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ABSTRACT

In this paper we consider the problem of determining a minimum-cost rectilinear
Steiner tree when the input is an n X n binary image I which is stored in an n X n mesh
of processors. We present several heuristic mesh algorithms for this NP-hard problem.
A major design criterion of our parallel algorithms is to avoid sorting and routing
which are expensive operations in practice. All of our algorithms have a O (nlogk)
worst-case running time, where k is the number of connected components formed by
the enries of value '1’. The main contribution of the paper are two conceptually
different methods for connecting components in an image and a method for improving
subsolutions by making horizontal and vertical shortcuts.
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1. Introduction

The problem of determining a minimum-cost rectilinear Steiner tree is a funda-
mental problem in the area of graph algorithms with applicatdons in numerous areas.
Since the problem is known to be NP-hard [GJ], many general and problem-specific
heuristic approaches have been developed [Be, CSW, Ha, Hw, HVWI1, HVW2, LBH,
Ri]. In this paper we consider the problem of determining a rectlinear Steiner tree
when the input is an » X n binary image [ in which a value of '1’ represents a point.
The objective is to connect all points by rectilinear segments (i.e., segments that are
either horizontal or vertical). We present parallel algorithms for the Steiner tree prob-
lem when the n x n binary image [ is stored in an n X n mesh of processors with one
pixel per processor. Our algorithms have an O (rlogk) worst-case time complexity,
where & is the number of connected components formed by the entries of value ’1°,
k < n®. A major design criterion of our algorithms is to avoid sorting and routing. In

practice, both operations are expensive [CSS, RM].

The heart of our algorithms are two conceptually different methods for connecting
components. A single application of either method runs-in O (z) time on an n X n
mesh and it does not guarantee that all components are connected with each other. Qur
algorithms consist of O (logk) iterations, with each iteration using one of the two
methods. QOur algorithms are simple and have a small associated constant and, as
already stated, do not use sorting or routing operations. They perform connected com-
ponent computations to achieve global communication and all other steps consist of
executing simple operations within a row or column. Note that the connected com-

ponents can be determined in O (n) time without sorting or routing [CSS, HT].

Another approach to our problem would be to generate from image I a description
of the points by their coordinates and to design an algorithm using this description of
the input. There are a number of reasons why this approach is inferior to the one of
working directly with the image. First, such a conversion makes information that is
readily available in the image expensive to retrieve. Furthermore, an algorithm working

with the points given by their coordinates is likely to require sorting and routing opera-
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tions, as done in problems of a similar nature [MS2, MS3]. Note that an n X r mesh
does not allow for the points of the image to be represented by a graph in the form of
an adjacency matrix (since this would require O (n*) bits). The graph would have to be
represented in the form of edge lists, which generally results in complex and routing-
dependent algorithms [AH, H, St]. Only few problems on images allow a space-

efficient graph-like representation of relevant data and subsolutions [LAN, MS1, MS3].

Throughout we use the following notation. We refer to the points in image [ as
pixels and to the pixels of value 1’ as 1-pixels. Posidon (0, 0) of the image or the
mesh refers to the top leftmost position. Let /* be the image representing a solution to
the Steiner tree problem. Image /* consists of one connected component which con-
tains [ (i.e., if 1 (r, ¢) =1, then I*(r, ¢) = 1) and the number of 1-pixels in I* should be
minimized. The form of connectivity we consider is that of 4-connectivity (i.e., two 1-
pixels x and y are in the same connected component if and only if there exists a
sequence of 1-pixels from x to y such that two consecutive 1-pixels are horizontally or
vertically adjacent). Let the image consisting of the 1-pixels that are in /*, but not in /,
be I* —1. A l-pixel s, s € I* — [, is a Steiner pixe! if s is,agjaccnt to at least three 1-
pixels in [* — I, We say that image [* is cycle-free if for any 1-pixel p in /* —I there
exist two other 1-pixels x and y in /* such that the removal of p disconnects x and y in

I*. Qbviously, any solution minimizing the number of 1-pixels in I* is cycle-free.

Our first method for connecting components is the Min-Component-Selection
(MCS) Method in which each component selects another component currently at
minimum distance. This step resembles a technique used in many parallel algorithms
for graph problems [HCS, NS, SV, Ul]. It is well-known that the graph induced by the
edges from a component to its selected component contains no cycle. However, the
image generated by the MCS method does not necessarily satisfy the corresponding
cycle-free property. An interesting part of the MCS method is the detection and remo-
val of 1-pixels belonging to cycles. We also present a number of optimizations that can
be applied to the image generated by the MCS method. The optimizations are based on
the idea of detcrmining shortcuts. Our algorithm for determining an optimum set of

shortcuts requires only simple data movements. Its overall concept and its correctness
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are based on a number of non-trivial properties.

The MCS method does not try to posidon Steiner pixels explicitly. Steiner pixels
are created because segments happen to overlap. Our second method for connecting
components, the Sreiner-Pixel-Selection (SPS) Method is based on trying to identify
"good" Steiner pixels. In the SPS method a component may not connect to the com-
ponent currently at minimum distance, but will attempt to connect to a selected Steiner
pixel (without exceeding a precomputed maximum distance). Figure 1.1(c) and (d)
show an example of how a single application of either method connects the components

given in 1.1(a).

As already stated, our algorithms consist of a number of iterations with each itera-
tion applying one of the two methods to the current image. As generally done, we
compare the quality of the solutions to the cost of a rectilinear minimum spanning tree
[Be, HVW1, HVW2]. Hwang has shown that the cost of 2 minimum rectilinear Steiner
tree is at least 2/3 of the cost of a2 minirnum spanning tree [Hw]. Our algorithms have
been implemented by simulation. Their C-code has been written so that it can easily be
translated into MPP Pascal and be put onto the MPP, a 128 x 128 mesh of processors
[Ba, NASA]. For the images considered, the solutions generated by our algorithms are
approximately 91% of the cost of a minimum spanning tree which is considered a good

performance.

The paper is organized as follows. In Section 2 we discuss the MCS method and
the optimizations based on performing shortcuts. Section 3 presents the SPS method
for connecting components. Section 4 compares the two methods and describes the

performance of our algorithms.

2. Min-Component-Selection Method

Assume image / consists of k connected components Cq, -+ , Ci, k2 2. The
MCS method determines connections between components in three phases. In the first
phase, the minimum component selection phase, each component connects to another
component at minimum distance. Let CI be the image generated by this first phase.

Image C7 is not necessarily cycle-free and the second phase, the cycle-removing phase,
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eliminates cycles. The third phase is an optimization phase which applies a number of

“"shortcuts” to reduce the number of 1-pixels further.

Section 2 is arranged as follows. Section 2.1 discusses how components are con-
nected and how cycles are removed in the MCS method. Section 2.1.1 discusses how
components at minimum distance are chosen. Segment interaction is dealt with in Sec-
tdon 2.1.2. Section 2.1.3 describes the cycle-removing phase of the MCS method. In
Section 2.1.4 details of the implementation of the first two phases of the MCS method
are given. Finally section 2.2 describes optimizatons that can be applied to the image
after the first two phases of the MCS method.

2.1. Connecting Components and Removing Cycles

In the first phase every component C; determines a component min(C;) at
minimum distance from it. It also determines a sequence of pixels consisting of at
most one vertical portion followed by at most one horizontal portion leading from a 1-
pixel p; in C; to a 1-pixel g; in min(C;). Let S(p;, g;), or S;, for short, be this sequence
which we call the segment from p; to g;. A new image CI ig created which contains as
1-pixels the 1-pixels in [ and the pixels of the segmcnts.' Let G =(V, E) be the
undirected graph with V ={C,, -+ , C¢} and E = {(C;, min(C)) 11 i £k}, Tt is
easy to show that G does not contain a cycle and many parallel graph algorithms make
use of this property [HCS, NS, SV, Ul]. However, image C/ does not necessarily
satisfy the comresponding cycle-free property. The cycle-removing phase eliminates
cycles and changes image C7 into image /*, If image / contains no two components C;
and C; such that the distance from C; o C; is one (i..; changing a single O-pixel into a
1-pixel connects the two components), then the cycle-femoving phase guarantees that
image [* satisfies the cycle-free property. As will be discussed later on, we do not

detect cycles caused by components that can be connected by a single pixel.

The cycle-free property can be violated in C7 in one of two ways. If the image
CI — I contains a ¢ X ¢ block consisting of 1-pixels and the removal of any such 1-pixel
does not disconnect image C/, then a cycle is caused by a thickness of ¢, c 2 2. We

note that it is possible to connect four components in a cycle-free way such that the
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connecting segments contain a 2 X 2 block of 1-pixels. However, the MCS method
forms segments in a way so that every 2 X 2 block of l-pixels in image CI — I implies
a cycle. Cycles created by a thickness of two or more can easily be detected locally
and we refer to them as "local” cycles. If CI ~ /1 does not contain a cycle caused by a
thickness of ¢, ¢ 2 2, a cycle can be formed by a sequence of 1-pixels starting at some
1-pixel p in CI — I, traversing components and segments, and retuming to p. Detecting
such a "global" cycle may require global actions. Figure 1.1(b) shows the image of
1.1(a) after the first phase of the MCS method. The segments between components C 3,
C7, and Cg form, for example, a cycle created by a thickness of 2. The segments

between components C ¢, C,, Cy4, Cs, and C¢ form a global cycle.

When image / contains components at distance 1, a segment can connect to more
than 2 components and this can create a cycle. Figure 2.1 shows an example of such a
situation. The image shown represents C7 right before the cycle-removing phase. For
example, segment 5y connects components C g, Cs, and Cg, even though C g intends
only to connect to C's. Throughout the description of the cycle-removing phase we
assume that image / contains no two components at distance 1 and thus our claims
about image /* being cycle-free only hold for such an image /. However, the cycles
induced by components at distance 1 have, in general, a minimal effect on the total

number of 1-pixels used.

