
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Parallel Heuristics for Determining Steiner Trees in Images Parallel Heuristics for Determining Steiner Trees in Images

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Lynn TeWinkel

Report Number:
90-1033

Hambrusch, Susanne E. and TeWinkel, Lynn, "Parallel Heuristics for Determining Steiner Trees in Images"

(1990). Department of Computer Science Technical Reports. Paper 35.

https://docs.lib.purdue.edu/cstech/35

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLEL HEURISTICS FOR DE1ERMINING
STEINER TREES IN IMAGES

Susanne Hambrusch

Lynn TeWinkel

CSD-TR-1033

October 1990
(Revised May 1991)

Parallel Heuristics for Determining Steiner Trees in Images

Susanne Hambruscht and Lynn TeWinkel*

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907, USA.

ABSTRACT

In this paper we consider the problem of determining a IDlIllDlum.-cost rectilinear
Steiner tree when the input is an n x n binary image I which is stored in an n x n mesh

of processors. We present several heuristic mesh algorithms for this NP-hard problem.
A major design criterion of our parallel algorithms is to avoid sorting and routing
which are expensive operations in practice. All of our algorithms have a 0 (nlogk)
worst-case running time, where k is the number of connected components formed by

the entries of value 'I'. The main contribution of the paper are two conceptually
different methods for cormecting components in an image and a method for improving

subsolurlons by making horizontal and vertical shoncuts.

t Pan of lhe research was done while visiting the InLemational Computer Science Institute,

Berkeley, California. Work was supported by the Office of Naval Research under Contrac[S

NOOO14-84-K-0502 and NOOO14-86-K-0689. and by the National Science Foundation under

Grant MIP-87-15652.

.. This work was supponed by the Office of Naval Research under Contract NOOOI4-86-K-0689.

A preliminary version of lhis paper appeared in the Proceedings of the lOlh InternatiOflfll

Conference on Paltern Recognilion, June 1990.

- 2-

1. Introduction

The problem of determining a minimum-cost rectilinear Steiner tree is a funda

mental problem in the area of graph algorithms with applications in numerous areas.

Since the problem is known to be NP-hard. [GJJ, many general and problem-specific

heuristic approaches have been developed [Be, CSW, Ha, Hw, HVWl, HVW2, LBH,

Ri]. In this paper we consider the problem of determining a rectilinear Steiner tree

when the input is an n x n binary image I in which a value of 'I' represents a point.

The objective is to connect all points by rectilinear segments (Le., segments that are

either horizontal or vertical). We present parallel algorithms for the Steiner tree prob

lem when the n x n binary image I is stored in an n X n mesh of processors with one

pixel per processor. Our algorithms have an 0 (nIogk) worst-case time complexity,

where k is the number of connected components formed by the entries of value '1'.

k s: n2. A major design criterion of our algorithms is to avoid sorting and routing. In

practice, both operations are expensive [CSS. RM].

The heart of our algorithms are two conceptually different methods for connecting

components. A single application of either method r u n s ~ i J) 0 (n) time on an n x n

mesh and it does not guarantee that all components are connected with each other. Our

algorithms consist of 0 (logk) iterations; with each iteration using one of the two

methods. Our algoritJ.uns are simple and have a small associated constant and, as

already stated., do not use sorting or routing operations. They perform connected com

ponent computations to achieve global communication and all other steps consist of

executing simple operations within a row or column. Note that the connected com

ponents can be determined in 0 (n) time without sorting. or routing [CSS, HT].

Another approach to our problem would be to generate from image / a description

of the points by their coordinates and to design an algorithm using this description of

the input. There are a number of reasons why this approach is inferior to the one of

working directly with the image. First, such a conversion makes information that is

readily available in the image expensive to retrieve. Furthermore, an algorithm working

with the points given by their coordinates is likely to require sorting and roUting opera-

- 3-

[ions, as done in problems of a similar nature [MS2. MS3]. Note that an n x n mesh

does not allow for the points of the image to be represented by a graph in the form of

an adjacency matrix (since this would require a (n
4

) bits). The graph would have to be

represented in the fonn of edge lists, which generally results in complex and routing

dependent algorithms [AH, H, St]. Only few problems on images allow a space·

efficient graph-like representation of relevant data and subsolutions [LAN, MSl, MS3].

