
Parallel Greedy Graph Matching

using an Edge Partitioning Approach

Md. Mostofa Ali Patwary

Department of Informatics, University of

Bergen, Norway

Mostofa.Patwary@ii.uib.no

Rob H. Bisseling

Department of Mathematics, Utrecht

University, the Netherlands

R.H.Bisseling@uu.nl

Fredrik Manne

Department of Informatics, University of

Bergen, Norway

fredrikm@ii.uib.no

Abstract

We present a parallel version of the Karp-Sipser graph match-

ing heuristic for the maximum cardinality problem. It is bulk-

synchronous, separating computation and communication, and uses

an edge-based partitioning of the graph, translated from a two-

dimensional partitioning of the corresponding adjacency matrix.

It is shown that the communication volume of Karp–Sipser graph

matching is proportional to that of parallel sparse matrix–vector

multiplication (SpMV), so that efficient partitioners developed for

SpMV can be used. The algorithm is presented using a small ba-

sic set of 7 message types, which are discussed in detail. Experi-

mental results show that for most matrices, edge-based partitioning

is superior to vertex-based partitioning, in terms of both parallel

speedup and matching quality. Good speedups are obtained on up

to 64 processors.

Categories and Subject Descriptors D.1.3 [Programming Tech-

niques]: Concurrent Programming—Parallel programming

General Terms Algorithms, Performance

Keywords bulk-synchronous parallel, graph, heuristics, Karp-

Sipser, matching, partitioning, sparse matrix

1. Introduction

Let G = (V, E) be a graph with vertex set V and edge set E.

A matching M ⊆ E is a pairing of adjacent vertices such that

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

HLPP’10, September 25, 2010, Baltimore, Maryland, USA.

Copyright c© 2010 ACM 978-1-4503-0254-8/10/09. . . $10.00

each vertex is matched with at most one other vertex. The objec-

tive of maximum cardinality matching is to match as many ver-

tices as possible. In this paper, we investigate the parallelization

of one particular algorithm for maximum cardinality matching, the

KARP–SIPSER algorithm [10], which is a heuristic that has been

shown in practice to yield high-quality matchings quickly [16].

Heuristic matching algorithms are often the common choice in

practical applications as they are much faster for large problem

sizes than optimal algorithms, and because they are easier to imple-

ment and parallelize. For bipartite graphs, it has been shown [13]

that KARP–SIPSER outperforms other heuristic algorithms such as

minimum-degree matching. This motivates our choice to paral-

lelize the KARP–SIPSER algorithm.

We view the graph G = (V, E) as an adjacency matrix A of

size n × n where n = |V | and where for each edge (i, j) ∈ E,

A has two nonzeros aij and aji such that aij = aji. In matrix

language, our problem then is to find a matching of maximum

cardinality among the rows. Since the problem is unweighted, we

assume that the numerical value aij = 1 for all nonzeros. The

adjacency list of a vertex i ∈ V is equivalent to row i of A and

column i of A. We note that A is symmetric and aii = 0 for all i =

1, 2, . . . , n. (We number vertices/rows from 1 onwards.) In sparse

matrix computations, it has been customary already for many years

to view matrices for certain purposes as graphs, see e.g. [8, Ch. 1],

but in this paper we will exploit the reverse connection, by viewing

a graph as a matrix to benefit from sparse matrix partitioning

methodology for the purpose of parallelizing a graph algorithm.

Since row i is identical to column i, instead of mentioning row

and column i separately, we sometimes call them together rowcol

i. We maintain only one adjacency list for both of them. The list

1

5

2
3
4

1 2 3 4 5
x x x x

x x
x
x
x

x
x
x

xx

2 3 4 5

1 4

1 5

1 2

1 3

5

4

3

4

5

1

2

12 3

4 5

(a) (b) (c)

Figure 1. cage3 matrix of size 5 × 5 [7]. (a) The graph represen-

tation, (b) the corresponding adjacency matrix where each x repre-

sents a nonzero, and (c) the rowcols {1, 2, . . . , 5}.

contains all entries {aij : 1 ≤ j ≤ n and aij 6= 0}. We

get the nonzeros of row i or column i by accessing the entries in

rowcol i. Figures 1(a) and 1(b) show the transformation of a graph

to an adjacency matrix and Figure 1(c) shows the corresponding

rowcols, which can also be seen as adjacency lists.

Our parallelization of the KARP–SIPSER algorithm will be done

in bulk-synchronous parallel (BSP) style [19] (see also [3, Ch. 1]),

which is characterized by alternating between computation phases

and communication phases, each ended by a global barrier synchro-

nization; these phases are commonly called supersteps. A compu-

tation phase uses only locally available data and can last as long as

there is something to compute locally, but it can also be terminated

earlier, for instance after a fixed amount of work. This enhances

load balancing by detecting at an earlier stage that a processor has

run out of work. The BSP style gives a high-level framework for

algorithmic development, which eases parallelization of irregular

algorithms such as graph algorithms. Examples where this style

has been employed are graph coloring [4], edge-weighted graph

matching [15], and single-source shortest paths [14].

An advantage of using BSP at a programming level is that the

BSPlib communication library [9] takes some of the tediousness

away of message-passing for irregular computations; in particular,

the bulk-synchronous message passing primitive bsp send is help-

ful, as it allows sending data to an arbitrary processor without the

need for a corresponding receive request. The data is sent to a re-

mote buffer, which can be emptied at the next superstep. BSPlib

is available on almost all computer architectures, through a library

called BSPonMPI [18], which can be linked to the program, thus

effectively turning it into an MPI program. Another advantage of

using BSP is that many communication optimizations can be left to

the system; for instance, different messages to the same destination

are automatically detected and combined. One goal of this paper

is to demonstrate how to parallelize a graph algorithm with a high

level of irregularity by using BSP.

Instead of using BSP, we could also use message passing, im-

mediately sending matching data once they become available. To

make use of this, for instance to improve the quality of the match-

ing, these data must also be received as soon as possible, requiring

frequent polling for incoming messages (assuming communication

is nonblocking). This would increase communication time and in-

cur more message latency costs, and it would remove the global

notion of time that is given by the supersteps of the BSP model.

A fundamental question when parallelizing an algorithm for a

distributed-memory computer is how to distribute the data among

the processors. A common approach for graph algorithms has been

to partition the vertices and then assign each resulting part to

a processor (assigning the edges in a corresponding manner). In

matrix terms, this leads to a one-dimensional row distribution.

