditions. Next, we run one

(25)

(PgenSUPG)

⎡
⎢
⎢
⎣

bK
SUPG

(�1,�1) ⋯ bK
SUPG

(�1,�15)

⋮ ⋮ ⋮

bK
SUPG

(�15, �̂1) ⋯ bK
SUPG

(�15,�15)

⎤
⎥
⎥
⎦

(PgenRHS)

⎡
⎢
⎢
⎣

lK
SUPG

(�1)

⋮

lK
SUPG

(�15)

⎤
⎥
⎥
⎦

(26)(PgenMass)

⎡
⎢
⎢
⎣

(�1,�1) ⋯ (�1,�15)

⋮ ⋮ ⋮

(�15,�1) ⋯ (�15,�15)

⎤
⎥
⎥
⎦

(27)

⎡
⎢
⎢
⎣

(�1,�1) ⋯ (�1,�15)

⋮ ⋮ ⋮

(�15,�1) ⋯ (�15,�15)

⎤
⎥
⎥
⎦

+
�t

2
∗

⎡
⎢
⎢
⎣

b
K

SUPG
(�1,�1) ⋯ b

K

SUPG
(�1,�15)

⋮ ⋮ ⋮

b
K

SUPG
(�15,�1) ⋯ b

K

SUPG
(�15,�15)

⎤
⎥
⎥
⎦

(28)

⎡
⎢
⎢
⎣

(�1,�1) ⋯ (�1,�15)

⋮ ⋮ ⋮

(�15,�1) ⋯ (�15,�15)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

u
t

1

⋮

u
t

15

⎤
⎥
⎥
⎦
+

�t

2
∗

⎡
⎢
⎢
⎣

b
K

SUPG
(�1,�1) ⋯ b

K

SUPG
(�1,�15)

⋮ ⋮ ⋮

b
K

SUPG
(�15,�1) ⋯ b

K

SUPG
(�15,�15)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

u
t

1

⋮

u
t

15

⎤
⎥
⎥
⎦

+

⎡
⎢
⎢
⎣

l
K

SUPG
(�1)

⋮

l
K

SUPG
(�15)

⎤
⎥
⎥
⎦

(29)

(

(PgenSUPG) +
�t

2
(PgenMass)

)

�
t+1 =

(PgenMass)�t +
�t

2
(PgenSUPG)�t+

(PgenRHS)

3871Engineering with Computers (2021) 37:3857–3880

1 3

iteration of the longest-edge refinement algorithm. Then,

we solve the second time step of the advection–diffusion-

reaction problem using the solution obtained in the previ-

ous step on the coarser mesh. We continue with the space

iterations of the longest-edge refinement algorithm, and,

at the same time, we iterate with time step with the advec-

tion–diffusion-reaction simulations. The general idea of

the algorithm can be summarized in the pseudo-code pre-

sented in Algorithm 3. Notice that we assume some accu-

racy � of the terrain approximation, and after reaching

this accuracy, we do not perform more refinements there.

Algorithm 3 Space refinement - time progression al-

gorithm

Require: ǫ, mesh, initial configuration

1: previous u:=initial configuration

2: Refine mesh with accuracy ǫ

3: for time step=1,...,MAX TIME STEP do
4: Execute (Pmesh) over mesh

5: Execute (PgenSUPG) on mesh

6: Execute (PgenRHS) on mesh

7: Execute (PgenMass) on mesh

8: Project previous u into the mesh

9: Execute (Psystem) with (27), (28) and previous u

10: call GMRES solver to get current solution

11: previous u:=current solution

12: end for

7 Numerical results

7.1 Manufactured solution advection–diffusion
problem

In this section, we verify our solver by testing on the man-

ufactured advection-dominated diffusion solver. We select

the advection vector � = (1, 1)T , and Pe = 1∕� = 100 and

solve the advection–diffusion equation with homogeneous

Dirichlet boundary conditions. We utilize a manufactured

solution

enforced by the forcing term f. We set the reaction term to

zero c = 0 . This analytic expression of the solution limits

the Péclet number to Pe = 100 due to machine precision.