Throughout we use the following notation. We refer to the points in image I as

pixels and to the pixels of value '1' as I-pixels. Position (0, 0) of the image or the

mesh refers to the top leftmost position. Let 1* be the image representing a solution to

the Steiner tree problem. Image 1* consists of one connected component which con

tains I (i.e., if I (r, c) = 1, then 1* (r, c) = 1) and the number of I-pixels in 1* should be

minimized. The fonn of connectivity we consider is that of 4-connectivity (i.e., two 1

pixels x and y are in the same connected component if and only if there exists a

sequence of I-pixels from x to y such that two consecutive I-pixels are horizontally or

vertically adjacent). Let the image consisting of the I-pixels that are in 1*, but not in I,

be 1* -I. A I-pixel s. S E 1* -I, is a Steiner pixel if S is~adjacent to at least three 1

pixels in 1* - I. We say that image 1* is cycle-free if for any I-pixel p in 1* - I there

exist two other I-pixels x and yin 1* such that the removal of p disconnects x and yin

1*. Obviously, any solution minimizing the number of I-pixels in 1* is cycle-free.

Our first method for connecting components is the Min-Componenr-Selecrion

(MCS) MerJwd in which each component selects another component currently at

minimum distance. This step resembles a technique used in many parallel algorithms

for graph problems [HCS, NS, SV, Ul]. It is well-known that the graph induced by the

edges from a component to its selected component contains no cycle. However, the

image generated by the MCS method does not necessarily satisfy the corresponding

c y c l e ~ f r e e property. An interesting part of the MCS method is the detection and remo

val of I-pixels belonging 1O cycles. We also present a number of optimizations that can

be applied to the image generated by the MCS method. The optimizations are based on

tlie idea of determining shortcuts. Our algori[hm for derermining an optimum ser of

shortcuts requires only simple data movements. Its overall concept and its correctness

- 4-

are based on a number of non-trivial properties.

The MCS method does not try to position Steiner pixels explicitly. Steiner pixels

are created because segments happen to overlap. Our second method for connecting

components, the Sreiner-PixeL-Selection (SPS) Method is based on trying to identify

"good" Steiner pixels. In the SPS method a component may not connect to the com

ponent currently at minimum distance, bur will anempt to connect to a selected Steiner

pixel (without exceeding a precomputed. maximum distance). Figure 1.1(e) and (d)

show an example of how a single application of either meulOd connects the components

given in 1.1(a).

As already stated. our algorithms consist of a number of iterations with each itera

tion applying one of the two methods to the current image. As generally done, we

compare the quality of the solutions to the cost of a rectilinear minimum spanning tree

[Be, HVWl, HVW2]. Hwang has shown that the cost of a minimum rectilinear Steiner

tree is at least 2/3 of the cost of a minimum spanning tree [Hw]. Our algorithms have

been implemented by simulation. Their C-code has been written so that it can easily be

ttanslated into MPP Pascal and be put onto the I\.1PP, a l28x 128 mesh of processors

[Ba, NASA]. For the images considered, the solutions generated by our algorithms are

approximately 91% of the cost of a minimum spanning tree which is considered a good

perfonnance.

The paper is organized as follows. In Section 2 we discuss the MCS method and

the optimizations based on performing shortcuts. Section 3 presents the SPS method

for connecting components. Section 4 compares the two methods and describes the

perfonnance of our algorithms.

2. Min-Component-Selection Method

Assume image I consists of k connected components C 1, ... ,Ck , k ~ 2. The

MeS method detennines connections between components in three phases. In the first

phase, the minimum component selection phase, each component connects to another

component at minimum distance. Let CI be (he image generated by this first phase.

Image CI is not necessarily cycle-free and the second phase, the cycle-removing phase,

- 5-

eliminates cycles. The third phase is an optimization phase which applies a number of

"shortcuts" to reduce the number of i-pixels further.

Section 2 is arranged as follows. Section 2.1 discusses how components are con

nected and how cycles are removed in the MeS method. Section 2.1.1 discusses how

components at minimum distance are chosen. Segment interaction is dealt with in Sec

tion 2.1.2. Section 2.1.3 describes the cycle-removing phase of the MeS method. In

Section 2.1.4 details of the implementation of the first two phases of the MeS method

are given. Finally section 2.2 describes optimizations that can be applied to the image

after the first two phases of the MeS method.