Often, the graph has been partitioned beforehand using software

such as Metis [11] or Scotch [17]. This has also been the approach

taken in our previous work [15].

An alternative approach would be to partition the edges in-

stead of the vertices. In matrix terms, this leads to a general two-

dimensional distribution, with in principle a larger space of possi-

ble solutions. For parallel sparse matrix–vector multiplication, this

is known to lead to much lower communication volumes for cer-

tain types of matrices such as web-link matrices, originating out-

side the traditional application area of Finite Element Methods,

see [5, 20]. These matrices from nontraditional areas often have

rows and columns with widely varying numbers of nonzeros. One-

dimensional methods avoid communication in one direction, but

often pay a heavy price in the other direction, especially for rela-

tively dense rows or columns. Two-dimensional methods are able to

handle these much better. For graph algorithms, as far as we know,

two-dimensional methods have not been employed yet. One of our

goals is thus to investigate whether the edge-partitioning approach

yields similar benefits as in the matrix–vector case.

We now define some notations that we use throughout the pa-

per. The number of nonzeros in a row i of A is denoted by nzi.

We call a row i a singleton if nzi = 1. We let the matching al-

gorithm use p processors denoted by P0, P1, . . . , Pp−1. We use

the two-dimensional partitioning approach of the Mondriaan pack-

age [20] to distribute A symmetrically among p processors before

the matching starts. This means that aij and aji are assigned to

the same processor. The nonzeros of a row i could be distributed

among several processors, say, qi processors. Let lci,s denote the

local number of nonzeros of row i in Ps. We choose one of the qi

processors as the owner of i, denoted by P (i), and the other qi− 1

processors as the nonowners of i, given by the set nonOwners(i),

where each nonowner is denoted by P ′(i). Note that P (i) stores

nonOwners(i) and nzi, whereas each P ′(i) knows only about

P (i). Both the owner and the nonowners maintain their value of

lci,s. We use isMatched(i) for the status of matching (either true

or false) and m(i) for the matching partner; both are stored at P (i).

The remainder of this paper is organized as follows. In Section

2, we present the sequential and parallel KARP–SIPSER algorithm

and analyze the communication requirements of the parallel algo-

rithm. In Section 3, we describe our experimental methodology, test

set details, and our results. We conclude in Section 4.

2. Matching Algorithms

2.1 The Sequential KARP–SIPSER Algorithm

Algorithm 1 Sequential KARP–SIPSER (A)

1: M ← ∅
2: while A 6= ∅ do

3: if A has singleton rows then

4: Pick a singleton row i uniformly at random

5: Let aij be the nonzero entry in row i

6: else

7: Pick a nonzero entry aij uniformly at random

8: M ←M ∪ {(i, j)}
9: A← A \ ({ai∗} ∪ {a∗i} ∪ {aj∗} ∪ {a∗j})

10: return M

The KARP–SIPSER algorithm [10] is a simple greedy algo-

rithm for maximum cardinality graph matching. We will express

it in terms of its adjacency matrix formulation. The idea of the al-

gorithm is as follows. Let A be a symmetric matrix and M the

set of matches. If the current matrix A has singleton rows, then

the algorithm randomly chooses one such row i and adds (i, j) to

the matching M , where aij is the unique nonzero entry in row i,

and removes all the entries from rowcols i and j, and then con-

tinues. If the current matrix has more than one entry in each row,

hence has no singleton rows, then it picks a random entry aij , adds

(i, j) to the matching and deletes all the entries from rowcols i and

j, and then continues. The algorithm stops when A has become

empty. Algorithm 1 gives the formal description of the sequential

KARP–SIPSER algorithm. Note that while executing the algorithm,

the deletion of rowcols generates new singleton rows.

There are two phases in the execution of the KARP–SIPSER

algorithm. The first phase starts at the beginning of the whole

algorithm and ends when the current matrix has more than one

entry in each row. Phase two is the remainder of the algorithm. We

note that if M1 is the set of entries chosen in phase one, then there

still exists some maximum cardinality matching that contains M1,

see [1, Fact 1]. Thus the algorithm may have reduced the number

of optimal solutions that it can find, but there still is at least one.

Furthermore, it has been shown that almost all the remaining rows

are matched by the KARP–SIPSER algorithm in the special case

where A is a random matrix [1, 6].

2.2 The Parallel KARP–SIPSER Algorithm

In the remainder, we present our parallel implementation of the

KARP–SIPSER algorithm. As stated, the algorithm starts with the

non-zero entries distributed among the processors and for each row

i there is one dedicated owner of that row. Each processor then

operates in synchronized rounds where it first performs a local

version of the sequential algorithm followed by communication.

Here, the match for a singleton row is performed at the processor

that has the only (remaining) entry of that row.

In the sequential part, a processor Ps will try to match a prede-

fined number, TpR, of its remaining unmatched rows. Priority is

given to singleton rows but if Ps runs out of them before having

performed TpR matching attempts, it will try to match some of

its remaining rows with random neighbors. This is continued until

TpR matching attempts have been reached or until Ps has run out

of available rows. In our program texts, Ps will always denote the

current processor which will execute the statements of the text.

To see how the algorithm differs from the sequential one, con-

sider when Ps wants to match row i (which it owns) with row j.

If Ps also owns row j it can immediately perform the match, but

if another processor Pz owns it, then Ps must send a matching re-

quest to Pz . Depending on the outcome of this request the match

will succeed or fail. Note that the only reason why a matching re-

quest could fail is if there were multiple requests to match with the

same row in the same or the previous round. For termination, the

algorithm relies on some random requests succeeding, which works

well in practice. We could also have implemented a stricter mech-

anism to guarantee termination (e.g. by only requesting matches

with higher numbered rows).

In addition to attempting to match its own rows, a processor

must also process and answer incoming requests following the

communication stage. The overall structure is outlined in Algo-

rithm 2. In the algorithm, Qs is a queue containing all singleton

rows on processor Ps, while StpR and RpR denote the number of

attempts per round to perform singleton and random matches.