2.1.1, Determining Components at Minimum Distance

We now give the precise rules on how the segments which connect the com-
ponents are determined. Let row (x) (resp. col (x)) be the row (resp. col) of pixel x. For
two l-pixels x and y, let dist(x, y) be the mjnimum. number of pixels needed to get
from x to y. More precisely, if x (resp. y) is in row row(x) (resp. row (y)) and in
column cof(x) (resp. col(y)), then dist(x, y) = lrow(x)—row(®)| + lcol(x) -
col(y)| — 1 for x#y and 0 for x =y. Every component C; chooses a component
min (C;) at minimum distance. If there is more than one component at minimum dis-
tance. then ties are broken in favor of the component with the smallest label. If addi-

tional ties need to be broken, then the indices of the endpoints of the segments are used.
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Formally, min(C;), p; and g; are chosen so that p; € C;, g; € min(C;) and for any 1-
pixels p;" and ¢;" with p;" e C; and ¢;"€ Cj, j #i:
@) disi(p, gi') 2 dist (s, gi),
Gi) if dise(pi’, i) = dist(p;, q;), then C; 2 min(Cy),
(i) if dise(py’, ¢;") = dist(p;, ;) and C; = min (C;), then
if p; =pi’, then ¢; < g/’
else if g; = g/, then p; < p;”
else min{p;, pi’, 4i» 4i'} € {pi, 4i
It is easy to verify that rule (iii) ensures that if two components choose each other, the
segments chosen by the two components have the same endpoints. These component

connection rules will be referred to in later sections.

As mentioned previously, the segments formed by the MCS method consist of at
most one vertical portion followed by at most one horizontal portion leading from p; to
q;. We note that these segments are similar in form to the segmenis created in the
minimum rectilinear Steiner tree algorithm in [HVW1, HVW2]. Given a set of points
as input, the algorithm given in [HVW1, HYW2] first determines a minimum spanning
tree for these points and then for each edge of the minimum spanning tree, an L-shaped
layout. An L-shaped layout consists of a segment with a horizontal and vertical por-

tion, similar to the segments formed by the MCS method.

2.1.2. Segment Interaction

In this section we prove a number of properties concerning the interaction between
segments. Knowing how segments can interact is crucial in determining what actons
need to be taken by the cycle-removing phase as well as in determining the space
requirements of the MCS method. Consider image CI generated as described. For any
two segments S; and §; the following definitions will be used when characterizing their
relatonship. When two endpoints of the segments coincide (ie., q; =g;, p; = g;, or
pj =qi), we say that S; and S; share endpoints. When two endpoints are horizontally
or vertically adjacent, we say that S; and §; have neighboring endpoints. We also say

that §; and §; have neighboring endpoints when two of their endpoints are diagonally
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adjacent, belong to the same component, and one of the endpoints is adjacent to a pixel

on the other segment.

We say segments S; and S; are sharing if there exists at least one 1-pixel that is in
both S; and §;. Within sharing segments we distinguish between crossing and overlap-
ping segments. When the two segments have at most two I-pixels in common and, if
they have two 1-pixels in common, these pixels are not adjacent to each other, the seg-
ments are crossing. All other forms of sharing segments are called overlapping.
Finally, we say segments S; and S; are adjacen: if there exists at least one 1-pixel of S;

that is adjacent to some 1-pixel of S; and the two segments are not sharing.

The following properties characterize sharing and adjacent segments. Property 2.1
characterizes the endpoints of sharing segments. Properties 2.2, 2.3, and 2.4 deal with
overlapping segments with shared endpoints and adjacent segments with neighboring

endpoints. All four properties deal with segments in image CI.

Property 2.1. Let S; and §; be two sharing segments. Then, S; and S; share endpoints.

Proof (by contradiction): Assume that §; and S; are sharing segments, but are not shar-
ing endpoints. The four endpoints of the segments can come from either three or four
components of /. Let f be the first 1-pixel encountered on S; that is also in §; when
going from p; to q;. Consider first the case when the four endpoints come from three
components with p; and g; being in the same component. We now have dist (f, p;) =
dist (f, g;) since p; chose g; and since component C; chose p; as the first endpoint in

its segment. However, this implies that rule (iii) is not satisfied for one of C; or C;.

Consider the remaining two cases (i.e., all four endpoints come from different
components or g; and ¢; are in the same component). Let [ be the last 1-pixel encoun-
tered on §; that coincides with a 1-pixel in S; when going from p; to g;. Let,

oy = dist(p;,

o, =dist(, g;),

By =dist (pj, D,

By = dist(f, ¢;), and
z=dist{, f)+2.
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See also Figure 2.2. Since p; chose 1-pixel ¢; and not g; we have:
z4+0y By +1
Since p; chose 1-pixel g; and not g; we have:
z+fy €ag+1
Adding these equations gives z < 1. If z = 1, then for p; to have chosen g; and for p; to
have chosen g;, dist(f, 4;) = dist (f, g;). This implies, however, that either rule (ii) or

rule (iii) was not satisfied for one of components C; or C;. Thus Property 2.1 follows.
O

Sharing segments with shared endpoints can easily be created. For crossing seg-
ments this means that the segments can ¢ross only once and one p-endpoint must coin-

cide with the g-endpoint of the other segment.

We now consider the possible relationships between two adjacent segments.
When rules (i)-(iii) generate adjacent segments, they generally have neighboring end-
points. However, it is possible to generate adjacent segments with shared endpoints or
with four distinct, non-neighboring endpoints. These types of adjacency can create
cycles in the image CI and we briefly discuss them. When trw'o adjacent segments share
endpoints, the p-endpoint of one segment coincides with the g-endpoint of the other
segment. Examples illustrating this type of adjacency are given in Figures 2.6(a) and

2.7(a).

Consider two adjacent segments, S; and S;, with non-neighboring endpoints. Let z
be the number of 1-pixels in §; that are adjacent to a 1-pixel in §;. When the endpoints
of S; and S; come from four different components, then z can be arbitrarily large. An
example of this configuration with z = 1 is between ségmems S1 (which connects com-
ponents C; and C5) and S¢ (which connects components Cg and Cy4) in Figure 1.1(b).
Assume now that segments S; and S; are adjacent with non-neighboring endpoints and
the endpoints come from three different components. If ¢; and g; belong to the same
component, one can show that z =1 holds. An illustration of this situation is between
segments S; and S; in Figure 2.5. If p; and ¢; belong to the same component. there is

no bound on the amount of adjacency. Such a relation occurs between segments S5
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(which connects components C 5 and C3) and S»; (which connects components Cs;
and Ci5) in Figure 1.1(b). In this example, z = 3. For further details on the reiation

between adjacent segments we refer the reader to [T].

The next three properties characterize overlapping segments with shared endpoints
and adjacent segments with neighboring endpoints. The following definitions are used
in the remainder of this paper. A segment S; with row (p;) < row(q;) and col (p;) #
col(g;) is called a "type +" segment. A segment S; with row{p;) > row(g;) and
col (p;) # col (g;) is called a "type -" segment. The first two properties follow immedi-

ately from the way segments are determined.

Property 2.2. For every segment S; there can be at most one other segment §; such
that the vertical portion of S; is overlapping with (resp. adjacent to) S;. Furthermore,

one of the two segments must consist of a vertical portion only.

Property 2.3. Let S; and S, be two horizontally adjacent segments with neighboring
endpoints. Let row(g;) =row(g;) — 1. If both segments contain a vertical portion,
then segment S; is a type + segment and segment S; is a type~ segment. If S; (resp. S;)

has no vertical portion, then S; is a type - segment (resp. S; is a type + segment),

Properdes 2.2 and 2.3 imply that adjacent segments can create a thickness of at
most 3. Such a situaton occurs between segments Sg, S1g9, S11. and Sy in Figure
1.1(b). The next property states that a 1-pixel in image CI can belong to at most 3

mutually overlapping segments.

Property 2.4. There can be at most three segments that are mutually overlapping with

each other in the horizontal direction.

Proof (by contradiction): We first show that it is not possible to have three segments of
the same type mutnally overlapping with shared endpoints. Assume that S;, S;, and S;
are three mutually overlapping segments. They can either have their three g-endpoints
coincide (i.., gi = ¢; = qx = q) or they can have two ¢- and one p-endpoint coincide

(Le., q; = q; = pr = q). We only consider the case when three g-endpoints coincide.
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The other case is proven by a very similar argument,

W.lLo.g. assume that the three segments are type - segments and that col(g) is the
rightmost column to contain a pixel belonging to one of the three segments. The three
segments can be ordered so that row (q) < row(p;) < row(p;) < row(p;) and col(q) >
col(py) > col(p;) > col(p;). If such an ordering cannot be achieved, the three p-
endpoints could not have chosen ¢. Figure 2.3 shows the position of the endpoints of
the segments. Let,

vy =row (p;) — row(q),
vo = row(p;) — row (py),
v = row (py) — row (p;),
hy = col(p;) — col (p;),
hy = col (pr) — col(p;), and
hs = col(q) — col (pg).
Since p; chose ¢ and not p;, we have
v+ hy+h3 vy
Since p; chose g and not p;, we have .
Vo + vy + h3 Shg.
Adding these Inequalities gives v, + k3 <0, which is not possible (since v 2 0 and
h4 2 1). Hence, the t.hrge segments cannot have their p-endpoints below row (g). Note
that we have v{ 2 0 and thus the claim holds even when one of the segments is a hor-

izontal segment.

We next show that there cannot exist four segments that are mutually overlapping
in the horizontal direction such that two of the segments are type + segments and two
of the segments are type - segments. Assume that S;, S;, S, and S; are four segments
that are mutually overlapping in the horizontal direction such that two segments are
iype + segments and two segments are type - segments, Since at most one p-endpoint
can coincide with ¢, only two situation are possible: q; = g; = q¢ = ¢ = g or one seg-
ment, say S;, has py =q and ¢; = q; = q; = ¢ = p;. We only consider the first case,
since the argument for the second case is similar. W.l.o.g assume again that g is the

rightmost pixel in the four segments, as shown in Figure 2.4. Let §; and §; be the two
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type + segments and S; and S; be the two type - segments. We can order §; and §;
such that row (g) > row (p;) > row(p;) and col(q) > col(p;) > col (p;). Furthermore,
we can order Sy and S; so that row () < row (py) < row(p;) and col(q) > col(p;) >
col (p,). There are three possibilities (six without considering symmetry) how the four
segments can relate and one is shown in Figure 2.4. In this one we have col(p;) <
col (px) £ col (p;) < col (py). Let,

v1 =row(gq) — row (pi),

vy = row(p;) — row (p;),

vy = row (pe) — row(q),

vy = row(p)) — row (pg),

hy = col(py) — col{(p;),

ha = col (p;) — col (pg),

ha = col(pr) — col(pj), and

hq = col(q) — col {p}).
Since p; chose g; and not p, we have

ho +hs + hg Svs.
Since p; chose g; and not p;, we have

Vs + kg S hs + k.
Adding these inequalities gives h4 < 0 which is not possible (since 14 2 1). Note that
v1 2 0 and thus the claim holds also when one of the segments is a horizontal segment.
The other five situations are handled in an analogous manner. Hence, there cannot be

four horizontally overlapping segments and Property 2.4 follows. O

Let §; and S; be two segments in image CI. Then, the relationship between §; and
S; can be characterized as one of the following. We will refer to these cases by
description and by number in the following sections.
(1) §; and S; are disjoint
(2) S; and §; overlap with shared endpoints
(3) S; and §; share endpoints with p; = ¢; and p; = ¢;.
(4) S; and §; cross with p; = g;
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(5) S; and S; are adjacent with neighboring endpoints

(6) S; and S; are adjacent with p; = g;

(7) S; and §; are adjacent with non-neighboring endpoints and
(i) the endpoints come from four components
(ii) g; and g; are in the same component

(iii) p; and g; are in the same component

2.1.3. Removing Cycles

This section describes the cycle-removing phase which generates image I* from
image CI. Recall that the cycle-free property can be violated in C7 in two ways. If the
image CI — I contains a thickness of ¢, ¢ 2 2, then image CI contains a local cycle. If
the image CI — I contains a 1-pixel p such that there exists a path that starts at p and
traverses components and segments and eventually retumns to p, then image CT contains
a global cycle. Detecting global cycles cannot be done by a simple scanning method.
Therefore, if the relation between two segments is such that it could create a global
cycle, we take appropriate actions that will destroy the cycle if it should exist. We
remove cycles in C7 in one of two ways. In many situationsfﬁvc change two interacting
segments into overlapping segments with shared endpoints. If doing so does not ensure

a cycle-free image, then we remove one of the two segments.