We report in Figs. 14, 15, 16 the sequence of meshes

generated by the adaptive algorithm. Figure 17 presents

the final mesh and the final results. We also report the

convergence in L2 norm in Table 3.

(30)u(x, y) =

(

x +
ePe∗x − 1

1 − ePe

)(

y +
ePe∗y − 1

1 − ePe

)

Fig. 14 Sequence of adaptive meshes (1/3) generated for advection–

diffusion manufactured solution problem stabilized with SUPG

3872 Engineering with Computers (2021) 37:3857–3880

1 3

Fig. 15 Sequence of adaptive meshes (2/3) generated for advection–

diffusion manufactured solution problem stabilized with SUPG

Fig. 16 Sequence of adaptive meshes (3/3) generated for advection–

diffusion manufactured solution problem stabilized with SUPG

3873Engineering with Computers (2021) 37:3857–3880

1 3

7.2 Mesh generation for the pollution simulations
in Lesser Poland area

We run four different experiments, starting from four different

initial meshes, presented in Fig. 18. The first initial mesh is

a regular triangular mesh. The second mesh is the Delaunay

mesh obtained from GMSH mesh generator [9]. The third

mesh is obtained from the MeshAdapt algorithm, also from

the GMSH generator. The fourth one is the Frontal–Delaunay

mesh from the GMSH generator. For the regular initial mesh

case, the longest-edge refinement algorithm coincides with the

Kossaczky refinement algorithm [23]; for other meshes, it is

not equivalent to the Kosaczky algorithm.

These initial meshes are not the exact rectangles since the

Earth is not flat, and the input data are taken from the Earth

database [6]. The initial mesh elements have vertices adjusted

to the three-dimensional points located in the R3 space, as read

from the Earth’s topography database.

We run 24 iterations of our graph-grammar based algo-

rithm. Figures 19, 20 presents some snapshots from the refine-

ment process. The triangulation of the terrain surface is pre-

sented in Fig. 21.

7.3 Computations of the wind vector field

We generate a 3D mesh on top of a 2D meshes with four

layers of prisms, each divided into three tetrahedrons. We

first focus on the computations of the wind distribution

in the entire area, based o two fixed values of the veloc-

ity based on the real measurements from the station in

Kasprowy Wierch mountain and the station in Zakopane

city. We generalize these measurements into the entire

domain by solving the divu = 0 equation. The results are

presented in Fig. 22. We have the north-western wind

slightly changing in time.

7.4 Computations of the pollution propagation

Having the advection field, representing the wind, we

focus on the advection–diffusion-reaction problem.

where ui(x, y, z, t) are the unknown concentrations of the four

components of the pollution in the area, namely the vector

of four unknowns, representing the chemical components

u1 = [SO2], u2 = [SO4], u3 = [NO4], u4 = [NO3] , �(x, y, z, t)

is a wind velocity vector computed above, representing the

north-western wind, s(u) is the chemical reactions part,

where we assume linear model s(u) = Au where A is the

chemical reactions matrix,

and K is the diagonal diffusion matrix

where the horizontal diffusion coefficient is equal to

8 ∗ 10
−6

m
2∕s , and the vertical diffusion coefficient

4 ∗ 10
−6

m
2∕s . The diffusion matrix is assumed to be identi-

cal for all the four species of the concentration field u. Since

we have four components of the pollution, our basis func-

tions, and element matrices and right-hand-side vectors are

“duplicated” four times, and they are coupled now through

the chemical reactions matrix. We assume that the pollutant

comes from the north boundary, and it is blown inside the

domain from the north boundary by the north-western wind

computed based on the real measurements.