Algorithm 2 PARALLEL KARP–SIPSER ()
1: while A 6= ∅ do

2: PROCESS-MESSAGES()

3: StpR← 0, RdpR← 0

4: while StpR + RdpR < TpR and A 6= ∅ do

5: if Qs 6= ∅ then

6: PICK-SINGLETON-ROW()

7: else

8: PICK-RANDOM-ROW()

9: BSP-SYNC()

Table 1. Summary of message types used.

Type Call Meaning

Singleton request smr(i, j, Pz) Matches singleton row i to j

Random request rmr(i, j, Pz) Matches random row i to j

Confirmation cf (i, Pz) Confirms success of matching i

Unavailability u(i) Removes all nonzeros in rowcol i

Handover h(i) Hands over row i to a nonowner

Give-up g(i, Pz) Removes Pz from nonOwners(i)

Criticality ct(i, Pz)) Local count of row i became 1

2.2.1 The Different Message Types

Our algorithm relies on different types of messages to exchange

information between the processors. The different types are sum-

marized in Table 1 and explained in this subsection.

The first type of message is a singleton match request. Sup-

pose processor Ps wants a singleton row i to match with row j,

but P (j) 6= Ps. Therefore, Ps must send a message to P (j) re-

questing to match j with i. We use smr to denote such a match

request. Since P (j) could receive several match requests from sev-

eral processors and P (j) can match j only with one i, P (j) sends

back reply messages, called confirmation message (denoted by cf),

to update the requesters about the success of the match request.

(If a requester does not receive a confirmation back within two

rounds, this means that the request has failed.) The third type of

message is the unavailability message (denoted by u). When a row

i is matched with a row j, we need to remove all the entries from

row i, column i, row j, and column j. Since we have only one adja-

cency list called rowcol i for each row i and column i, to remove all

entries from both of them, it is sufficient to remove the entries from

rowcol i. Therefore, we remove rowcol i and j. We first remove

the entries in rowcol i and j from Ps, and then send unavailability

messages to the other qi − 1 and qj − 1 processors holding row

i and row j, respectively, to remove the entries in rowcol i and j

from them. There is another type of match request, called random

match request (denoted by rmr), used to match a row i with row j,

given that P (i) = Ps. This type of message is only initiated when

Ps can perform more work in the current round but Qs = ∅, where

Qs denotes the queue of singleton rows in Ps.

We now discuss the remaining three types of messages. Con-

sider a situation where i is a singleton row and the local count for

row i in P (i) is 0. Then, P (i) must send a message to P ′(i), the

only nonowner of i, to insert i into its singleton queue. We call

this message a handover message, denoted by h. The next type of

message is called give-up message, denoted by g, which is always

sent from a nonowner, P ′(i) of i, to P (i) to remove P ′(i) from

nonOwners(i). Processor P ′(i) sends such a message when its

local count for row i reduces to 0. The last type of message, crit-

icality message (denoted by ct), is sent from a nonowner P ′(i) to

P (i). We use this message to update P (i) that the local count for

row i in P ′(i) has been reduced to 1. This message enables the

owner P (i) to verify whether i has become a singleton row. The

criticality message(s) for row i together with the knowledge of nzi

enable the owner of row i at the earliest possible moment to de-

tect that a locally empty row has become singleton and thus to in-

sert it into the appropriate queue on the only nonempty processor

by using a handover message. We could have decided not to use

criticality messages. Then, we would need a mechanism for trans-

ferring ownership, which is more complicated and would involve

extra communication.

2.2.2 The Functions

PROCESS-MESSAGES function: This function processes all the

incoming messages. We do the following, based on the message

type. For each singleton match request smr(i, j, Pz) received

from processor Pz , we call MATCH-ROWCOL(i, j, Pz, singleton)

to match i with j. For each unavailability message u(i), we call

REMOVE-ROWCOL(i) to remove i from Ps. For each handover

message h(i), we check whether i is singleton. If so, we push i

into the singleton queue, Qs. For a criticality message ct(i, Pz),

we reduce the nonzero count of row i, nzi, by lci,z − 1. We

also check whether this reduction makes i a singleton. If so,

we send a handover message h(i) to Pz to push i into its sin-

gleton queue. For each confirmation message cf (i, Pz), we call

CONFIRM(i, Pz) to remove row i. For each random match re-

quest rmr(i, j, Pz), we call MATCH-ROWCOL(i, j, Pz, random)

to match j with i. For each give-up message g(i, Pz), we remove

Pz from nonOwners(i). Since processor Pz sends the give-up

message only when it removes its last local entry in row i, we re-

duce the nonzero count of row i, nzi, by 1 and if relevant, insert row

i into the singleton queue. We do this by calling DECREMENT(i).

In our implementation, all messages types have the same pri-

ority, and they are processed in the order they were entered into

the receive buffer of the BSP system. It is possible, however, to

sort them by type first, e.g., to give preference to singleton match

requests over random match requests.

Algorithm 3 PICK-SINGLETON-ROW() - Picks singleton rows and

matches them.
1: i← Qs.pop()

2: if lci,s = 1 then

3: lci,s ← 0

4: Let aij be the entry in row i

5: REMOVE-ROWCOL(j)

6: if P (j) = Ps then

7: MATCH-ROWCOL(i, j, Ps, singleton)

8: else

9: send a singleton match request smr(i, j, Ps) to P (j)

10: StpR← StpR + 1

PICK-SINGLETON-ROW function (given by Algorithm 3). The

goal here is to pick and match a singleton row. The function first

pops a row i from Qs and then verifies whether i is still a single-

ton row by checking if lci,s = 1. (This check is necessary because

unavailable rows are not removed from queues.) If not, it contin-

ues to the next singleton row in Qs. If the answer is yes, it does as

follows. Let aij be the unique entry in row i. Although j is the

only option for i to match with, j could have several such sin-

gleton candidates and it can match only with one of them. Now,

irrespective of which singleton row it is matching with, all en-

tries from row j must be removed, because j will match with this

i or one of the other candidate singleton rows, which eventually

leads to the removal of rowcols i and j. So we can safely remove

all entries from row j in Ps by calling REMOVE-ROWCOL(j).

We also remove the only entry aij in row i, by setting lci,s ←
0. The next step is to check where the owner of j, P (j) is. If

P (j) = Ps, we call MATCH-ROWCOL(i, j, Ps, singleton) im-

mediately to match j with i. Otherwise, we send a singleton match

request smr(i, j, Ps) to P (j). The parameters Ps and singleton

of MATCH-ROWCOL mean that Ps has invoked the function and

the matching request is of singleton type.