It is clear that case (1) cannot cause any cycles. Case (2) will be shown to cause
no cycles in the theorem proven below. Case (3) covers the sitaation in which pixels p;
and ¢; are in one component (namely C;) and p; and ¢; are in another component
(namely C;). Segments S; and S; could both be vertical, both be horizontal, or could
both consist of one vertical and one horizontal portioﬁ in which case the two segments
are not identical. Segments S5 and S7 in Figure 1.1(b) illustrate case (3) when the seg-
ments are not identical. Obviously, we only want one of the two segments to be in

image I* and therefore we remove either segment S; or segment ;.

In case (4), let s be the 1-pixel belonging both to §; and §;. There exist two paths
from 5 10 p; = g, (see segments S3) (which connects Cyy and C ) and $y5 (which con-

nects C1¢ and C7) in Figure 1.1(b)). We remove one of the two paths by changing
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P, 4;) t© @ Gids ie., min{C;) is changed from C; to min(C;), resulting in overlap-
ping segments with shared endpoints. This change does alter the underlying graph G.
However, since the edges (C;, C;) and (C;, min(C;)) were not on a cycle in G, the

edges (C;, min(C;)) and (C;, min(C;)) cannot be on a cycle in the new graph either,

As for case (5), there can be at most three segments S; 1, S; 2, and S; 3, such that
Si,j and S; ;41 are adjacent with neighboring endpoints and a thickness of 3 is created,
1 < j <2. This follows from Properties 2.2 and 2.3. The cycle-removing step changes

adjacent segments into overlapping segments with shared endpoints.

Case (6) covers the situation where S; and S; are adjacent with p; = q;. The gen-
eral approach for eliminatng the cycle generated by the adjacency is to change the

adjacent segments into overlapping segments with shared endpoints.

Case (7) (i) covers the situation when S; and §; are adjacent with non-neighboring
endpoints and the endpoints come from four components. The adjacency between the
two segments could create a global cycle. In order to avoid this, the cycle-removing
phase deletes one of the segments, We do not determine whether the adjacency
between the two segments does actually introduce a global eycle, since this could not
be done efficiently by local methods. Assume now that segments §; and §; are related
as described in case 7 (ii) or (iii). An example of case (7) (ii) occurs between segments
S; and §; in Figure 2.5 and an example of case (7) (iii) occurs between segments S5
(which connects C 5 and Cg) and S9; (which connects Co and C5) in Figure 1.1(b).
Observe that, independent of the adjacency between the two segments, components C;,
C;, and min(C;) are in same component in image CI. The general approach for elim-
inating the cycle generated by the adjacency is to change the g-endpoint of one segment
to the g-endpoint of the other segment, resulting in overlapping segments with shared
endpoints. If changing endpoints does not eliminate the cycle, one of the two segments
is removed. This can happen, for example, when the distance between two of the end-

points is 2, as shown in Figure 2.5.

Assume that image I contains no components at distance 1. Then after the cycle-

removing phase has been completed, we have a new image /** which contains only dis-
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joint segments or overlapping segments with shared endpoints. Any two overlapping

segments create a Steiner pixel.

Theorem 2.1. Image /* satisfies the cycle-free property.

Proof (by contradiction): Assume there exist two l-pixels x and y with x € §;, and
y € S; such that there exists a cycle containing x and y. Let Cy be this cycle and let Cy
be represented by listing the segments and components traversed. If Cy contains alter-
nating segments and components, then there also exists a corresponding cycle in graph
G. Since we know that G is a forest, image /* cannot contain any such cycles. If the
listing of the cycle Cy contains two consecutive segments S; and S;, then segments S;
and S; overlap with shared endpoints. Thus we can replace the sequence S;, S; in Cy
by Si, Cy, S, where Cy is the component containing the shared endpoint. This implies
that from Cy we can generate a cycle Cy’ such that in Cy” segments and components
alternate. Since we know that such a Cy’ cannot exist, image /* cannot contain any

such cycles. U

2.1.4. Implementation of the MCS Method .

We now discuss some of the details on how to implement the first two phases of
the MCS method in O (n) time on an nxn mesh. Let a contour pixel of a component be
a 1-pixel adjacent to a O-pixel. A lefr (right, upper, lower) contour pixel of a com-
ponent is a contour pixel with the 0-pixel to the left (right, top, bottom) of it. A corner

pixel is a pixel that is part of the vertical and horizontal portion of a segment.

The min—components and the segments are determined in the first phase by scan-
ning procedures followed by a connected component computation. The objective of the
scanning procedure is to determine, for every contour pixel p of component C;, a con-
tour pixel g in another component that is at minimum distance (ties are broken as
described in rules (i)-(iii)). The scanning starts by every left (resp. right) contour pixel
initiating a horizontal scan to the left (resp. to the right). Assume processor u contains
contour pixel p of component C;. Every processor v visited by the left (resp. right)

scan initated at u records thart there exists a 1-pixel p belonging to component C; in the
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same row and it also records the distance from « to v. A scan terminates when another
1-pixel or the border of the mesh is reached. After all horizontal scans have been com-
pleted, every upper (tesp. lower) contour pixel p initiates a forward scan upward (resp.
downward). The forward scan determines for every processor v visited the 1-pixel at
minimum distance from p and in the same row as processor v (by using the information
deposited in v by the previous step). When such a forward scan encounters a 1-pixel or
the border of the mesh, it backtracks and selects the overall minimum for 1-pixel p.

Pixel p can now determine its pixel ¢ at minimum distance in O (1) dme.

After every contour pixel p has determined a contour pixel ¢ at minimum distance,
we perform a connected component computation in which each component C; deter-
mines min(C;), and pixels p; and g;. As part of this computation each 1-pixel of C; is
informed of min (C;), p;, and g;. The O (n) connected component algorithms described
in [CSS, HT] can easily be modified to accomplish these operations. The final step of
the first phase creates image CI. Every 1-pixel p; of component C; changes the 0-pixels
on the path from p; to g; to I-pixels, We assume that a 1-pixel records the endpoint
and component information of each segment it belongs to, resulting in 4 registers
needed per segment. This information is used by the cycle-removing phase to deter-
mine what actions need to be taken. Since the optimization phase also needs the end-
point and associated component information, it is also necessary to keep this informa-
tion after the cycle-removing phase. Property 2.4 states that a 1-pixel in image CI
belongs to at most three segments. Overall, it is easy to see that the number of regis-
ters needed to store all the necessary information about segments is bounded by a con-
stant. We refer to [T] for a more complete discussion_on the space requirements of our
algorithms. |

We next describe the implementation of the cycle-removing phase which involves
handling cases (3) - (7). In the implementation, the cases are handled in order with the
excepton that case (6) is processed between cases (4) and (5). Case (6) is processed
out of order to allow groups of adjacent segments to be combined in a way such that

outer adjacencies are handled first and inner adjacencies are handled last.
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Case (3) handles two components C; and Cj, with min(C;) = C;, min(Cj) =G,
p; = 4qj, and p; =q;. This situation can be detected on a local basis by each 1-pixel
checking whether the relevant conditions are satisfied. If they are and C; < C;, then
segment S; is deleted, otherwise §; is deleted. To delete a segment the p-endpoint staris
a scan which deletes the entries about the corresponding segment. If a processor con-

tains no segment entry after such a deletion, its 1-pixel is changed to a O-pixel.

In case (4) we handle the situation where two segments §; and §; cross and
pi =qj. This situation can also be detected on a local basis. Let y be the 1-pixel in
both S; and S;. To change S(p;, g;) o S(p;, ¢;) the pixel representing p; and g; ini-
tiates a scan which deletes the entries of S(p;, g;) between q; and y. Next the horizon-
tal portion of S(p;, g;) between y and g; 15 updated to record the additonal segment
entries for S(p;, g;) and all processors containing a pixel of S (p;, g;) record the new

g-endpoint and corresponding component for S (p;, g;).

The next step of the cycle-removing phase handles case (5). Adjacency of seg-
ments with neighboring endpoints can be detected locally by considering the endpoints
of segments. If the adjacency occurs along the vertical direction, only two segments
can be involved (as stated in Property 2.2). Let S; be the segment that consists of only
a vertical portion and let S; be the segment that has row (p;) # row(g;). In this situa-
tion, ¢; and p; are the neighboring endpoints. We keep segment S; and delete the verti-
cal portion of §;, changing S (p;, ¢;) to S{(g;. g;). If S; was involved in a case (6) verti-
cal adjacency with a segment Si, then segment entries of S; were added to processors
containing segment entries from the vertical portion of S;. These segment entries of S

are deleted as well and S (pg, g;) is changed to S(q;, gi)-

Assume now that adjacency occurs along the horizontal direction. From Property
2.3 we know that the thickness is either 2 or 3. Let §; be the segment with the longest
horizontal portion involved in creating the thickness. If the thickness is 3, this segment
corresponds to the segment whose p-endpoint and g-endpoint are located on the same
row. Segment S; remains and the horizontal portions of the other segments are deleted.