2.1. Connecting Components and Removing Cycles

In the first phase every component Cj determines a component min (Cj) at

minimum distance from it. It also determines a sequence of pixels consisting of at

most one vertical portion followed by at most one horizontal portion leading from a 1

pixel Pi in C j to a I-pixel qj in min (C j). Let S(pj. qj), or Sjt for short, be this sequence

which we call the segment from Pi to qj. A new image CI i ~ ~ c r e a t e d which contains as

I-pixels the I-pixels in I and the pixels of the segments. Let G = (V, E) be the

undirected graph with V = (C" ... ,C.) and E = (C i , min(Ci)) I lSi S k). It is

easy to show that G does not contain a cycle and many parallel graph algorithms make

use of this plOpetty [ReS, NS, SV, Ul]. However, image CI does not necessarily

satisfy the corresponding cycle-free property. The cycle-removing phase eliminates

cycles and changes image CI into image 1*. If image I contains no two components Cj

and Cj such that the distance from Cj to Cj is one (Le.; changing a single O-pixel into a

I-pixel connects the two components), then the cycle-removing phase guarantees that

image 1* satisfies the cycle-free property. As will be discussed later on, we do not

detect cycles caused by components that can be connected by a single pixel.

The cycle-free property can be violated in CI in one of two ways. If the image

CI - I contains a c x c block consisting of I-pixels and the removal of any such I-pixel

does not disconnect image cr, then a cycle is caused by a thickness of c, c ~ 2. We

note that it is possible to connect four components in a cycle-free way such that the

- 6-

connecting segments contain a 2 x 2 block of I-pixels. However, the MCS method

forms segments in a way so that every 2 x 2 block of I-pixels in image CJ - I implies

a cycle. Cycles created by a thickness of two or more can easily be detected locally

and we refer to them as "local" cycles. If CI - f does not contain a cycle caused. by a

thickness of c, C ~ 2, a cycle can be fonned by a sequence of I-pixels staning at some

I-pixel p in CI - I, traversing components and segments, and returning to p. Detecting

such a "global" cycle may require global actions. Figure 1.1 (b) shows the image of

1.1(a) after the first phase of the MCS method. The segments between components C 3 ,

C 7 , and C9 form, for example, a cycle created by a thickness of 2. The segments

between components C 1. C2. C 4, C5, and C 6 form a global cycle.

When image I contains components at distance I, a segment can connect to more

than 2 components and this can create a cycle. Figure 2.1 shows an example of such a

situation. The image shown represents CI right before the c y c l e ~ r e m o v i n g phase. For

example, segment S 10 connects components C 10, C5. and C6, even though C 10 intends

only to connect to C5. Throughout the description of the cycle-removing phase we

assume that image I contains no two components at d i s t < u l ~ e I and thus our claims

about image 1* being cycle-free only hold for such an image T. However, the cycles

induced by components at distance I have, in general, a minimal effect on the total

number of I-pixels used.

2.1.1. Determining Components at Minimum Distance

We now give the precise rules on how the segments which connect the com

ponents are determined. Let row (x) (resp. col (x)) be the row (resp. col) of pixel x. For

two I-pixels x and y, let disl(X, y) be the minimum number of pixels needed to get

from x to y. More precisely, if x (resp. y) is in row row(x) (resp. row (y)) and in

column co/(x) (resp. co/(y)), then dis/lx, y) = Irow(x)-row(y)1 + Ico/(x)

col (y) I - I for x :;I!: y and 0 for x = y. Every component C j chooses a component

min (C j) at minimum distance. If there is more than one component at minimum dis

tance. then ties are broken in favor of the component with the smallest label. If addi

tional ties need [0 be broken, then the indices of the endpoints of the segments are used.

- ,---..,

-7 -

Fonnally, minCe j), Pi and qj are chosen so that Pi E Cit qj E minCe;) and for any 1

pixels p/ and q/ with Pi' E Cj and q/ E Cjl j :;6 i:

(i) disr(p/, qi') ~ dist(pj, qj).

(ii) if dist(pj', q/) = disr(pj, qj), then Cj ~ min (Cj),

(iii) if dis/(p(. q() =dis/(Pi. qi) and Gj =min (G i). then

"f ' til '1 Pi = Pi. en qi < q i

else if qi = q/. then Pi < P/

else min{Pi. p/, qi, q/} E {Pi. qd

It is easy to verify that rule (iii) ensures that if two components choose each other, the

segments chosen by the two components have the same endpoints. These component

connection rules will be referred to in later sections.