PICK-RANDOM-ROW function: This is similar to

PICK-SINGLETON-ROW except that it picks a random row i owned

by this processor to match with a random neighbor j. If there are

multiple choices for j then priority is first given to local neighbors.

If no local neighbor exists, a random match request is sent to P (j).

Algorithm 4 MATCH-ROWCOL(i, j, Pz, type) - Matches j with i,

updates Pz = P (i) about success, and removes all nonzeros from

rowcols i and j. Can only be called by Ps = P (j).
1: if isMatched(j) = false then

2: m(j)← i, isMatched(j)← true, nzj ← 0

3: if type = random then

4: if Pz = Ps then

5: CONFIRM(i, Ps)

6: else

7: REMOVE-ROWCOL(i)

8: send a confirmation message cf (i, Ps) to Pz

9: if Pz 6= Ps then

10: REMOVE-ROWCOL(j)

11: send unavailability u(j) to each P ′(j) ∈ nonOwners(j)

MATCH-ROWCOL function (given by Algorithm 4). The goal

here is to match row j with row i if possible and take necessary

actions if the matching is successful. We first verify whether j has

already been matched by checking isMatched(j). The next step

is to check the type of the matching. If the type is singleton, we do

not need to give any confirmation back to the owner P (i) = Pz ,

because its only remaining job was to remove the unique entry aij

in row i, which has already been done. If the type is random, we

need to send a confirmation back to P (i) to let it remove row i.

If Pz = Ps, we call CONFIRM(i, Ps) to remove row i from Pz

and nonOwners(i). If Pz 6= Ps, we first remove row i from Ps

and then send a confirmation message cf(i, Ps). The next step is to

remove rowcol j from Ps = P (j) and nonOwners(j). Note that

j has been removed from processor Pz in case of a singleton match

request, and it will be removed following the confirmation in case

of a random match request. If Pz 6= Ps, we remove rowcol j from

Ps locally. We then send unavailability messages u(j) to all the

other qj − 1 or qj − 2 nonowners. We set m(j) = i, as this can be

done locally by P (j), but we do not set m(i) = j as this would

require communication with P (i), which would be unnecessary

since rowcol i will be removed immediately afterwards and hence

cannot be matched anymore. No redundant matching information

is thus communicated or stored.

Algorithm 5 REMOVE-ROWCOL(i) - Removes all entries from

rowcol i in Ps.
1: while lci,s > 0 do

2: Let aij be the last entry in rowcol i

3: swap aji with the last entry in rowcol j

4: lcj,s ← lcj,s − 1

5: if P (j) = Ps then

6: DECREMENT(j)

7: else if lcj,s = 1 then

8: send a criticality message ct(j, Ps) to P (j)

9: else if lcj,s = 0 then

10: send a give-up message g(j, Ps) to P (j)

11: lci,s ← lci,s − 1

REMOVE-ROWCOL function (given by Algorithm 5). This

function removes all entries from rowcol i in Ps. At every iteration

of the while-loop, it picks the last entry aij from the adjacency list

of row i. We remove aij from the adjacency list of rowcol i by re-

ducing the local count lci,s by 1. Since the matrix is symmetric, we

also have to remove aji from rowcol j. We do this by swapping aji

with the last entry of the adjacency list of rowcol j and reducing the

local count lcj,s by 1. The swap and reduction operations make the

removal efficient. Since j has not been matched yet, we consider

whether the removal of aji creates any of the following three cases.

The first case is where Ps owns j, so that we can safely reduce the

nonzero count of row j by 1 and insert j into the singleton queue if

possible. We do this by calling DECREMENT(j). The second case

is where the removal of aji reduces the local count lcj,s to 1, so that

we have to send a criticality message ct(j, Ps) to P (j) to reduce

the nonzero count nzj by lcj,s − 1, where lcj,s1 is the initial local

count. The third case is where lcj,s = 0, so that Ps does not have

any entry in row j anymore and we can send a give-up message

g(j, Ps) to P (j) to remove Ps from nonOwners(j).

CONFIRM function: The goal here is to remove all entries in

row i from P (i) and nonOwners(i). We remove row i from

P (i) by calling REMOVE-ROWCOL(i) and from the nonowners

by sending unavailability messages u(i) to all of them, except to a

processor Pz that previously sent a confirmation message to P (i)

causing this function to be called.

DECREMENT function: This function first decrements the

nonzero count nzi of row i. It then checks whether this turns row

i into a singleton row. If so, it looks where the last remaining entry

aij of row i is. If aij is local, that is, lci,s = 1, we push i into the

singleton queue Qs. Otherwise, we send a handover message h(i)

to the only nonowner of i, P ′(i), asking P ′(i) to push i into its

singleton queue.

2.3 Communication Requirements

Following the BSP model [3, Ch. 1] for our parallel matching algo-

rithm, we separate computation and communication into distinct,

rather than intermingled, stages. The parallelism in the computa-

tion is obtained from the assumption that each processor will have

a large number of local matches to perform between the commu-

nication supersteps. This allows us to analyse the computation and

communication requirements separately. The computation part will

be studied experimentally in the next section. For the communica-

tion part, we can obtain theoretical bounds on the total communi-

cation volume of the algorithm, as follows.

We analyse the communication requirements by considering a

row i, with qi processors. We assume that qi ≥ 1, because we can

remove empty rows and columns. Let j be the requested matching

partner of i. We distinguish between requests that succeed and

those that fail. We will examine what the current processor Ps

needs to communicate for row i. We count each message as one

data word.

First, consider the case where i is a singleton row, i ∈ Qs, see

Algorithm 3. It does not matter here whether or not Ps = P (i).

• Case Ps 6= P (j): Ps sends one message (a matching request)

to P (j). If i succeeds to match with j, then P (j) sends qj − 2

messages asking for removal of rowcol j to the nonowners of

j, except Ps which initiated the matching request and therefore

already removed rowcol j. If i fails to match with j, then P (j)

does not send any message at all. The total number of messages

is qj − 1 for success and 1 for failure.

• Case Ps = P (j): as the previous case, but no matching request

needs to be sent, and the number of removal requests in case of

success is qj − 1. The total number of messages is qj − 1 for

success and 0 for failure.

Therefore, for each singleton row i, the communication volume is

at most qj − 1. A similar analysis yields that for each randomly

picked row, the volume is at most qi + qj − 2.