Observe that the deletion process may involve segments that are overlapping with other
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segments. Let x be a 1-pixel of a segment §; so that x is vertically adjacent to a 1-pixel
of segment S;. If x is not located at positon (row(gj), col (p;)) or located at position
(row (qy), col(py)) of a segment Sy which overlaps with §;, then it and the correspond-
ing entries are deleted. If x is not such a pixel, then it remains a 1-pixel and it initiates
an updating of the information recorded about the associated segment. The g-endpoint
of any segment that is changed in this process becomes the endpoint of S; that was one

of the original neighboring endpoints.

Case (6) handles the situation where S; and S; are adjacent with p; = ¢g;. This
situation can be detected on a local basis by the I-pixel representing p; and ¢;. In the
case of a horizontal adjacency with p; = g, S; is a horizontal segment. See also Figure
2.6(a). We keep segment (p;, 4;) as well as the vertical portion of segment (p;, q;).
We delete the horizontal portion of (p;, g;), keeping the g-endpoint of segment S; at 1-
pixel p; = g;. Figure 2.6(b) shows the resulting change in the image. If segment §;
consists of only a vertical portion, then these actions create a 2 X 2 block of 1-pixels.

We remove the 1-pixel at position (row {(g;), col (p;)) to break this cycle.

In the case of a vertical adjacency with p; = g;, §; is a-vertical segment. See Fig-
ure 2.7(a). We keep the segment (p;, ;) as well as the horizontal portion of segment
(p;, q;). We delete the vertical portion of segment (p;, g;), keeping the p-endpoint of
segment S; at 1-pixel p; =¢q;. Figure 2.7(b) shows the resuliing change in the image.
If segment S; consists of only a horizontal portion, then these actions create a 2 X 2
block of 1-pixels. We remove the 1-pixel at position (row (g;), col (p;)) to break this

cycle.

When case (7) occurs, at least one of the. two adjacent segments has
row(p) # row(q). W.lo.g let it be segment §;. The 1-pixel at position (row(q;),
col (p;)) is adjacent to a pixel of segment §; and it is the job of this 1-pixel to detect
case (7) adjacencies. Case (7) (i) covers the situation where the endpoints of segments
S; and S; come from four different components. In this case we delete the segment §;

if min(C;) < min (C;), and we delete §; otherwise.

The general solution for Case (7) (ii) (i.e., ¢; and g; are in the same component),




-19-

is to change the g-endpoint of one segment to the g-endpoint of the other segment. If
changing segment S (p;, ¢;) to S(p;, g;) causes at least one 1-pixel to change into a 0-
pixel, we perform this change. Observe that in this case the cycle is eliminated by
changing adjacent segments into overlapping ones. Otherwise, we consider changing
S(;, q;) o S(p;, qi). If this change in endpoints does reduce the number of [-pixels,
we perform the change in endpoints. It is possible that none of the two possible
changes in endpoints reduce the number of I-pixels. Such a situation is shown in Fig-
ure 2.5. In such a case the cycle induced by the two adjacent segments cannot be elim-
inated by changing endpoints and we remove one of the two segments. The situation
for Case (7) (iii) (i.e., p;i and g; are in the same component) is similar. If changing
S{pj, q;) to S(p;, g;) does not reduce the number of 1-pixels, we delete one of the two

segments.

A few additional actions need to be taken during the processing of case (7) adja-
cencies to ensure that image /* is cycle-free. Assume that segment S; is involved in a
case (7) configuration with a segment S; and §; is deleted. If there exists a third seg-
ment S, such that S; shares 1-pixels with §; and Sy is also adjacent to §;, then segment
S; is deleted as well. Now assume that segment S; is involved in a case (7)
configuration with a segment S; and that g; is changed to g;. If there exists a third seg-
ment Sy, such that S; shares 1-pixels with §; and S is also adjacent to S;, then the gen-
eral solution is to change g; to g; as well. If changing g, to ¢; would cause a 1-pixel of
Sk to be adjacent to g;, then segment S is deleted instead. Assume now that S; is
involved in a case (7) adjacency with two segments, S; and Sy, such that §; and S are
non-overlapping segments and p = g;. Figure 2.8 illustrates this configuration. In this
sitnation we delete segment §; to prevent a local cycle that could occur in this
configuration when g-endpoints are switched during the processing of cases (7) (ii) and
(iii).

After the cycle-removing phase has been completed, a 1-pixel in image /™ can
belong to at most five different segments [T]. This is also the maximum number of
segiments a 1l-pixel can belong to any timc during the first two phases of the MCS

method.
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As already stated, when image / contains components with dist(p, g) =1, the
image generated by the cycle-removing phase is not necessarily cycle-free. Turning
image CI into a cycle-free image in these situations can no longer be done efficiently by
local scanning methods. Since distances of length 1 do not occur often, the MCS
method does not detect cycles caused by components that are distance ! from other
components. The additional effort required to remove single pixels does not seem to be
worth the improvement obtained. After image I* has been generated by the cycle-
removing phase, we determine its connected components. Every step of the first two
phases of the MCS method is thus either an O (n) time connected component computa-
tion or a scanning operation which partially scans a constant number of rows or

columns.

2.2. Optimizations

The cycle-removing phase reduces the number of 1-pixels in image /* by turning
adjacent segments into overlapping ones and by eliminating cycles. In this section we
describe optimizations that can be applied to image I* to further reduce the number of
1-pixels. After the cycle-removing phase image /I* may cc;n’tajn segments for which a
1-pixel on the vertical (resp. horizontal) portion is close to another segment so that the
number of 1-pixels would be reduced by making a horizontal (resp. vertical) "shortcut”.
Shortcutting creates o;.'crlapp'mg segments from segments that are "not too far apart”.
We present two techniques for shortcutting and an algorithm for selecting an optimum
set of shortcuts. The first technique we describe is a shortcutting technique applied to
non-overlapping segments in /*. (We call a segment non-overlapping if it does not
overlap with any other segment.) The second technique we describe is a shortcutting

technique applied to overlapping segments in I*.

Let Cq, C2, *** , Cy be the components of image [ and let C}, C, =~ , C'}
be the components of image [*. Our optimizations do not change any pixels in
Cy, Cq, -+ , Cp. Let I;p be the image after the optimizations described in this sec-
tion have been applied to /*. As /*, image I:p contains { components and two pixels

x € C; and y € C; are in the same component in / ;p if and only if they are in the same
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component in /*. Figure 2.9 shows an example of how these optimizations can change
an image I*.

We start by describing the shortcutting technique applied to non-overlapping seg-
ments in [*. We first describe how each segment proposes a shortcut. Given all the
proposed shortcuts, we give a graph formulation for determining which proposed
shortcuts to take and then a dynamic programming formulation of the problem. We
finally describe how to use the dynamic programming formulation to obtain an O (n)

time mesh algorithm.

Let C; be a component of image [ and let S; be the segment formed by p; and g;.
Let N; be the set containing the non-overlapping segments that have their g-endpoint in
C;. Let O; be the set containing segment S; plus the segments that have their g-
endpoint in C; and which overlap with at least one other segment. The main idea of
shortcutting is to have every segment S; in N; propose a horizontal or vertical shortcut
to a segment in N; U O;. Formally, segment §; proposes a shortcut if there exists a 1-
pixel b; on §; and a 1-pixel ¢; on some segment in N; U O; such that b; and ¢; are
either in the same column or in the same row and dist(p;, ¢;) < dist(p;, q;). Pixels b;
and e; can be viewed as the pixels on the begin and on the end of the shortcut proposed
by segment §;, respectively. Observe that we do not allow segment S; to shoricut to a
segment not in N; W O;. If we would allow §; to shortcut to such a segment, we could

. . E ] .
create cycles in image /., and/or disconnect components of I*,

Having each non-overlapping segment determine its best shortcut can easily be
done in O(n) time by using simple scanning methods. The difficulty lies in determin-
ing which shortcuts to make. Obviously, not all proposed shortcuts can be made since
the shortcut made by segment S; counts on using a certain portion of another segment.
Furthermore, if we allow segments to propose shortcuts in all four direction simultane-
ously, the proposed shortcuts can contain cycles; e.g., segment S; proposes a shortcut
0 S;,, S;, proposes one to S;, and S;, proposes a shortcut to S; . Detecting and han-
dling cycles of this nature could no longer be done by simple local scanning methods.

We avoid the creation of cycles altogether by separating the directions in which
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shortcuts can be proposed. As it muns out, handling the proposed shortcuts in one
direction, say horizontal to the right, is already challenging. The algorithm determining
which of the proposed shortcuts should be made requires only simple data movement
operations and runs in O (n) time with a small associated constant. The interesting and
non-trivial part of this algorithm is the way the selection of shortcuts is done and its

COITECIIESS.

We next describe how to determine the shortcuts when horizontal shortcuts to the
right can be made. The algorithms for the other three directions are analogous. As
already stated, in O (n) time every segment can determine whether and how much it
gains by making a horizontal shortcut to the right. Let G=(V, E) be the directed,
weighted graph in which every segment of /* corresponds to a vertex and an edge
<i, k> implies that

(i) segment S; proposes a shortcut to segment S and

(i) pixel e;, which is on the vertical portion of Sy, is not necessary for segment Sy

when S selects to make its proposed shortcut.

The weight w; of vertex i corresponds to the number of 1-pikels saved when S; selects
the proposed shortcut; ie., w; = dist(p;, q,-) — dist(p;, e;). Every vertex of G has out-
degree at most 1 and for every edge (i, k) we have col(p;) < col(py). Thus, G is a
directed forest. Since every vertex i in G corresponds to segment S;, we will no longer

distinguish between vertex i and the segment S;.

The problem of determining which of the proposed shortcuts to take can be formu-
lated as a graph problem as follows. We point out that the graph moedel is only used in
our explanation and that the algorithm does the corresponding actions directly on the
image. If we require that, whenever segment S selects to make its proposed shortcut,
no segment S; with <i, k> e E is allowed to take its proposed shortcut, then finding a
maximum weighted independent set of & gives the optimum selection of shortcuts. A
maximum weighted independent set of C is a subset W ¢ V such that any two vertices

in W are not adjacent in G (¥) and w* = 3 w; is a maximum. However, it is not true
ie W

(Y If u and v are in W, then neither <i, v > nor <v, > isin E.
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that, if in an optimum solution segment S takes its shortcut, none of the segments §;
with <i, k> € E take their shortcut. An example of this is shown in Figure 2.10. In
this figure segment S; saves 6 pixels by making its shortcut, and segment §;, saves 3
pixels by making a shortcut to S;. Assume segment S; makes its shortcut. Even when
Si, pays for the 2 pixels needed to connect to S, it still saves one pixel. We will show
that, if in an optimum solution segment Sy takes its proposed shortcut, then at most one
segment S; with <i, k> € E takes its shortcut (and it pays for the extension of the vert-

ical portion of the modified segment 5y).