As mentioned previously, the segments fanned by the MCS method consist of at

most one vertical portion followed by at most one horizontal ponien leading from Pi to

qj. We note that these segments are similar in fonn to the segments created in the

minimum rectilinear Steiner tree algorilhm in [HVWI. HVW2]. Given a set of points

as input, the algorithm given in [HVWl, HVW2] first dete:rm.ines a minimum spanning

tree for these points and then for each edge of the minimum spanning tree, an L ~ s h a p e d

layout. An L-shaped layout consists of a segment with a horizontal and vertical por

tion, similar to the segments fanned by the MCS method.

2.1.2. Segment Interaction

In this section we prove a number of properties concerning the interaction between

segments. Knowing how segments can interact is ~cial in detennining what actions

need to be taken by the cycle-removing phase as well as in determining the space

requirements of the MCS method. Consider image CI generated as described. For any

two segments Sj and Sj the following definitions will be used when characterizing their

relationship. When two endpoints of the segments coincide (i.e., qi = qj, Pi = qj' or

Pj = qj), we say that Si and Sj share endpoints. When two endpoints are horizontally

or vertically adjacent, we say that Sj and Sj have neighhoring endpoints. \Ve also say

[hat Sj and Sj have neighboring endpoints when twO of their endpoints are diagonally

- 8-

adjacent, belong to the same component, and one of the endpoints is adjacent to a pixel

on the other segment.

We say segments Si and Sj are sharing if there exists at least one I-pixel that is in

both Sj and Sj. Within sharing segments we distinguish between crossing and overlap

ping segments. When the two segments have at most two I-pixels in common and. if

they have two I-pixelS in cornmon, these pixels are not adjacent to each other, the seg

ments are crossing. All other fonns of sharing segments are called overlapping.

Finally, we say segments Sj and Sj are adjacent if there exists at least one I-pixel of Sj

that is adjacent to some I-pixel of Sj and the two segments are not sharing.

The following properties characterize sharing and adjacent segments. Property 2.1

characterizes the endpoints of sharing segments. Properties 2.2, 2.3, and 2.4 deal with

overlapping segments with shared endpoints and adjacent segments with neighboring

endpoints. All four properties deal with segments in image CI.

Property 2.1. Let Si and Sj be two sharing segments. Then, Sj and Sj share endpoints.

Proof (by contradiction): Assume that Si and Sj are s h a r i n g - s ~ g m e n t s . but are not shar

ing endpoints. The four endpoints of the segments can come from either three or four

components of 1. Let f be the first I-pixel encountered on Sj that is also in Sj when

going from Pi to qj. Consider first the case when the four endpoints come from three

components with Pi and qj being in the same component. We now have disl(f, Pj) =

disc(f, qj) since Pj chose qj and since component Cj chose Pi as the first endpoint in

its segment. However, this implies that rule (iii) is not satisfied for one of Ci or Cj .

Consider the remaining two cases (i.e., ail four .endpoints come from different

components or qj and qj are in the same component). Let I be the last I-pixel encoun

tered on Sj that coincides with a I-pixel in Sj when going from Pi to qj. Let,

0.1 = disc (Pi, fl,

a2 = disr (I, q,),

PI = disr(pj. {J,

P2 = disr (j, qj). and

z =disr(l, /)+2.

- 9 -

See also Figure 2.2. Since Pi chose I-pixel qj and not qj we have:

z + (Xz ~ ~2 + 1

Since Pi chose I-pixel qj and not qi we have:

z+~2S;a2+1

Adding these equations gives z 5. 1. If z = 1, then for Pi to have chosen qj and for Pj to

have chosen qj. disr(j. qi) = disc(j, qj)' This implies, however, that either rule (ii) or

rule (iii) was not satisfied for one of components C j or Cj . Thus Property 2.1 follows.

o

Sharing segments with shared endpoints can easily be created. For crossing seg

ments this means that the segments can cross only once and one p-endpoint must coin

cide with the q-endpoint of the other segment.

We now consider the possible relationships between two adjacent segments.