For the other three types of messages summarized in Table 1,

row i incurs at most one handover message, and qi − 1 give-up

messages during the whole algorithm. But if P (i) sends a handover

message to P ′(i), then P ′(i) will never send a give-up message to

P (i), and vice versa. Therefore for each row i we get at most qi−1

give-up and handover messages, and qi − 1 critical messages, with

a total upper bound of 2qi − 2.

We can now add all the communication bounds. Let s be the

number of matchings that involve at least one singleton row. Since

the matrix A has n rows, the number of matched rows picked

randomly is at most n−2s
2

= n
2
− s. Without loss of generality

we renumber the rows, so that the matched singleton rows come

first, and the matched random rows second, so they are in the

range 1 ≤ i ≤ n/2, and we also take care that their matches

are in the second half, n/2 + 1 ≤ m(i) ≤ n. Assume for a

moment that all match requests succeed. An upper bound for the

total communication volume is then

Vol(Matching)

≤
n/2X
i=1

qm(i) +

n/2X
i=s+1

qi + 2

nX
i=1

qi − 3n + s

≤
n/2X
i=1

qm(i) +

n/2X
i=1

qi + 2

nX
i=1

qi − 3n

= 3

nX
i=1

(qi − 1) =
3

2
·Vol(SpMV).

Here, we express the upper bound in terms of sparse matrix–

vector multiplication, which has a volume of Vol(SpMV) =

2
Pn

i=1 (qi − 1) for a symmetrically partitioned matrix. This is

useful because the SpMV kernel is important and many partitioning

algorithms and software packages exist that minimize its volume.

Now we drop the non-failure assumption. For singleton rows, at

most one data word is sent and the row is removed and remains un-

matched. The upper bound then still holds. For randomly picked

rows, the situation is more complicated. If the request fails and

P (i) 6= P (j), this incurs one message. In principle, the number

of such failures is unbounded, since randomly picked rows can be

tried again, but in practice the volume will be limited as preference

is given to local matches (not causing communication in case of

failure) and the penalty in the non-local case is only one communi-

cation. This will add a number R of failed random requests to the

upper bound.

A lower bound on the communication can be obtained as fol-

lows. Assume the best case, where all matches are local. For each

row i, we need qi − 1 messages to remove it. This leads to

Vol(Matching) ≥
nX

i=1

(qi − 1) =
1

2
·Vol(SpMV).

Table 2. Benchmarked BSP parameters for the IBM pSeries 575.

p r (flop) (µs)

(Gflop/s) g l g l

1 1.343 355 3,926 0.26 2.92

2 1.336 358 15,681 0.27 11.73

4 1.338 384 27,543 0.29 20.58

8 1.340 384 56,875 0.29 42.44

16 1.334 366 124,430 0.27 93.30

32 1.329 417 268,559 0.31 202.10

64 1.339 408 717,400 0.30 535.74

3. Experimental Results

3.1 Experimental Setup

We performed experiments on Huygens, an IBM pSeries 575 super-

computer at SARA in Amsterdam, consisting of 104 nodes, each

with 16 processors and 128 GByte of memory. Each processor is

an IBM Power6 dual-core 4.7 GHz processor where each core has

128 kByte of L1 cache and 4 MByte of L2 cache. Each processor

has 32 MByte of L3 cache. The machine is running Linux (kernel

version 2.6.27.45-0.1.2-ppc64). All algorithms were implemented

in C++ using the BSPonMPI library (version 0.3) [18] and com-

piled with the IBM XL C/C++ compiler (version 10.01.0000.0002)

using the -O3 optimization level.

We obtained the BSP parameters of the system by BSP bench-

marking [3, Ch. 1] for a given number of processors p, as shown

in Table 2. These parameters are r, the single-processor comput-

ing rate in Gflop/s, g, the time taken by one processor to send or

receive one data word, and l, the time taken to synchronize all pro-

cessors.

We use four test sets of matrices. Test sets 1 and 2 consist of

10 real-world symmetric matrices and four real-world unsymmetric

square matrices, respectively, of varying sizes drawn from different

application areas such as medical science, structural engineering,

civil engineering, circuit simulation, electrical engineering, DNA

electrophoresis, information retrieval, and the automotive industry

[7, 12]. Test set 3 includes three synthetic small-world matrices and

test set 4 contains three synthetic Erdös-Rényi style random square

matrices generated by the GTGraph package [2]. For convenience,

we label the test sets rw, sw, and er, for real-world, small-world, and

Erdös-Rényi, respectively. The matrices from test sets 2–4 were

made symmetric by adding A and AT . All diagonal entries were

removed from the matrices.

The structural properties of the test matrices are given in Table

3. The columns are the labels, number of rows, number of nonzeros,

average and maximum number of nonzeros per row. The names

Table 3. Structural properties of the input matrices.

n nz nz/n n nz nz/n

avg max avg max

rw1 999,999 3,995,992 3 4 rw11 281,903 3,985,272 14 38,625

rw2 1,585,478 6,075,348 3 5 rw12 16,783 9,306,644 554 14,671

rw3 52,804 10,561,406 200 2,702 rw13 683,446 13,269,352 19 83,470

rw4 2,063,494 12,964,640 6 95 rw14 343,791 26,493,322 77 434

rw5 63,838 14,085,020 220 3,422 sw1 50,000 14,112,206 282 5,096

rw6 504,855 17,084,020 33 39 sw2 75,000 24,466,808 326 6,273

rw7 503,712 36,312,630 72 842 sw3 100,000 33,727,170 337 7,989

rw8 952,203 45,570,272 47 76 er1 100,000 3,319,658 33 59

rw9 1,508,065 51,164,260 33 34 er2 150,000 6,753,302 45 76

rw10 914,898 54,553,524 59 80 er3 200,000 12,008,022 60 100

Table 4. Communication volume in 1000 words for p = 32.