Let S, be any segment. We define D (k), the diamond of segment S, to be the set
containing the positions o with disz(py, o) < dist(p;, qx). Endpoint g is at minimum
distance and thus, if an element of D (k) corresponds to a 1-pixel already present in 7,
this 1-pixel belongs to component Cy. Let the border of D (k) be the set containing the
positions o with dist (pg, o) = dist(p;, qr). The border of D (k) contains at least one
1-pixel (namely g;) belonging to another component. Suppose S; proposes a shortcut
and assume w.lo.g. that row(p) < row(g,). Let iy, i3, --- , i; be the vertices with
<ij, k> € E (ie., they correspond to segments shortcutting . into S;) with row(e;,) <
row(g;,) < - - < row (e;,). Let T(i;) be the set of positons in diamond D (i;) which

are in column col (py), 1 € j < L.

Lemma 2.1. Let W bc an optimum selection of shortcuts containing the shortcut pro-
posed by segment k. If i) € W, then T(i;) contains pixel b;. Furthermore, none of
ia, -+ ,ipisin W.

Proof:. If T(i)) contains pixel b, then segment i, reduces 1-pixels by making a
shortcut to segment & and to "pay" for the row (p; ) — r.ow (by) pixels needed to extend
the vertical pordon of segment k. If T (i) does not contain pixel by, segment i does

not gain anything by such an extension. Hence, the first part of the lemma follows.
We next show that T(i) N T(i; 4 1) = & ie., ﬁo two diamonds can share pixels in
col (p;). Let
dy = col(p;,,,) —col(p;) - 1,
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dy = col{py) — coi(p,—}.”) -1,

fi =dist(pi,, q;)) —dy —d2 -2,

fi., =distpi, . g, )—da— 1,

dy = row(p,-m) — row(p; ) —f,—}_ —1, and

dy =dist(e;, ,» 90
as shown in Figure 2.10 for j = 1. The enuy fj, + 1 represents the number of pixels
saved by segment {; when i; shortcuts into segment &. Since p; did not choose p; |,

we have dp 2 d4. Pixel p;, has its g-endpoint no further away than g, and thus

f,-}_.l < d4. Adding these two inequalities gives f,-j+1 <d,. Since p;, did not choose
Pi,.,» WE have d43 2 d4 + 1. Hence, fi,--l < ds3. In order for T(i; . 1) to contain an ele-

ment also in 7'(i;) we need f;, | > d5 and thus T(i;) N T(ij 4 1) =< follows.

Hence, the number of pixels needed to extend any vertical portions for segment i;
is at least f,—J for j > 1. Thus, for j 2 2, segment i; does not reduce 1-pixels by making
a shortcut in the case when the shortcut proposed by segment k£ got selected, and the

second part of the lemma follows, O

Determining the optimum selection of shortcuts for one tree of forest G can now
be modeled as follows. Let T = (Vr, Er) be a rooted tree in which the relationship
between vertices and edges to segments and shortcuts is as defined for G. Every vertex
of T is either red or blue. A blue vertex corresponds to a segment that could gain by
taking its shortcut even though its parent takes its shortcut. Because of Lemma 2.1,
every vertex has at most one blue child and the root of T is red. Let i be a vertex and &
be its parent. Vertex i is a blue vertex if and only if dist (p;, by) < dist (p;, ;). Recall
that &, is the pixel on the begin of the shortcut proposed by S;. Let wy =
w; — dist (e;, by) — 1, where w; = dist(p;, q;) — dist(p;, &), as already defined earlier.
A blue vertex i has two weights, w; and w;’, associated with it. A red vertex i has one
weight, namely w;, associated with it. We are to determine a subset W = Wgp w Wp of
the vertices, where Wp (resp. Wp) are the red (resp. blue) vertices, such that no two ver-

tices in Wp are adjacent and w* is a maximum. In order to define w*, let Wy =

'
-
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Wy’ w Wp”, where Wp' are the blue vertices whose parents are not in W, and Wp" are
the blue vertices whose parents are in W, respectively. Then, the value w* to be max-

imized is Y wi+ Y ow
ie Wy Wy ie Wy"

We next give a dynamic programming forrmulation of this problem. For any ver-
tex I, let T; be the subtree rooted at i. Let s (i) be the maximum weight achievable for
T; when vertex i is to be included in the solution and let s°(i) be the maximum weight
achievable for T; when vertex i is not present in the solution. For any leaf node i of T
we have have

s()=w; and
sy =0
For any interior vertex & with children iy, i, -+ , i, where i is either a blue vertex
or not existing, we have
s (k) =max{s'(i1), sUy) — W, —w D] + _ézs'(ij) + wg and
ji=

I
s'(k) = ¥, max{s(i;), (i)}
j=1 ..
Obviously, w* = max{s(r), s(r)}, where r is the root of T, and w* can be determined
in O(1V71) sequential time. By using the s and 5" entries in a traversal of T initiated at

the root r, we can determine a set W achieving weight w* in additional O (I1Vr 1) steps.

We now describe how to use the dynamic programming formulation to obtain an
O (n) time mesh algorithm. The logic of our algorithm is based on the computation of
tht;: s and §” entries. Their computation is done while traversing paths of 1-pixels in the
image. Let P be a path from a leaf of T to the root of T and let P be the sequence of
pixels in the image corresponding to path P. The next lemma shows that the number of
pixels on P’ is O (n). P’ consists of horizontal movements (i.e., the shortcuts) and verti-
cal movements (i.e., the portions of the segments between the incoming and outgoing
shortcut). A corner pixel is considered to belong to the horizontal movement. The hor-
izontal portions of P’ contain a total of at most # pixels (since all shortcuts go from left
to right). We note that for any given row the number of pixels belonging to vertical

portions of P’ is not bounded by a constant. If this property were true, the O (n) length
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of P’ would follow immediately. Our proof of the O(n) length of a path in the image

is based on a non-trivial accounting technique.

Lemma 2.2, The number of pixels on path P’ is O (n).

Proof: Let i, ip, -+ , iy be the segments on path P’ with i; being the leaf and iy
being the root. The shortcut proposed by segment i, 1 < j < d, leads from pixel f:v,-j on
segment i; to pixel e;, on segment [j4). Let h,-j = dist (b,-j, e;}.) + 2 and vy =
dist(e;;_,» bi))- Segment i; accounts in P’ for a vertical movement of length v; and a
horizontal movement of length k;. We first show how to assign to segment ; at least
vi, /8 pixels belonging to a horizontal movement (not necessarily to the horizontal
movement done by the shortcut proposed by segment {;). Furthermore, no two pixels
of a horizontal movement get assigned twice.

Let i; and ij,) be two consecutive segments on path P’. As defined in section
2.1.2, we say i; and i;,, are of the same type if either row(p;) <row(q;) and
row (p,-“l) < row (q;j“) or row(p,-}_) > row (q,—i) and row(p,-m) > row (q,-Pl). Assume
the assignments for iy, *** , ij— have been made without assigning pixels on hor-
izontal movements to the right of col (p; ).

Consider first the situation when segments i; and i; ;| are of the same type. We
then have h,—}_ = Vi, /2. This holds since Vi, < dist (p,-j, q,-j) and h,-j 2 dist (p,-},, q,-j)/2 (if
the latter were not true, p;, | would choose pi, instead of ‘IE,-H)- See Figure 2.11(a).
Thus, we can assign to segment {; at least Vi, /2 pixels belonging to the horizontal
movement made by the shortcut of i;.

Assume now that segments i; and i{;;; are “of opposite types. W.lo.g let
row (p;) > row (g;,) (which implies row (p;, ) <row(q;, ). If hy; 2v; /2, we again
assign v;, /2 pixels from the shortcut of i; to segment i;. Otherwise, we distinguish
whether i; , | and i; ,  have the same type.

Case 1. Segments ;.1 and i; ., have the same type. It then follows from above that
h;.
J

a2V /2. We assign v;, , /4 pixels of the shortcut of i; ; ; to each of segment

{; and segment ij+1. It remains to show that v; /4 >v; /8. This holds since
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h,‘j < V,'J_ /2 111'1('11\!}',"'.‘1 = b,‘j” imply V,'}_‘ > V,'J. /2.

1

Case 2. Segments i; ., and i; .2 are of opposite types. It is easy to see that segments

i; and ij , ; together make a horizontal movement of at least disz (b;;, g;,)-

Case 2.1. row (pfm) 2 row(p; ) — dist (p;;, q;,). Informally, this means that i, does

not lie above the top corner of the diamond D (¢;). This implies Vi, S dist (b,-}_, q,-}_).
We can thus assign a horizontal movement of length disz (bi,» q,-j) /2 to each of {; and

ij +1 and continue with segment I; , 5.

Case 2.2. row (p,-}_ﬂ) < row (p,-f) — dist (p,-}_, q,-j). We will go through the argument for
the situation when coi(g; ) = col(p;). The other sitvaton is handled in a similar way
and is omitted. The goal is again to assign a horizontal movement of length
dist (b; , q,-J_) /2 toeach of i; and ij ). Let 3 be the number of pixels on segment i; , |
abave row row(p;) - dist (pi,. q,-j) ~ 1, and let p be the number of pixels on the hor-
izontal portion of segment i;, as shown in Figure 2.11(b). If Pi,., and qi, are in
different components, then, 4; +p 2 2v,-J_ +p- h,-J. The right-hand side accounts for a
vertical movement of at least v;, and 2 horizontal movement of at least v; +p = A
within D (i;) done by segment ij+1. This contradicts our assumption of h,-J <y /2.
Hence, p;, | and g; must belong to the sﬁc component. In this case we have § < k,-f

(otherwise ¢;, would be the p-endpoint of this component). Thus,

; . 3.
Vi < dist (bjj, q,-,) +0 < dist (bip q;,) + hil < Edf.ﬂ' (bl',-’ q,—j).

We can now assign to each of i; and i;,, a horizontal movement of length
dist (b, g}/ 2. From the above inequality it follows that the condition on the vertical
movement made by segment i; , | is satisfied; i.e., v;, , / 8 < dist(b;, gi,) /2.
d
Therefore, if path P” makes a total of k= Y} vi, vertical movements, then P’
i=2
makes a horizontal movement of at least k£ /8. Since the horizontal portions of P’ con-

tain a total of at most n pixels, the length of path P’ is O (). O
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We point out that the objective was to prove the O (n) length and we omitted the
I’s and [*s from the analysis. We also did not aim for the tightest bound possible since

doing so does not affect the performance of the algorithm.