When rules (i)-(iii) generate adjacent segments. they generally have neighboring end

points. However, it is possible to generate adjacent segments with shared endpoints or

with four distinct, non-neighboring endpoints. These types of adjacency can create

cycles in the image CI and we briefly discuss them. When tWo adjacent segments share

endpoints, the p-endpoint of one segment coincides with the q-endpoint of the other

segment. Examples illustrating this type of adjacency are given in Figures 2.6(a) and

2.7(a).

Consider two adjacent segments, S.. and Sj, with non-neighboring endpoints. Let z

be the number of I-pixels in Sj that are adjacent to a I-pixel in Sj. When the endpoints

of S.. and Sj come from four different components, then z can be arbitrarily large. An

example of this configuration with z == 1 is between segments S 1 (which connects com

ponents C I and C 2) and S6 (which connects components C 6 and C4) in Figure 1.1(b).

Assume now that segments Sj and Sj are adjacent with non-neighboring endpoints and

the endpoints come from three different components; If qj and qj belong to the same

component, one can show that z == 1 holds. An illustration of this silUation is between

segments Si and Sj in Figure 2.5. If Pi and qj belong to the same component. there is

no bound on the amount of adjacency. Such a relation occurs between segments S 15

-10 -

(which connects components C 15 and C LS) and S 22 (which connects components e22

and C I5) in Figure 1. 1(b). In this example, Z = 3. For funher details on the relation

between adjacent segments we refer the reader to [T].

The next three properties characterize overlapping segments with shared endpoints

and adjacent segments with neighboring endpoints. The following definitions are used

in the remainder of this paper. A segment Sj with row (Pj) < row (qi) and col (Pi) .;e

col (qj) is called a "type +" segment. A segment 5; with row (Pi) > row (qj) and

col(pj) *" co[(qj) is called a "type _II segment. The first two propenies follow immedi

ately from the way segments are determined.

Property 2.2. For every segment S; there can be at most one other segment Sj such

that the vertical portion of 5; is overlapping with (resp. adjacent to) Sj. Furthermore,

one of the two segments must consist of a vertical portion only.

Properly 2.3. Let Sj and Sj be two horizontally adjacent segments with neighboring

endpoints. Let row (qj) = row (qj) -1. If both segments contain a vertical ponion,

then segment Sj is a type + segment and segment Sj is a type- segment. If Sj (resp. Sj)

has no vertical portion, then Sj is a type - segment (resp. Sj is a type + segment).

Properties 2.2 and 2.3 imply that adjacent segments can create a thickness of at

most 3. Such a situation occurs between segments Ss. SIO, Sill and S12 in Figure

1. 1(b). The next property states that a I-pixel in image CI can belong to at most 3

mutually overlapping segments.

Properly 2.4. There can be at most three segments that are mutually overlapping with

each other in the horizontal direction.

Proof (by contradiction): We first show that it is not possible to have three segments of

the same type mutually overlapping with shared endpoints. Assume that Sj. Sj, and Sk

are three mutually overlapping segments. They can either have their three q-endpoints

coincide (i.e., qj = qj = qk = q) or they can have two q- and one p-endpoint coincide

(i.e., qi = qj = Pk = q). We only consider the case when three q-endpoints coincide.

- 11 -

The other case is proven by a very similar argument.

W.l.o.g. assume that the three segments are type - segments and that col (q) is the

rightmost column to contain a pixel belonging to one of the three segments. The three

segments can be ordered so that row(q):::; row(Pi) < row(pj) < row(Pk) and col(q) >

col (Pt) > col (Pj) > col (Pi)' If such an ordering cannot be achieved, the three p

endpoints could not have chosen q. Figure 2.3 shows the position of the endpoints of

the segments. Let,

VI = row (Pi) - row (q),

V2 = row(pj) - row (pj),

V3 = row (Pk) - row (Pj),

hi = col (Pj) - col (Pi),

h, ~ col (Pk) - col (Pj), and

h, = col (q) - col (Pk).

Since Pi chose q and notPj. we have

VI + h2 + h 3 5 v2.

Since Pk chose q and not Pj. we have

V2 + VI + h3 5 hz-

Adding these inequalities gives VI + h3 50, which is not possible (since vI ~ 0 and

h3 ;?: 1). Hence. the three segments cannot have their p-endpoints below row(q). Note

that we have v 1 ~ 0 and thus the claim. holds even when one of the segments is a hor

izontal segment.