(31)
�u

i

�t
+ � ⋅ ∇u

i
− ∇ ⋅

(

K∇u
i

)

= s(u
i
)

(32)A =

⎡
⎢
⎢
⎢
⎣

−0.15 0 0 0

0.15 0 0 0

0 0 − 0.3 0

0 0 0.3 0

⎤
⎥
⎥
⎥
⎦

(33)K =

⎡
⎢
⎢
⎣

8 ∗ 10
−6

0 0

0 8 ∗ 10
−6

0

0 0 4 ∗ 10
−6

⎤
⎥
⎥
⎦

m
2∕s

Fig. 17 Result to the manufactured solution problem computed on the

final mesh

Table 3 Convergence in L2

norm
Iteration 1 2 3 4 5 6 7

L
2 norm 69.2 41.9 36.8 20.8 16.3 8.14 5.47

Iteration 8 9 10 11 12 13 14

L
2 norm 2.24 1.09 0.38 0.12 0.03 0.009 0.003

3874 Engineering with Computers (2021) 37:3857–3880

1 3

and we have

(34)u
i
= �,

Fig. 18 The initial coarse meshes. The first initial mesh is a regu-

lar triangular mesh, the second mesh is the Delunay mesh obtained

from the GMSH mesh generator, the third mesh is obtained from the

MeshAdapt algorithm, also from the GMSH generator

Fig. 19 Snapshots (1/2) from the terrain 2D mesh generation

3875Engineering with Computers (2021) 37:3857–3880

1 3

at the wind outlet. Moreover, we have

(35)u(x, y, z, t) = 0,

at the terrain level, where Vd
= 1.3 ∗ 10

−3 m/s (so-called

diagonal term of the deposition matrix).

We run the entire simulation on a single Linux cluster

node. In Figs. 23, 24, 25, 26, we present some snapshots of

the simulation. They present the propagation from the north

boundary over the terrain by the north-western wind.

We have implemented our graph-grammar-based sys-

tem in GALOIS [8, 30] framework, allowing for concur-

rent graph processing. The code is compiled on node13

on the Atari Linux cluster from the Adaptive Algorithms

and Systems (a2s.agh.edu.pl) research group from the

Department of Computer Science, AGH University. The

(36)n ⋅

(

K∇u
i

)

= −V
d
u

i

Fig. 20 Snapshots (2/2) from the terrain 2D mesh generation

Fig. 21 Final mesh representing Lesser District of Poland (South of

Poland)

Fig. 22 The wind vector field computed by solving divu = 0 based on

two stations point measurements. The maximum wind speed varies

between 33 and 49 km/s

3876 Engineering with Computers (2021) 37:3857–3880

1 3

node13 has Intel(R) Xeon(R) CPU E5-2680 v4 proces-

sor with 2.40GHz clock and 28 cores. The code requires

gcc/8.1, boost, and cmake. The code can be downloaded

from https://github.com/Podsiadlo/TerrainMesh Genera-

tor/ lonestar/graphgrammar2. Here, we present the scal-

ability results for the concurrent code for 24 iterations.

The scalability of the code running from any of the four

initial meshes is similar. We report here the timings for the

regular initial mesh. It transforms the initial mesh of 24

triangles into the final mesh with over 10,000,000 trian-

gles. In Table 4 and Fig. 27, we report the execution time

on the last 15 iterations of the mesh generation algorithm,

with the number of used cores increasing from 1 to 28.

In Table 5 and Fig. 28, we report the speedup on the last

15 iterations of the mesh generation algorithm, with the

number of used cores increasing from 1 to 28. We report

the timings and speedup for iterations 15–24. The pre-

vious iterations took less than 100 milliseconds, so we

neglect them from our analysis. Notice that after reaching

the assumed accuracy for the terrain approximation in step

20, a single step’s computational cost goes down since we

do not perform massive refinements over the entire mesh.