After all the children of vertex i have computed their corresponding values and the
values of s () and s'(f) are available in the processor containing b;, this processor sends
these two values to by via ¢;. If segment i corresponds to a blue vertex, we also send
the difference between the two weights. If along the path to b, the entries from another
child of vertex & are encountered, entries are combined; i.e., we start building up the
entries s (k) and s'(k). It is easy to show that the entries moving along the longest path
are never delayed. Since the length of the longest path is O (n), the O (n) time bound
for computing the s- and s’-entries follows. The actual selection of proposed shortcuts
is then made by running the just completed data movement backwards. The decision
made for the parent, together with the s- and s"-entries, is used to make the decision of
a child. Hence, the optimum selection of proposed shortcuts to the right can be made
in O (n) time by using simple scanning methods.

After the shortcuts to the right have been selected, the. other three directions are
handled in a similar way. Again, only segments that do not overlap with other seg-
ments are allowed to propose a shortcut. Assume the shortcuts are processed in the
order of right shortcuts, left shortcuts, up shortcuts, and then down shortcuts. In order
to avoid having initial shortcuts that result in only a small savings, it appears reasonable
to require that proposed shortcuts save at least a certain minimum number of pixels.
One might require that proposed shortcuts save a fixed amount depending on the size of
n and the direction of shortcuts currently being considered. For example, for n = 128,
one might require that proposed shortcuts to the right must save at least 8 pixels, pro-
posed shortcuts to the left must save at least 5 pixels, proposed shortcuts in the up
direction must save at least 3 pixels, and proposed shortcuts in the down direction must
save at least 1 pixel. Another possibility is to rc(iuirc that proposed shortcuts save an
amount which varies with the length of the segment proposing a shortcut and depends
on the direction of shortcuts currently being considered. For example, if segment S;

proposes a shortcut, then a proposed shortcut to the right must save at least
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dist (p;, g;)/ 4 pixels, a proposed shortcut to the left must save at least dist (p;, ¢;)/ 4
pixels, a proposed shortcut in the up direction must save at least dist (p;, 4;) / 8 pixels,
and a shortcut in the down direction must save at least 1 pixel. If a segment S; cannot
propose a shortcut of sufficient length for the direction currently being considered, then

S; does not propose a shortcut for that direction.

We conclude this section by sketching similar optimizations that can be applied to
overlapping segments. Let C; be a component of image /, y € C;, and OV (y) be the
set containing the overlapping segments in image /* that have pixel y as their g-
endpoints. Recall that in image /* there can be at most 5 overlapping segments whose
g-endpoint is pixel y. Let S{p;,, ¥), *-- , SWi,, ¥) be five overlapping segments.
Using an idea similar to the shortcutting described earlier, we allow shortcuts between
these overlapping segments. The implementation is now much simpler. Consider two
such segments, say S(p;,y) and S(p;,, ¥) which, w.lo.g., are both + segments. If
col (p;,) is between col (y) and col (p;, ), then S (p;,, y) determines if pixels can be saved
by making a horizontal shortcut to S (p;,, y). If yes, S;, next checks whether it is possi-
ble o change enough I-pixels into O-pixels so that it gairs by making the shortcut.
Qbserve that the optimizations made by non-overlapping segments may have created
additional overlaps with segment §; and thus §; cannot simply erase itself. Pixel p;
determines in O (n) time whether it should perform the shortcut. The other cases for

performing shortcutting between segments in OV (y) are handled in an analogous way.

3.. Steiner-Pixel-Selection Method

In this secion we describe our second method .for connecting components, the
Steiner-Pixel-Selection (SPS) method. In the SPS method every component of image [
selects a Steiner pixel to which it attempts to connect by either a vertical or a horizontat
segment. The image generated by one application of the SPS method is cycle-free.
The SPS method consists of four phases. In the first phase every component C; in
image [/ selects a Steiner pixel 5;. The second phase establishes a vertical or horizontal
connecton from a contour pixel in component C; to the selected Steiner pixel 5;. The

third phase handles Steiner pixels that are adjacent to only one other 1-pixel. In such a
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case further steps are taken to either assign the component another Steiner pixel or to
erase the connection altogether. The final phase makes the image cycle-free. Figure

1.1(d) shows the image obtained by applying the SPS method to the image of 1.1(a).

We next describe how the Steiner pixels are determined. Every component C; first
determines the distance between itself and the component at minimum distance from it.
Let min_dist (C;) = dist(p;, q;) — 2, where p; and ¢; are defined as in the MCS method.
Let w;1, wiz, *-- , wy, be the contour pixels of component C;. Every contour pixel
w;; of component C; initiates a constant number of scans. The purpose of these scans is
to deposit at every processor that can be reached by a vertical or horizontal segment
adjacent o wj; a scan pair (w;;, C;). A contour pixel initiates at most twelve such
scans. This happens in the case when component (; consists of a single pixel, as
shown in Figure 3.1. A scan terminates when either a scan pair has been deposited in
min_dist (C;) processors, a scan pair has been deposited at a processor adjacent to the
border of the mesh, or a scan pair has been deposited at a processor adjacent to a pro-
cessor containing a pixel of component C;. Under these rules at most four scan pairs
are deposited at any processor. Observe that a scan cannot encounter a 0-pixel that is
adjacent to a l-pixel belonging to another component (since any 1-pixel of another

component is at least min_dist (C;) +2 positions away).

When all scans have been completed, a processor containing a 0-pixel v contains
up to four scan pairs and we next remove multiple entries originating from the same
component. Let (w;;, C;) and (wy,, C,) be two scan pairs. If C; = C,, then one of the
pairs is deleted. If dist(wyy, v) > dist (w,p, v), pair (w;;, C;) is deleted. In case of
equality, the pair with the larger w-value is deleted. A processor containing fewer than
three scan pairs does not represent a Steiner pixel and it deletes all its scan patrs.

Let p be a processor containing O-pixel v and m scan pairs (w;;,, Ci),
l€u<m, m=3,4 1<), <}, We next compute M,, the cost of pixel v as a

Steiner pixel. The cost is the arithmetic mean of the distances of the contour pixels to

. 1 Z ..
v, i.e., M, = — ¥ dist(v, w;; ). Every component C; next selects, among the proces-
m e
u=1
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sors containing a scan pair originating from a contour pixel of C;, the 0-pixel associated
with the minimum cost entry. This 0-pixel is the selected Steiner pixel for component
C;. If a component C; selects pixel v as its Steiner pixel (i.e., v = s;}, then for all other
possible Steiner pixels ¢ the following rules are satisfied:

@ M=z=2M,

(i) ifM, =M, thens > v.

Assume every component C; selected its Steiner pixel s; and that s; is reached by a
scan initiated by contour pixel wi, 1 <i <k. Let 5; be the pixel adjacent to wy; such
that b; and s; are in the same row or column. Note that, since we allow up to twelve
scans from a contour pixel, w; and s; may not be in the same row or column. Let
Sb;, 5;) be the segment consisting of the sequence of pixels that connects b; and s; and
in which b;, but not s;, is included. Let S[b;, 5;] be the segment consisting of the
sequence of pixels that connects &; and §; and in which b; and s; is included. See Fig-

ure 3.2(d) for illustration.

The second phase tries to establish the connections fromn the b;’s to the Steiner
pixels. It is easy to see that changing the O-pixels on S[b;, s5;] to 1-pixels can create
cycles and use more pixels than necessary. In order to avoid cycles, component C; may
end up not connecting to pixel s;, but to a another pixel on S[b;, 5;]. Let ¢; be the pixel
to which component C; ends up connecting. The connections and the end pixels are
determined as follows. First all vertical connections are made. If b; and s; are in the
same column, a scan is initiated at b;. This scan moves towards s; and changes O-pixels
to 1-pixels. It terminates when it either reaches s; (in this case we have e; = 5;) or
when a 0-pixel changed into a 1-pixel is adjacent to another 1-pixel. In both cases, ¢; is
the last pixel changed on the scan. Next, every b; representing the begin of a horizontal
segment starts a scan with the same terminating conditions. One way a horizontal scan
can now terminate is by "running into" a vertical connection. Figure 3.2 shows exam-

ples of how connections are made.

The third phase of the SPS method handles end pixels that are adjacent to only

one other 1-pixel. Note that whenever an end pixel is adjacent to only one other pixel
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we have ¢; =s;. Every horizontal segment S [b;, ;] with ¢; adjacent to only one other
1-pixel is extended beyond e; in an attempt to locate a 1-pixel the component can con-
nect to. Such an extended scan terminates when either a 0-pixel adjacent to a 1-pixel is
encountered, min_dist (C;) processors have been visited (counting from the begin of the
scan at b;), or the border of the mesh is reached. All 0-pixels traversed by the scan are
changed to 1-pixels. An exception is made when the last (-pixel encountered is adja-
cent to a I-pixel belonging to component C;. In this case the last 0-pixel remains a 0-
pixel. The last O-pixel changed to a 1-pixel becomes the new ¢; for component C;.
After the horizontal extensions have been made, portions of horizontal and vertical seg-
ments are erased according to the following rules. If S(b;, ¢;] is a horizontal segment
in which e; is still adjacent to only one 1l-pixel, then the entire segment is erased.
Assume now that S{b;, €] is a vertical segment in which e; is adjacent to only one 1-
pixel. If there exists a 1-pixel s on S[b;, €] that is adjacent 1o the end pixel of a hor-
izontal segment, then pixel s is made the end pixel for C; (and 1-pixels between ¢; and
s as well as 1-pixel s are erased). Should there exist more than one such pixel on the
segment, we choose the one closest to ;. If no such end pixel s exists, the entire seg-

ment S [b;, €;] is erased.

Let CI be the image created by the second and third phase of the SPS method.
Image CI may not be cycle-free and the final phase removes cycles. Cycles can only be
created in a very local way, namely in the form of blocks of size 2 x 2. It is clear that
the terminating conditions of the scans used in the second phase do not allow the crea-
tion of larger blocks. At the same time, the existence of a 2 X 2 block does not neces-
sarily imply a cycle. The algorithm checks whether a_2 x 2 block creates a cycle. If it
does, one of the 1-pixels in this block is removed. A i-pixcl that can be removed is a
1-pixel adjacent to only two other 1-pixels. Such a I-pixel is an end pixel ¢; for some
component C; involved in the creation of the 2 x 2 block. After the 1-pixel is removed,
C;’s new end pixel is the pixel of S[b;, ¢] adjacent to ¢;. In Figure 3.2(c) pixel e,

belongs to a 2 x 2 block and it is removed during the cycle-removing phase.