SpMV Matching SpMV Matching

Name 1D 2D 1D 2D Name 1D 2D 1D 2D

rw1 (ecology2) 53 51 60 55 rw11 (Stanford) 340 141 479 234

rw2 (G3 circuit) 81 65 92 73 rw12 (gupta3) 710 44 1,305 61

rw3 (crankseg 1) 78 78 155 152 rw13 (St Berk.) 716 448 1,152 812

rw4 (kkt power) 118 120 106 107 rw14 (F1) 139 130 148 139

rw5 (crankseg 2) 92 90 181 171 sw1 1,007 417 2,111 303

rw6 (af shell8) 51 47 85 65 sw2 1,957 829 3,999 563

rw7 (inline 1) 104 105 115 118 sw3 2,017 832 4,255 528

rw8 (ldoor) 131 128 140 148 er1 1,856 1,133 1,788 1,157

rw9 (af shell10) 113 105 169 150 er2 3,451 1,841 3,721 1,635

rw10 (boneS10) 150 145 228 189 er3 5,476 2,569 6,350 1,990

of the matrices are given in Table 4. To obtain the runtime of an

algorithm for a given matrix, we execute the algorithms three times

and then take the minimum time, based on the assumption that

this timing suffers the least from interference by other use of the

hardware resources. In all three runs, the actual computations and

hence the quality of the matching are the same (we start with the

same random number seeds), so that timing differences between

the runs are not due to different amounts of work performed.

3.2 Scalability Experiments

To check how well the edge partitioning approach works, we first

compare it with a vertex partitioning, where we can use the same

Mondriaan framework. In the vertex partitioning, we simply im-

pose the extra constraint that all nonzeros in a row up to the matrix

diagonal are assigned to the same processor. This way, we can view

vertex partitioning as a special case of edge partitioning. Table 4

presents the communication volumes of sparse matrix–vector mul-

tiplication and matching, both for a vertex (1D) partitioning and an

edge (2D) partitioning on 32 processors. The SpMV volume is a

direct outcome of the partitioning by the Mondriaan package [20]

Table 5. Speedup as a function of TpR for p = 32. Boldface

denotes the highest speedup obtained.

TpR = 100 200 400 800 1600 100 200 400 800 1600

rw1 0.67 0.74 0.62 0.40 0.24 rw11 4.25 5.32 6.15 6.17 6.45

rw2 0.66 0.72 0.59 0.38 0.20 rw12 25.36 18.99 30.55 29.55 30.35

rw3 12.65 13.07 15.13 14.53 14.42 rw13 1.18 1.59 1.83 1.85 1.73

rw4 1.55 1.30 0.72 0.31 0.17 rw14 13.15 16.67 19.54 21.63 24.23

rw5 14.11 16.62 19.69 21.09 19.99 sw1 29.49 33.38 34.63 30.58 30.82

rw6 6.26 9.29 12.92 14.03 13.82 sw2 27.87 31.16 33.85 33.91 33.75

rw7 9.19 11.17 12.09 12.85 12.88 sw3 33.35 40.83 42.18 44.64 42.43

rw8 6.93 8.45 9.22 9.25 8.83 er1 5.20 6.02 7.64 8.60 9.51

rw9 6.44 9.66 12.19 13.08 11.50 er2 7.15 9.60 11.00 12.71 13.63

rw10 7.07 8.41 8.82 7.97 6.60 er3 14.31 15.97 18.14 19.72 21.55

(version 2.01) in symmetric mode, where the maximum number of

edges per processor is not allowed to exceed the average by more

than 3%. The processor with most nonzeros in row i was chosen

as the owner P (i), because it is more likely to possess the last re-

maining nonzero of the row after the other nonzeros have been re-

moved, thus saving a handover message. The volume for matching

is the volume measured by counters in the program, which register

the number of (integer) data words sent.

Table 4 shows that on 32 processors, the volume for the match-

ing is in a range from 0.63 to 2.11 times the SpMV volume. We

also observed a range between 0.63 and 2.18 for 2, 4, 8, 16, 32, and

64 processors. This shows that partitioning for the SpMV objec-

tive is also a good optimizer for matching, and possibly for other

graph problems as well. The table shows a savings in communi-

cation volume of a factor of 2 for small-world and Erdös-Rényi

matrices when moving from 1D to 2D, and even larger savings for

the real-world matrices from test set 2. Note the large 16-fold de-

crease for the linear programming matrix rw12 (gupta3). For the

symmetric real-world matrices (test set 1), only some modest gains

can be observed, but also a few cases with a small loss.

Table 5 gives the speedup of our parallel KARP–SIPSER im-

plementation on 32 processor cores compared to the time of our

sequential implementation. We examine the performance as a func-

tion of the input parameter TpR, which is the total number of rows

processed in a round and which represents the chosen granular-

ity of the computation. Choosing a small value of TpR leads to

many rounds in the whole algorithm, and hence many supersteps

and synchronizations. For p = 32, one synchronization costs about

l = 270, 000 flop time units, see Table 2, so the number of oper-

ations carried out per processor in a round should at least be this

number. As a rough estimate, for the matrix er3, this means han-

dling about 1500 rows of 60 nonzeros each, with (an estimated)

Table 6. Matching quality (in %) for the experiments of Table 5.

Boldface denotes the highest quality obtained.

TpR = 100 200 400 800 1600 100 200 400 800 1600

rw1 98.15 98.14 98.13 98.08 98.12 rw11 71.75 71.61 71.48 71.32 71.11

rw2 96.71 96.69 96.61 96.52 96.45 rw12 98.31 98.00 97.35 97.35 97.35

rw3 99.21 99.15 99.13 99.16 99.19 rw13 66.19 66.15 66.09 65.99 65.87

rw4 88.55 88.58 88.58 88.57 88.57 rw14 99.54 99.52 99.53 99.51 99.49

rw5 99.26 99.24 99.24 99.20 99.18 sw1 79.81 78.07 77.06 75.66 75.59

rw6 99.93 99.93 99.92 99.93 99.93 sw2 90.74 88.87 86.25 84.09 81.89

rw7 99.56 99.55 99.55 99.54 99.53 sw3 81.87 80.13 78.47 77.29 76.01

rw8 98.58 98.58 98.58 98.58 98.57 er1 97.50 93.45 85.67 78.69 74.13

rw9 99.94 99.94 99.94 99.94 99.94 er2 98.43 95.63 89.12 82.54 76.07

rw10 99.58 99.56 99.55 99.55 99.55 er3 95.98 93.14 88.94 83.42 77.59

three operations per nonzero, where for simplicity we assume that

every row is completely assigned to one processor; in reality, some

rows are partitioned. The advantage of a small TpR is better load

balance: when a processor runs out of work this will be detected

earlier, and communications are performed more frequently, thus

enabling processors to carry out work that otherwise would have to

wait until later.