8 Conclusions

This paper shows how to express by graph-grammar pro-

ductions the longest-edge mesh refinement algorithm for

a two-dimensional mesh with triangular elements. The

graph-grammar-based algorithm allows for better paral-

lelization than classical Rivara’s algorithm. We also show

how to extend it to the three-dimensional grids and interface

with GMRES solver and Crank–Nicolson time integration

scheme. The mesh generation algorithm removes all the

hanging nodes automatically from the mesh. The stabilized

advection–diffusion-reaction solver executed on the compu-

tational mesh based on topographic data of Lesser Poland

area provides a tool for the pollution propagation simula-

tions. The future work will include the simulation of the

pollution resulting from point sources in the Kraków city

Fig. 23 Pollution propagated by north-western wind, front view (1/2) Fig. 24 Pollution propagated by north-western wind, front view (2/2)

3877Engineering with Computers (2021) 37:3857–3880

1 3

Fig. 25 Pollution propagated by north-western wind, zoom towards

right top corner, and plotting the cross-section and contours (1/2) Fig. 26 Pollution propagated by north-western wind, zoom towards

right top corner, and plotting the cross-section and contours (2/2)

3878 Engineering with Computers (2021) 37:3857–3880

1 3

area, e.g., from the factories’ chimneys. We also would like

to have the thermal inversion effects simulated with Navier-

Stokes-Boussinesq equations [35].

Table 4 Execution times of the

GALOIS mesh generator for

up to 28 cores on Atari Linux

cluster node, for the mesh

adaptation iterations 10–24. The

previous iterations took less

than 100 milliseconds

Cores 1 2 4 8 16 24

Step10 51 52 115 51 51 25

Step11 92 59 52 52 49 73

Step12 208 135 77 51 64 61

Step13 434 298 131 61 52 51

Step14 855 535 226 177 88 155

Step15 1780 1091 479 250 220 198

Step16 3482 2140 1026 524 438 454

Step17 7031 4232 1984 1072 974 762

Step18 12425 7536 3588 1907 1581 1354

Step19 18985 11427 5156 2865 2512 2578

Step20 22582 13450 5807 3052 2768 2848

Step21 19113 10923 4726 2411 2149 1947

Step22 18527 10925 4521 2226 2034 1929

Step23 18451 10664 4504 2204 1992 1908

Step24 18418 10746 4494 2212 2031 1941

Total: 144s 85s 38s 21s 18s 17s

Table 5 Speedup of the

GALOIS mesh generator for

up to 28 cores on Atari Linux

cluster node, for the mesh

adaptation iterations 10-24. The

previous iterations took in total

less than 100 milliseconds

Cores 1 2 4 8 16 24

Step10 1 0,98 0,44 1,00 1,00 2,04

Step11 1 1,56 1,77 1,77 1,88 1,26

Step12 1 1,54 2,70 4,08 3,25 3,41

Step13 1 1,46 3,31 7,11 8,35 8,51

Step14 1 1,60 3,78 4,83 9,72 5,52

Step15 1 1,63 3,72 7,12 8,09 8,99

Step16 1 1,63 3,39 6,65 7,95 7,67

Step17 1 1,66 3,54 6,56 7,22 9,23

Step18 1 1,65 3,46 6,52 7,86 9,18

Step19 1 1,66 3,68 6,63 7,56 7,36

Step20 1 1,68 3,89 7,40 8,16 7,93

Step21 1 1,75 4,04 7,93 8,89 9,82

Step22 1 1,70 4,10 8,32 9,11 9,60

Step23 1 1,73 4,10 8,37 9,26 9,67

Step24 1 1,71 4,10 8,33 9,07 9,49

Fig. 27 Execution times for GALOIS code on the last 15 iterations of

mesh generation process

3879Engineering with Computers (2021) 37:3857–3880

1 3

Acknowledgements The visit of Albert Oliver Serra at AGH have been

supported by National Science Centre, Poland Grant no. 2015/17/B/

ST6/01867. The work of Maciej Paszyński, Krzysztof Podsiadło

has been supported by National Science Centre, Poland Grant no.