Let I* be the image generated by the fourth phase. We next show that image [*

satisfies the cycle-free property. Every component C; contains at most one contour
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pixel that connects to a Steiner pixel and no pixel on S[b;, ¢;] is adjacent to a 1-pixel
belonging to a component, with the exception of pixel b;. Any cycle caused by the seg-
ments S[b;, e;] consists thus of horizontal and vertical portions that belong entirely to

these segments. We first prove a property about horizontal and vertical segments.

Property 3.1. Let S[b;, ¢;] and S[b;, ;] be two vertical (resp. horizontal) segments.
Then, no pixel in S[b;, €;) can be adjacent to a pixel in S[b;, e;]. In addition, pixel ¢;

cannot be adjacent to a pixel in S{b;, ¢;).

Proof (by conwradiction): Assume that there does exist a pixel in S[b;, ;) that is adja-
cent to a pixel in S[b;, ¢j]. Let g; be the pixel on S[b;, e;) closest to b; (a; could be
identical to b;) that is adjacent to a pixel in S[bj, e;]. If a; = b;, then a pixel of
S[b;, ¢;] is distance one from component C;. However, phase one deposits scan pairs
only at processors within distance min_dist (C;) = dist (p;, q;) — 2 of C; and phase three
extends segments 1o at most length min_dist(C;). Therefore, this is not possible. If
a; # b;, then pixel g; is adjacent to either b; or ¢;. Consider first a possible adjacency

with pixel ¢;. Since in phases two and three all scans terminate at the first occurrence

of an adjacent 1-pixel and all 2 x 2 blocks of 1-pixels causing cycles are eliminated, it
is impossible for @; to be adjacent to such a pixel. Next consider a possible adjacency
with pixel b;. If a pixel g; of § [b;, e;] is adjacent to b;, then g; is distance one from
component C; and as stated previously, this is not possible. The same type of reason-
ing can be used to show that pixel ¢; cannot be adjacent to a pixel in S[;, ¢;) and thus

Property 3.1 follows. H

The only adjacency between two vertical (resp. horizontal) segments S [b;, ¢;] and

S (b}, e;] that can be possible is between pixels ¢; and ;.

Theorem 3.1. Image I* satisfies the cycle-free property.

Proof (by contradiction): Assume that image /* does not satisfy the cycle-free property.
As stated previously, every component C; contains at most one contour pixel w;; that

established a connecdon from b; to ¢;. No pixel on S[b;, ¢;] is adjacent to a 1-pixel
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belonging to a component, with the exception of pixel b;. Therefore any cycle consists
of 1-pixels that are part of the horizontal and vertical segments. The cycle must contain
at least one horizontal segment S[b;, €;]1 such that at least two pixels on this segment
belong 1o the cycle. However, because of Property 3.1 and the fact that only ¢; can be
adjacent to a vertical segment, no such horizontal segment can exist. Similarly, the
cycle must contain a vertical segment S [5;, €] such that at least two pixels on this seg-
ment belong to the cycle. But, because of Property 3.1 and the fact that horizontal seg-
ments cannot belong to a cycle, no such vertical segment can exist. Hence, image /*

satisfies the cycle-free property. U

The implementation details for the SPS method are straightforward. We only pro-
vide details about the last step of the first phase in which every component C; selects,
among the processors containing a scan pair originating from a contour pixel of C;, the
0-pixel associated with the minimum cost entry. The selection process of Steiner pixel
s; for component C; is done in two steps. First every contour pixel wy; of C; selects the
minimum cost Steiner pixel containing the scan pair (wy, C;), and then the Steiner
pixel s; is determined. This pixel is the best among the pixels chosen by the contour
pixels of C; and it is found by performing a connected component computation.
Known connected component algorithms can easily be changed to compute the addi-
tional information needed in the Steiner pixel selection process. At the end of the first
phase of the SPS method every component C; has thus selected its Steiner pixel s;

which was reached by a scan originating at contour pixel wy.

The final action in the SPS method (after the four phases have been completed) is
a connected component compuiation to determine the components in image /*. Every
phase can thus be accomplished by either a scanning operation which partiatly scans a
constant number of rows or columns or an O (n) time connected component computa-
tion. Hence, the overall running time of the SPS method for connecting components is

On).
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4, Comparisons of the Methods and the Algorithms

In Sections 2 and 3 we presented two methods for connecting components. We
now compare these two methods and describe the connected compenent labeling algo-
rithms based on them. Assume input image / consists of k connected components. One
application of the MCS method generates a new image consisting of at most 4k /5
components. If no segments were deleted in the cycle-removing phase, then one appli-
cation of the MCS method would result in at most & /2 components. However, in the
processing of case (7) during the cycle-removing phase, segments can be deleted. The
worst case scenario is that two overlapping segments are deleted, leaving only one of
the original three segments. Five components were initially involved in this
configuration and since we have reduced the number of components by one (since the
Temaining segment connects two components), we obtain the 4k /5 bound. However,
in practice, most applications of the MCS method will reduce the number of com-
ponents by at least 1/2. Note that it is also possible that one iteration of the MCS

method succeeds in connecting all components.

One application of the SPS method does, in the worst case, connect no com-
ponents. Possible reasons are that the first phase of the SPS method does not create
enough potendal Steiner pixels, every component selects a unique Steiner pixel, and
components are too close together. Recall that we deposit scan pairs in processors at
most distance dist (p;, ¢;) — 2 away from a contour pixel of component C;. By chang-
ing the method slightly, it is possible to increase this distance to dist(p;, ;) — 1 and
still obtain a cycle-free image. The proof of the theorem that I* is cycle-free is more
involved in this case and we thus chose to present the version with the dist (p;, ;) — 2

bound. Our implementation of the SPS method considered both distance bounds.

Even with the possibility that the SPS method does not connect any components,
there are a number of situations in which the SPS method outperforms the MCS
method. Consider, for example, the point set given in [Hw] for which the cost of a rec-
tilinear minimum Steiner tree is indeed 2 /3 of the cost of a minimum spanning tree.

This point set is illustrated in Figure 4.1(a). When transforming this example to an
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image and running one application of the MCS method on it, we generate the solution
shown in Figure 4.1(b) consisting of 27 1-pixels, which corresponds to the minimum
spanning tree solution. On the other hand, if we run one application of the SPS method
on this image, we generate the solution shown in Figure 4.1(c), which consists of 17 1-
pixels, or approximately 2/3 of the cost of a minimum spanning tee solution and is
thus optimal. Note that this example can be made arbitrarily large by replicating the
point set shown in Figure 4.1(a) and spacing point sets in the manner illustrated in the
figure.

The MCS and SPS methods each have an O (n) asymptotic running time with a
small associated constant. The cycle removing phase of the SPS method is simpler
than that of the MCS method. This is true since we avoid creating nearly all cycles in
the SPS method by separating vertical and horizontal movement. A corresponding
approach, however, does not work for the MCS method. Both methods perform con-
nected component computations, scans on rows and columns, and local operations. We
refer to [T] for a detailed discussion of the time and space requirements of the mesh
implementations of the two methods. Note that the implemgnfation of the MCS method

does not perform any of the optimizations described in Section 2.2.

Our algorithms based on the two methods consist of a number of iterations, with
each iteration applying one of the two methods. Our first algorithm, referred to as the
MCS algorithm, uses the MCS method in each iteration.

Recall that in the MCS method Steiner pixels are created and 1-pixels are saved
when segments overlap. This segment overlap can occur within an iteration or in mui-
tiple iterations. We define this to be intra-iteration overlap and inter-iteration overlap,
respectively. Intra-iteration overlap occurs when segments formed in the same iteration
overlap. Inter-iteration overlap occurs when a segment formed in an iteration chooses
as its g-endpoint a 1-pixel that was part of a segment in a previous iteraton. In the first
iteration of the MCS method, many components ‘a.re connected, which reduces the
number of components that can participate in inter-iteration overlap in succeeding itera-

tions. In order to facilitate more inter-iteration overlap, we created our second algo-
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rithm, the MCS_SLOW algorithm. In this algonithm, every component chooses its seg-
ments as in the MCS algorithm. However, in the first iteration, only approximately half
of the segments chosen are actually created. The result is that in succeeding iterations,
there are more components to take advantage of connecting to 1-pixels resulting from

segments created in the first iteration.

Qur third algorithm, referred to as the MIXED algorithm, alternates between the
SPS and the MCS methods, beginning with an SPS iteration. In the MIXED algorithm,
the first iteradon of the MCS method forms all of the segments as in the MCS algo-
rithm. We also experimented with another version of this algorithm, one in which we
alternaied between two applications of the SPS method and one application of the MCS
method. However, the solutions produced by this algorithm were inferior to the ones
produced by alternating one SPS application with one MCS applicadon. Therefore, we

do not consider this version any further.

All three algorithms have a worst-case running time of O (nlogk). It is easy to see
that the solutions generated by the MCS and MCS_SLOW algorithms are never worse
than the solutions generated by a rectilinear minimum spanning tree algorithm. While
we have never experienced the MIXED algorithm to generate a solution of cost larger
than that of a minimum spanning tree, this is theoretically possible and we briefly
explain how. Assume we have three components, C,C7, and C3, positioned as shown
in Figure 4.2. The SPS method connects the three components by using 8 + 8 + 8 +
1 = 25 pixels, as illustrated by the shaded squares. A minimum spanning tree would
connect the three components by using two edges and only 20 pixels, as illustrated by
the empty squares. Hence, assuming we would use the SPS method in each iteration,
we could use 1/2 more pixels than used by a minirmum spanning tree algorithm. This
behavior could be corrected by depositing scan pairs in processors at most distance
dist (p;, q;) /2 from the contour pixels. However, in practice this happens too infre-

quently to justify such a restricdon.

We have run our algorithms on random images of size 128 x 128 which consist of

m uniformly distributed 1-pixels. Tables 4.1, 4.2, 4.3, and 4.4 summarize our perfor-
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mance results for m = 100, m =250, m = 500, and m =750, respectively. For each
value of m, we ran each algorithm on 20 images. The MIXED algonthm shown in the
tables uses the SPS method with a dist(p;, q;) — 1 bound. The last line in both tables
gives the average performance for the considered set of data. Recall that £ is the
number of connected components in the input image /. In actual number of 1-pixels,
for images consisting of m = 100 1-pixels, the average minimum spanning tree consists
of 983.45 1-pixels, the Steiner tree created by the MCS algorithm consists of 907.9 1-
pixels, the Steiner wree created by the MCS_SLOW algorithm consists of 903.6 1-
pixels, and the Steiner tree created by the MIXED algorithm consists of 897.75 1-
pixels. For images with m = 250, these values are 1417.65 l-pixels, 1301.9 1-pixels,
1297.05 1-pixels, and 1289.7 1-pixels, respectively. For images with with m = 500
these values are 1869.0, 1702.1, 1696.85, and 1690.15 1-pixels, respectively, and for
images with m = 750, these values are 2129.05, 1934.3, 1920.55, and 1925.55 1-pixels.