Finding the right value of TpR is important to get good

speedups. Fortunately, the parameter is not very sensitive, and a

whole range of values gives the highest obtainable speedup; e.g.

for er3, this is the range 400–1600. The overall highest speedup

obtained (44.64 for sw3) is superlinear, which must be due to ben-

eficial cache-effects or to the fact that the sequential and parallel

algorithms do not perform exactly the same amount of work. (The

parallel algorithm may be forced to pick random rows more often

than the sequential algorithm thus performing less work and deliv-

ering lower quality.) Other problem instances may have benefited

from these effects as well.

The choice of TpR also influences the quality of the solution

(defined as the ratio between the number of matched rows and the

total number of rows) for the matrices from test sets 3 and 4, see

Table 6. Here, the quality decreases with increasing TpR. For these

matrices, which have high communication volumes due to their

random nature, few singleton rows can be processed in a round,

forcing the processing of random rows in many cases.

Tables 7 and 8 present the speedups for the vertex and edge

partitioning approaches. In all cases, the value of TpR was set at

an optimal value based on an empirical parameter search, choosing

the value among 100, 200, 400, 800, and 1600 that gave the highest

speedup. In general, it can be observed that vertex partitioning and

edge partitioning do not differ much in time and quality for test

set 1, but that edge partitioning is much faster for test sets 2–4.

Table 7. Speedup (Su) and matching quality in % (Ql) using

vertex (1D) partitioning.
Seq p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

Ql Su Ql Su Ql Su Ql Su Ql Su Ql Su Ql

rw1 100.00 0.17 99.84 0.15 98.02 0.29 98.11 0.45 97.88 0.70 97.92 0.84 98.09

rw2 99.93 0.12 96.95 0.18 96.62 0.28 96.51 0.44 96.45 0.71 96.40 0.86 96.18

rw3 99.59 1.60 99.57 3.49 99.48 5.82 99.46 12.62 99.39 20.35 99.16 13.01 99.42

rw4 91.54 0.49 88.09 0.62 88.44 0.79 88.35 1.37 88.48 1.47 88.45 1.29 88.42

rw5 99.60 1.78 99.61 3.68 99.56 6.92 99.50 13.56 99.36 22.90 99.07 17.58 99.36

rw6 99.99 1.58 99.97 2.80 99.97 4.80 99.96 8.11 99.94 13.28 99.92 17.29 99.90

rw7 99.62 1.32 99.58 2.00 99.56 2.98 99.58 6.05 99.57 14.07 99.52 28.95 99.48

rw8 98.53 1.30 98.72 2.11 98.74 3.24 98.73 5.38 98.72 9.39 98.73 13.99 98.73

rw9 99.99 1.71 99.99 2.90 99.98 5.04 99.97 8.16 99.96 13.99 99.95 19.73 99.93

rw10 99.70 1.37 99.67 2.26 99.65 3.56 99.64 5.65 99.62 8.27 99.60 11.34 99.58

rw11 74.26 1.00 72.09 1.66 72.02 2.38 71.57 3.98 71.20 5.46 70.81 4.61 70.26

rw12 99.06 1.91 73.18 3.07 57.98 4.83 64.03 5.13 82.40 5.78 86.68 3.59 97.78

rw13 68.56 0.62 66.19 0.81 66.29 0.89 66.16 1.37 65.94 1.81 66.03 1.92 65.08

rw14 99.65 1.49 99.61 2.65 99.60 4.81 99.57 10.54 99.55 20.93 99.49 33.30 99.42

sw1 82.77 2.28 82.56 4.64 82.53 8.46 82.39 14.39 82.32 17.33 82.04 14.51 79.89

sw2 93.68 2.22 93.33 4.65 93.28 8.73 93.16 15.27 92.87 21.43 92.93 20.94 90.27

sw3 82.76 2.28 82.65 5.41 82.47 9.28 82.44 17.19 82.42 26.75 82.37 27.97 81.35

er1 99.99 1.32 98.87 1.66 98.66 1.82 97.81 2.35 86.87 3.27 63.63 5.23 46.66

er2 99.99 1.48 99.16 2.26 99.18 2.60 99.17 2.90 96.63 3.75 71.99 5.31 53.75

er3 100.00 1.47 99.33 2.48 99.39 2.88 99.33 3.38 95.60 3.99 89.41 5.05 60.85

The matrix rw12 shows a much larger maximum speedup (30.55)

for edge partitioning than for vertex partitioning (5.78), and also a

better quality. This holds for most cases, but there are exceptions,

cf. sw1–sw3 for p = 64. The higher speedups for edge partitioning

are primarily caused by the lower communication volume, see

Table 4 for p = 32, but other factors play a role as well. For

instance, the smallest problem rw1 shows no speedup at all, which

is most likely caused by severe load imbalance and a relatively large

synchronization overhead.

4. Conclusion

In this work, we have demonstrated how a graph matching algo-

rithm, the KARP–SIPSER algorithm, can be parallelized efficiently

by viewing it as a sparse matrix algorithm, and by making use of

sparse matrix partitioning methodology. A number of conclusions

can be drawn:

• Edge-based partitioning gives for certain types of graphs,

such as small-world graphs, a large improvement compared to

vertex-based partitioning. For other types of matrices, a more

modest improvement is obtained. In the remaining few cases,

the differences are small.

• Improvements obtained by better partitioning lead to better

locality, thus reducing the amount of communication required

and hence making the parallel algorithm run faster. They also

enable more computations to be done locally within a superstep,

keeping work queues filled longer and hence improving the

matching quality, i.e., the percentage of matched vertices.