2017/26/M/ ST1/ 00281. The visit of Maciej Paszyński at Oden Insti-

tute was supported by JT Oden Research Faculty Fellowship. The work

of Keshav Pingali and Ian Henriksen was supported by NSF Grants

1337281, 1406355, and 1618425, and by DARPA contracts FA8750-

16-2-0004 and FA8650-15-C-7563.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. European Environment Agency, Air Quality in Europe - 2017

report

 2. Andrew A, Nguyen D, Pingali K (2015) Priority queues are not

good concurrent priority schedulers. European Conference on

Parallel Processing, Springer, Berlin, Heidelberg 209–221

 3. Carey GF, Oden JT (1984) Finite elements: computational

aspects. Prentice-Hall, Upper Saddle River

 4. Demkowicz L (2006) Computing with hp-Adaptive Finite Ele-

ments, vol I. Chapman & Hall / CRC Applied Mathematics

& Nonlinear Science, One and Two Dimensional Elliptic and

Maxwell Problems

 5. Demkowicz L, Kurtz J, Pardo D, Paszyński M, Rachowicz W,

Zdunek A (2007) Computing with hp-Adaptive Finite Elements,

Vol. II. Frontiers: Three Dimensional Elliptic and Maxwell

Problems with Applications, Chapman & Hall / CRC Applied

Mathematics & Nonlinear Science

 6. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S,

Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S,

Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf

D (2005) The Shuttle Radar Topography Mission, Reviews of

Geophysics 45(2) https://agupubs.onlinelibrary.wiley.com/doi/

pdf /10.1029/2005RG000183.