From Tables 4.1, 4.2, 4.3, and 4.4 one can see that for the images we tested our
algorithms on, our solutions average about 91% of the cost of a minimum spanning tree
solution. In terms of the solutions produced, all of the algorithms performed similarly,
with the MCS_SLOW algorithm and the MIXED algorithm performing slightly better
than the MCS algorithm. As m increased, the performance of the algorithms generally
increased, which can be explained as follows. As m increases, the MCS method needs
more segments to connect the components, therefore there is more of a chance that seg-
ments overlap, creating Steiner pixels. In additon, as m increases, there are more
pdtcmial Steiner pixels for the SPS method, which helps increase the performance of

the MIXED algorithm as well.

One downfall of the MIXED algorithm is the fact that it takes about twice as
many iterations to complete as the other two algorithms. The first two SPS iterations of
the MIXED algorithm are the SPS iterations where the most Steiner pixels are formed.
One solution to the iteration problem would be to alternate SPS and MCS iterations for
four iterations of the algorithm, and then to finish the algorithm using only MCS itera-
tions. This would reduce the number of iterations with little affect on the performance

of the algorithm.
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The performance of our algorithms compares favorably with the results of other
algorithms cited in the literature [HVW1, HVW2, Ri]. These algorithms often have
solutions averaging approximately 90% - 92% of the corresponding minimum spanning
ree [HVW1, HVW?2, Ri]. The algorithms cited in the literature are sequential algo-
rithms. Therefore, if a segment is formed, the algorithm can use this segment immedi-
ately in forming succeeding segments. For parailel aigorithms such as ours, in one
iteration many segments are formed simultaneously, and it is not until the following
iteration that the algorithm can use these segments when forming additional connec-

tions. Considering these facts, we consider the performance of our algorithms to be

good.
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[llustrations for the MCS and SPS Methads
Figure 1.1
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Segment S; is adjacent with non-neighboring
endpoints to both segment S; and segment Sy

Figure 2.8
| | " 1
a a o o
=] =] o o
o g o o
a a o a
a L a muoooon mOooooo
0 o o o o
o g o a o
gomoom o g pomogm a
o aoooes o Y
=] aN o am
o sooooms o = -
g n a a a
| | . m o n
u o u
a0EDO ] acwpoa .
u o n
EEEEEN ENAENE
I* i 1%
) P

Image I* uses 45 pixels and image I;P uses 39 pixels;
components are indicated by solid squares, segments by empty squares
Figure 2.9




Py

]
o]
g
bk\ﬂ (]
dq d2 gnnnnnnnunnnunr-ck
pila‘ﬁnnnnn‘nnnanﬁnnnna eil =
(o)
o °1
o
(=}
«]
(5]
a d3
a dy -
g plzg aoon g 612
a o o]
a =] ] d_4
] a ]
EROO0BE(q: o os
% |:umlqi2 an®q

An example of the simation when both segment i, and &
do better by taking their proposed shortcuts; segments are
indicated by filled squares, proposed shortcuts by empty squares
Figure 2.10 .



(a) Segments i; and I; +1 have the same type

DooEonpopepeEEoOpoE o

bijggggunn‘uuuuununn goom g;
g b;.

m ]

P,

i+l

) pi., lies “above the top of D (i;) (Case 2.2)

Ilustration for the proof of Lemma 2.3
Figure 2.11




c
T Y |
L TT1
- I »
IOWT —e HH >
Il -
- . -
Y Y Y

The twelve scans initiated by an isolated 1-pixel

Figure 3.1
Wi b
11
Wb mn
| [II n
o
i 59 = 89 =8§ w, b €
2 4 o 3
Wy by | 3 b 4IE4 a/ B by
R ey ,flg ",
s ' 2 ©1 @
1 |
b:l :3 b3 ws
. ) . b) Image after verrcal segments
(a) Selection of Steiner pixels (b) b avg been created gm
. g mD
g
e e 51b,. €9)
VRN " b4°4 o ey 22
lnnnnnau‘u\nnnbg lna\n\tl moE o b2
/): g " . e " vy
€] g ] 1 g &
om Om
b3 W3 S[b3, 83] b3 Wy
after horizontal segments )
© I,?;:Ecbcct: creat:d gm (d) Image after cycle-removing phase

ustration of how segments are created in the SPS method
Figure 3.2



n OOOEANERDEQD =
a =] 8 2]
B @ 8
B B B a
o a B v
. u o [~ EEDOOOEaOOoOn
= o
B
a a
o a
[ - =
(a) Point set (b) MCS method and minimum (c) SPS method solution
spanning tree solutions consisting of 17
consisting of 27 1-pixels 1-pixels

Example of where the cost of the rectilinear minimum
Steiner tree is 2/ 3 of the cost of the minimum spanning tree

Figure 4.1
Cq

ENEEENEN

I~ ]

] =

] mono

o o

a a

B n

o o

o o

n ]

[} a

6] o
MECOCDEODEOODEOEOOONONN
] n
n .
" x

C2l n C3

] a
™ n
EEENESOOCOO0OOCCONRENN

Example of where SPS method (25 shaded squares)
exceeds cost of minimum spanning tree ( 20 empty squares)
Figure 4.2



MCS Algorithm MCS_SLOW Algorithm MIXED Algorithm
k iterations % of msp ilerations % of msp iterations % of msp
o8 4 92.70 5 92.60 8 91.14
97 4 92,78 4 92.88 8 9198
99 4 91.78 4 01.60 6 01.12
100 4 91.45 4 91.66 6 91.97
99 4 92.50 4 91.38 8 89.31
99 4 90.74 5 90.53 8 90.11
100 4 91.96 4 91.45 8 91.25
99 4 93.63 4 93.19 8 92.86
99 3 92.77 4 9229 8 90.63
99 4 92.11 4 91.71 6 91.71
99 4 92.05 5 91.05 8 91.25
98 4 90.42 4 90.94 3 91.25
97 4 92.02 5 9241 8 91.23
96 4 92.04 4 91.14 6 89.43
100 3 91.92 4 90.93 6 91.82
04 4 92.04 5 91.62 8 91.20
99 4 94.23 4 93.61 8 93.08
100 4 92.20 4 90.68 8 90.27
100 4 93.27 5 93.18 8 91.42
99 4 93.83 4 92.37 a 92.89
Averages 3.90 9232 430 91.89 7.50 91.30
Results for random images of size 128 x 128 with m = 100
Table 4.1
MCS Algorithm MCS_SLOW Algorithm MIXED Algorithm
k iterations % of msp iterations % of msp iterations % of msp

240 4 91.08 5 91.22 8 90.44
243 5 90.88 5 90.61 8 90.07
242 5 90.75 5 90.55 8 89.74
239 5 93.20 5 92,61 10 9247
242 5 9226 5 92.04 8 9097
242 5 91.29 5 90.94 10 90.80
244 4 92.69 4 91.79 8 92.34
245 4 91.84 5 91,29 8 90.11
242 5 9163 5 91.70 10 90.93
241 5 90.99 5 01.14 10 £9.18
242 5 92.35 5 92.28 8 90.96
243 5 92.65 5 92.80 10 92.00
239 5 91.58 5 91.79 8 91.50
241 4 91.95 5 91.13 8 90.18
241 5 91.87 5 91.58 8 91.08
243 5 91.44 5 91.01 8 90.72
242 5 91.57 5 91.30 8 91.36
240 5 93.36 6 91.41 8 92.93
246 5 91.05 5 91.12 10 90.69
242 5 92.39 5 91.69 8 91.20
Averages 480 01.84 5.00 91.50 8.60 50.98

Results for random images of size 128 x 128 with m = 250

Table 4.2
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MCS Algorithm MCS_SLOW Algorithm MIXED Algorithm |
k iterations % of msp iterations % of msp iterations % of msp
464 5 91.93 5 91.66 10 90.95
469 5 91.12 6 91.02 10 90.43
467 4 90.55 5 89.80 10 89.91
474 5 90.11 6 90.59 10 89.58
471 5 50.90 5 90.69 8 90.49
481 5 91.43 5 91.06 10 90.96
470 5 90.89 6 90.59 10 90.32
463 5 90.21 6 89.63 10 89.21
481 4 90.83 5 90.51 8 90.24
467 h] 91.57 5 91.51 10 91.07
473 5 90.83 6 90.61 10 90.08
466 5 90.35 6 89.91 10 89.53
466 5 91.29 6 91.68 10 90.91
479 5 90.62 5 90.83 10 89.94
466 5 91.91 6 91.74 10 91.14
473 5 91.17 5 90.81 10 90.71
471 5 92.56 6 92.56 10 91.75
469 3 90.65 6 90.12 10 90.01
465 5 90.78 6 90.03 10 90.19
474 5 91.78 6 90.50 10 91.25
Averages 490 91.07 5.60 90.79 9.80 00.43
Results for random images of size 128 x 128 with mt = 500
Table 4.3
[l__MCs Algorithm MCS_SLOW Algorithm MIXED Algorithn __
k ” iterations % of msp iterations % of msp % iterations % of msp
677 6 20.91 6 90.26 12 00.40
6717 5 90.58 5 90.29 10 90.05
685 5 90.92 6 90.17 10 90.36
683 5 91.68 6 91.21 10 91.26
677 5 90.19 5 89.55 10 89.92
680 5 9131 6 90.85 10 90.85
684 5 90.69 5 90.55 10 90.17
689 6 90.47 6 89.38 12 90.18
680 5 90.79 6 89.70 10 90.46
683 5 91.03 6 90.32 10 90.37
687 5 90.00 5 .. 89.73 10 20.05
679 5 91.57 6 90.52 10 91.09
677 5 9197 6 91.01 10 91.49
674 6 91.30 6 90.92 10 91.01
692 6 90.63 5 89.74 12 90.26
663 5 91.95 5 91.90 10 91.37
678 5 9049 6 90.16 10 90.11
694 5 90.15 6 89.01 10 89.74
694 5 89.83 5 89.38 10 89.51
671 5 90.75 6 89.65 10 90.32
Averages 5.20 90.86 5.65 90.22 10.30 9045

Results for random images of size 128 x 128 with m = 750

Table 4.4
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