We next show that there cannot exist four segments that are mutually overlapping

in the horizontal direction such that two of the s e g m e n ~ s are type + segments and two

of the segments are type - segments. Assume that Sj, Sj. Sko and Sl are four segments

that are mutually overlapping in the horizontal direction such that two segments are

type + segments and two segments are type - segments. Since at most one p-endpoint

can coincide with q, only two situation are possible: qj = qj =qk = q/ = q or one seg

ment, say S/, has Pi = q and qj = qj = ql = q =Pl. We only consider the first case,

since the argument for the second case is similar. W.1.o.g assume again that q is the

rightmost pixel in the four segments, as shown in Figure 2.4. Let Sj and Sj be the two

- 12-

type + segments and Sk and 51 be the two type - segments. We can order Sj and Sj

such that row(q) > row (Pi) > row(pj) and col(q) > col(Pj) > col (Pi)' Funhermore,

we can order S. and S, so that row (q) < row (P.) < row (P,) and col (q) > col (P,) >

col (Pk)' There are three possibilities (six without considering symmetry) how the four

segments can relate and one is shown in Figure 2.4. In this one we have col (Pi) ~

col (P.) " col (Pj) " col (P,). Let,

Vt = row(q) - row(p;),

V2 = row(pj) - row (Pj).

v, = row(p.) - row (q),

v4 = row (P,) - row (P.),

hI = col(P.) - col (Pi),

h2 = col (Pj) - col (P.),

h, = col (P,) - col (Pj), and

h4 = col (q) - col (P,).

Since Pi chose qi and not Pk. we have

h2 + h, + h4 " v,.

Since PI chose q, and not Pko we have

v, + h4 ,; h, + h2.

Adding these inequalities gives h4 :s; 0 which is not possible (since h4 :2: 1). Note that

VI ::2:. aand thus the cla..i.ol holds also when one of the segments is a horizontal segment.

The other five situations are handled in an analogous manner. Hence, there cannot be

foUr horizontally overlapping segments and Property 2.4 follows. 0

Let Sj and Sj be two segments in image C/. Theil.. the relationship between 5 i and

Sj can be characterized as one of the following. We will refer to these cases by

description and by number in the following sections.

(1) S, and Sj are disjoint

(2) Sj and Sj overlap with shared endpoints

(3) Si and Sj share endpoints with Pi = qj and Pj = q;.

(4) Si and Sj cross with Pi = qj

. ,
-",

- 13 -

(5) Sj and Sj are adjacent with neighboring endpoints

(6) Si and Sj are adjacent with Pi = qj

(7) Sj and Sj are adjacent with non-neighboring endpoints and

(i) the endpoints come from four components

(ii) qi and qj are in the same component

(iii) Pi and qj are in the same component

2.1.3. Removing Cycles

This section describes the cycle-removing phase which generates image I* from

image C/. Recall that the cycle-free property can be violated in CI in two ways. If the

image CI - [contains a thickness of c, c ;;:?; 2, then image CI contains a local cycle. If

the image CI -I contains a I-pixel p such that there exists a path that stans at p and

traverses components and segments and eventually returns to p, then image CI contains

a global cycle. Detecting global cycles cannot be done by a simple scanning method.

Therefore, if the relation between two segments is such that it could create a global

cycle, we take appropriate actions that will destroy the cycle if it should exist We

remove cycles in CI in one of two ways. In many situation; ~ e change two interacting

segments into overlapping segments with shared endpoints. If doing so does not ensure

a cycle-free image. then we remove one of the two segments.

It is clear that case (1) cannot cause any cycles. Case (2) will be shown to cause

no cycles in the theorem proven below. Case (3) covers the situation in which pixels Pi

and qj are in one component (namely C i) and Pj and qj are in another component

(namely Cj). Segments Sj and Sj could both be vertical, both be horizontal, or could

both consist of one vertical and one horizontal portion in which case the two segments

are not identical. Segments 53 and 57 in Figure 1.1(b) illustrate case (3) when the seg

ments are not identical. Obviously, we only want one of the two segments to be in

image 1* and therefore we remove either segment 5 j or segmem 5j .