Table 8. Speedup (Su) and matching quality in % (Ql) using edge

(2D) partitioning.
Seq p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

Ql Su Ql Su Ql Su Ql Su Ql Su Ql Su Ql

rw1 100.00 0.18 99.84 0.18 98.79 0.34 98.86 0.53 98.54 0.74 98.14 0.92 98.02

rw2 99.93 0.11 96.95 0.17 96.50 0.30 96.83 0.47 96.99 0.72 96.69 0.83 96.62

rw3 99.59 1.60 99.59 3.42 99.57 6.49 99.39 12.57 99.12 15.13 99.13 10.45 98.92

rw4 91.54 0.49 88.09 0.58 88.15 0.80 88.19 1.31 88.44 1.55 88.55 1.36 88.55

rw5 99.60 1.78 99.61 3.49 99.55 6.76 99.47 13.97 99.35 21.09 99.20 13.93 98.78

rw6 99.99 1.57 99.98 2.77 99.97 4.68 99.95 8.36 99.95 14.03 99.93 15.13 99.89

rw7 99.62 1.24 99.56 1.84 99.58 3.13 99.55 6.10 99.54 12.88 99.53 25.75 99.47

rw8 98.53 1.29 98.72 2.11 98.72 3.32 98.74 5.59 98.64 9.25 98.58 14.01 98.68

rw9 99.99 1.64 99.99 2.97 99.98 5.20 99.97 9.13 99.96 13.08 99.94 17.97 99.93

rw10 99.70 1.37 99.67 2.33 99.62 3.77 99.62 6.04 99.59 8.82 99.55 11.70 99.51

rw11 74.26 0.95 71.99 1.63 71.96 2.37 71.73 4.57 71.21 6.45 71.11 5.45 70.28

rw12 99.06 2.65 99.35 6.50 99.28 14.23 97.67 25.44 97.96 30.55 97.35 23.39 90.98

rw13 68.56 0.65 66.30 0.81 66.31 1.01 67.18 1.31 65.85 1.85 65.99 2.57 65.73

rw14 99.65 1.49 99.61 2.79 99.57 5.05 99.57 11.38 99.53 24.23 99.49 37.74 99.40

sw1 82.77 2.28 82.56 4.82 82.44 9.36 82.28 19.74 80.31 34.63 77.06 41.55 73.33

sw2 93.68 2.20 93.33 4.69 92.94 8.96 92.36 19.10 89.64 33.91 84.09 55.39 78.38

sw3 82.76 2.27 82.65 5.23 82.47 9.92 82.01 21.02 79.91 44.64 77.29 72.16 73.80

er1 99.99 1.34 98.87 2.27 98.65 4.35 97.43 7.13 83.71 9.51 74.13 13.14 58.46

er2 99.99 1.48 99.16 2.98 99.23 5.71 97.89 9.83 86.62 13.63 76.07 21.12 64.23

er3 100.00 1.48 99.39 3.10 99.39 5.66 99.15 11.89 92.63 21.55 77.59 29.96 67.43

• We have established a theoretical relation between the commu-

nication volume of parallel graph matching by the KARP–SIPSER

algorithm and sparse matrix-vector multiplication,

1

2
·Vol(SpMV) ≤ Vol(Matching) ≤ 3

2
·Vol(SpMV) + R

where R represents the number of random match requests

that failed during the algorithm. The range we encountered

in practice for edge partitioning, is between 0.63 to 1.95 times

Vol(SpMV) for 2, 4, 8, 16, 32, and 64 processors.

• We have obtained good speedups for many matrices without

compromising the quality of the matching. Up to 16 processors,

the matching quality stays constant, see Table 8. After that, for

some matrices it decreases as work queues become empty more

quickly, thereby forcing random rows to be matched.

For future work, we see the present algorithm as a representative

of a whole class for which an edge-based approach will be suitable

and a relation with sparse matrix–vector multiplication can be es-

tablished. We intend to generalize our approach in this direction.

Acknowledgments

This work has been performed under the HPC-Europa2 Transna-

tional Access programme, in FP7, grant agreement nr. 228398.

References
[1] J. Aronson, A. Frieze, and B. G. Pittel. Maximum matchings in sparse

random graphs: Karp-Sipser revisited. Rand. Struct. Alg., 12(2):111–

177, 1998.

[2] D. A. Bader and K. Madduri. GTGraph: A synthetic graph generator

suite. http://www.cc.gatech.edu/~kamesh/GTgraph, 2006.

[3] R. H. Bisseling. Parallel Scientific Computation: A Structured Ap-

proach Using BSP and MPI. Oxford University Press, 2004.

[4] D. Bozdag, A. Gebremedhin, F. Manne, E. Boman, and U. Catalyurek.

A framework for scalable greedy coloring on distributed-memory par-

allel computers. J. Par. Distr. Comput., 68(4):515–535, 2008.

[5] U. V. Catalyurek and C. Aykanat. A fine-grain hypergraph model for

2D decomposition of sparse matrices. In Proc. IPDPS, 2001.

[6] P. Chebolu, A. Frieze, and P. Melsted. Finding a maximum matching

in a sparse random graph in O(n) expected time. Proc. ICALP, pages

161 – 172, 2008. LNCS 5125.

[7] T. A. Davis. University of Florida sparse matrix collection. NA Digest,

92, 1994.

[8] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse

Matrices. Oxford University Press, 1986.

[9] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang,

S. B. Rao, T. Suel, T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP

programming library. Par. Comput., 24(14):1947–1980, 1998.

[10] R. M. Karp and M. Sipser. Maximum matching in sparse random

graphs. Proc. FOCS, pages 364–375, 1981.

[11] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for

irregular graphs. J. Par. Distr. Comput., 48:96–129, 1998.

[12] J. Koster. Parasol matrices. http://www.parallab.uib.no/projects/,

1999.

[13] J. Langguth, F. Manne, and P. Sanders. Heuristic initialization for

bipartite matching problems. ACM J. Exp. Alg., 15:1.3:1–1.3:22, 2010.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph

processing. In Proc. PODC, pages 6–6. ACM, 2009.

[15] F. Manne and R. H. Bisseling. A parallel approximation algorithm

for the weighted maximum matching problem. In Proc. PPAM, pages

708–717, 2008. LNCS 4967.

[16] R. H. Möhring and M. Müller–Hannemann. Cardinality matching:

Heuristic search for augmenting paths. Technical Report 439, Tech.

Univ. Berlin, Dept. Math., 1995.

[17] F. Pellegrini and J. Roman. Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture

graphs. In HPCN’96, pages 493–498, 1996. LNCS 1067.

[18] W. J. Suijlen. BSPonMPI: An implementation of the BSPlib standard

on top of MPI, Version 0.3, 2010.

[19] L. G. Valiant. A bridging model for parallel computation. Comm.

ACM, 33(8):103–111, 1990.

[20] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distri-

bution method for parallel sparse matrix-vector multiplication. SIAM

Review, 47(1):67–95, 2005.