 7. Flasiński M, Schaefer R (1996) Quasi context sensitive graph

grammars as a formal model of FE mesh generation. Comput

Assist Mech Eng Sci 3:191–203

 8. Galois Framework. http://iss.ices.utexas.edu/?p=projects/galois

 9. Geuzaine C, Remacle J-F (2009) GMSH: a three-dimensional

finite element mesh generator with built-in pre- and post-process-

ing facilities. Int J Numer Meth Eng 79(11):1309–1331

 10. Goik D, Jopek K, Paszyński M, Lenharth A, Nguyen D, Pingali

K (2014) Graph grammar based multi-thread multi-frontal direct

solver with Galois scheduler. Proc Comput Sci 29:960–969

 11. Grabska E (1993a) Theoretical concepts of graphical modeling.

Part one: realization of CP-graphs. Mach Graph Vis 2(1):3–38

 12. Grabska E (1993) Theoretical concepts of graphical modeling.

Part two: CP-graph grammars and languages. Mach Graph Vis

2(2):149–178

 13. Grabska E, Hliniak G (1993) Structural aspects of CP-graph lan-

guages. Schedae Informaticae 5:81–100

 14. Hassaan MA, Burtscher M, Pingali K (2011) Ordered vs. Unor-

dered: A comparison of parallelism and work-efficiency in irreg-

ular algorithms, Proceedings of the 16th ACM Symposium on

Principles and Practice of Parallel Programming, PPoPP ’11

 15. Habel A, Kreowski HJ (1987) May we introduce to you: hyper-

edge replacement. Lect Notes Comput Sci 291:5–26

 16. Habel A, Kreowski HJ (1987) Some structural aspects of hyper-

graph languages generated by hyperedge replacement. Lect Notes

Comput Sci 247:207–219

 17. Rivara MC (2009) Lepp-bisection algorithms, applications and

mathematical properties. Appl Numer Math 59(9):2218–2235

 18. Rivara MC, Rodriguez P, Montenegro R, Jorquera G (2012) Mul-

tithread parallelization of Lepp-bisection algorithms. Appl Numer

Math 62(4):473–488

 19. Heuer T, Sanders PG, Schlag S (2019) Network flow-based refine-

ment for multilevel hypergraph partitioning. J Exp Algorithmics

24(1):1–36

 20. Rivara M-C (1997) New longest-edge algorithms for the refine-

ment and/or improvement of unstructured triangulations. Int J

Numer Meth Eng 40:3313–3324

 21. Hughes TJR, Franca LP, Mallet M (1987) A new finite element

formulation for fluid dynamics: VI. Convergence analysis of the

generalized SUPG formulation for linear time-dependent multi-

dimensional advective-diffusive systems. Comput Methods Appl

Mech Eng 6:97–112

 22. Karypis G, Kumar V (1998) hMETIS 1.5: A Hypergraph Par-

titioning Package. Technical Report, Department of Computer

Science, University of Minnesota

 23. Kossaczký I (1994) A recursive approach to local mesh refinement

in two and three dimensions. J Comput Appl Math 55(3):275–288

 24. Kulkarni M, Pingali K, Walter B, Ramanarayanan G, Bala K,

Kavita Chew LP (2007) Optimistic parallelism requires abstrac-

tions. ACM SIGPLAN Notices 42(6):211–222

 25. Oliver A, Montero G, Montenegro R, Rodríguez E, Escobar JM,

Pérez-Foguet A (2013) Adaptive finite element simulation of stack

pollutant emissions over complex terrain. Energy 49:47–60

 26. Papa DA, Markov IL (2007)Hypergraph partitioning and cluster-

ing. Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms

and Metaheuristics, chapter 61 (2007) 61-1–61-19, CRC Press,

Boca Raton

 27. Paszyński M, Paszyńska A (2008) Graph transformations for

modeling parallel hp-adaptive finite element method. Lect Notes

Comput Sci 4967:1313–1322

Fig. 28 Speedup for GALOIS code on the last 3 iterations of mesh

generation process

http://creativecommons.org/licenses/by/4.0/

3880 Engineering with Computers (2021) 37:3857–3880

1 3

 28. Paszyński M, Paszyńska A, Grabska E (2009) Graph transfor-

mations for modeling hp-adaptive finite element method with

mixed triangular and rectangular elements. Lect Notes Comput

Sci 5545:864–875

 29. Paszyński M, Paszyńska A, Grabska E (2008) Graph transfor-

mations for modeling hp-adaptive Finite Element Method with

triangular elements. Lect Notes Comput Sci 5103:604–613

 30. Pingali K, Nguyen D, Kulkarni M, Burtscher M, Hassaan MA,

Kaleem R, Lee TH, Lenharth A, Manevich R, Mendez-Lojo M,

Prountzos D, Sui X (2011) The tao of parallelism in algorithms,

in Proceedings of the 32nd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation 12-25

 31. Rivara MC (1984) Algorithms for refining triangular grids suit-

able for adaptive and multigrid techniques. Int J Numer Meth Eng

20(4):745–756

 32. Rivara MC (1984) Mesh refinement processes based on the gener-

alized bisection of simplices. SIAM J Numer Anal 21(3):604–613

 33. Calo VM (2005) Residual-based multiscale turbulence modeling:

Finite volume simulations of bypass transition, Stanford Univer-

sity, Ph.D. Thesis

 34. Paszyński M (2020) Klasyczna i izogeometryczna metoda

elementów skończonych, AGH University, https://epodrec-

z n i k i . o p e n . a g h . e d u . p l / o p e n a g h - p o d re c z n i k i \ _ v i e w.

php?categId=97&handbookId=77

 35. Paszyński M, Siwik L, Podsiadło K, Minev P (2020) A massively

parallel algorithm for the three-dimensional Navier-Stokes-Bouss-

inesq simulations of the atmospheric phenomena. Lect Notes

Comput Sci 12137:102–117

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

	Parallel graph-grammar-based algorithm for the longest-edge refinement of triangular meshes and the pollution simulations in Lesser Poland area
	Abstract
	1 Introduction
	2 Hypergraphs and graph grammar
	3 Longest-edge refinement algorithm
	4 Two-dimensional mesh refinement algorithm expressed by a hypergraph-grammar
	4.1 Hypergraph definition
	4.2 Productions
	4.2.1 Production 1 (P1)
	4.2.2 Production 2 (P2)
	4.2.3 Production 3 (P3)
	4.2.4 Production 4 (P4)
	4.2.5 Production 5 (P5)
	4.2.6 Production 6 (P6)

	5 Comparison of the longest-edge refinement algorithm and graph-grammar-based refinement algorithm
	6 Graph-grammar-based interface with advection–diffusion-reaction solver
	7 Numerical results
	7.1 Manufactured solution advection–diffusion problem
	7.2 Mesh generation for the pollution simulations in Lesser Poland area
	7.3 Computations of the wind vector field
	7.4 Computations of the pollution propagation

	8 Conclusions
	Acknowledgements
	References