In case (4), let s be the I-pixel belonging both to 5 j and 5j . There exist two paths

from S [0 Pi = ({j (see segments 5 21 (which connects C 21 and C 16) and S 16 (which con

nects C16 and el7) in Figure l.l(b». We remove one of the two paths by changing

- 14-

(Pj, qj) to (Pj. qi); i.e., min(Cj) is changed from Cj to min (C i), resulting in overlap

ping segments with shared endpoints. This change does alter the underlying graph G.

However, since the edges (Cjl Ci) and (C j , min(C j » were not on a cycle in G, the

edges (Cjl min(Cj» and (Cil min (Cj» cannot be on a cycle in the new graph either.

As for case (5), there can be at most three segments Si.l, Si,2. and Sj.3. such that

Si,j and Sj.j+l are adjacent with neighboring endpoints and a thickness of 3 is created,

1 S j S 2. This follows from Properties 2.2 and 2.3. The cycle-removing step changes

adjacent segments into overlapping segments with shared endpoints.

Case (6) covers the situation where Sj and Sj are adjacent with Pi = qj' The gen

eral approach for eliminating the cycle generated by the adjacency is to change the

adjacent segments into overlapping segments with shared endpoints.

Case (7) (i) covers the situation when Sj and Sj are adjacent with n o n ~ n e i g h b o r i n g

endpoints and the endpoints come from four components. The adjacency between the

two segments could create a global cycle. In order to avoid this, the cycle-removing

phase deletes one of the segments. We do not detennine whether the adjacency

between the two segments does actually introduce a globar cycle, since this could not

be done efficiently by local methods. Assume now that segments Sj and Sj are related

as described in case 7 (ii) or (iii). An example of case (7) (ii) occurs between segments

Sj and Sj in Figure 2.5 and an example of case (7) (iii) occurs between segments S t5

(which connects C's and CIS) and S22 (which connects Cn and CIS) in Figure l.l(b).

Observe that, independent of the adjacency between the two segments, components Ci,

Cj , and min (Cj) are in same component in image Cl. The general approach for elim

inating the cycle generated by the adjacency is to change the q-endpoint of one segment

to the q-endpoint of the other segment, resulting in overlapping segments with shared

endpoints. If changing endpoints does not eliminate the cycle, one of the two segments

is removed. This can happen, for example, when the distance between two of the end

points is 2, as shown in Figure 2.5.

Assume that image I contains no components at distance 1. Then afrer the cycle

removing phase has been completed, we have a new image 1* which contains only dis-

. '

- 15-

joint segments or overlapping segments with shared endpoints. Any two overlapping

segments create a Steiner pixel.

Theorem 2.1. Image J* satisfies the cycle-free property.

Proof (by contradiction): Assume there exist two I-pixels .x and y with x E Sit and

y E Sj such that there exists a cycle containing x and y. Let Cy be this cycle and let Cy

be represented by listing the segments and components traversed. If Cy contains alter

nating segments and components, then there also exists a corresponding cycle in graph

G. Since we know that G is a forest, image J* cannot contain any such cycles. If the

listing of the cycle Cy contains twO consecutive segments Sj and Sj. then segments Sj

and Sj overlap with shared endpoints. Thus we can replace the sequence Sit Sj in Cy

by Sj, Cy• Sj. where C"{ is the component containing [he shared endpoint. This implies

that from Cy we can generate a cycle Cy' such that in Cy' segments and components

alternate. Since we know that such a Cy' cannot exist, image I'" cannot contain any

such cycles. 0

2.1.4. Implementation of the MCS Method

We now discuss some of the details on how to implement the first two phases of

the MCS method in 0 (n) time on an nxn mesh. Let a contour pixel of a component be

a I-pixel adjacent to a O-pixel. A left (right, upper, lower) contour pixel of a com

ponent is a contour pixel with the O-pixel to the left (right, top, bottom) of it. A corner

pixel is a pixel that is part of the vertical and horizontal portion of a segment.

The min --components and the segments are determined in the first phase by scan

ning procedures followed by a connected component computation. The objective of the

scanning procedure is to detennine, for every contour pixel p of component Ci, a con

tour pixel q in another component that is at minimum distance (ties are broken as

described in rules (i)-(iii». The scanning statts by every left (resp. right) contour pixel

initiating a horizontal scan to [he left (resp. to the right). Assume processor !l contains

contour pixel p of component Ci . Every processor v visited by the left (resp. right)

scan initiated at u records that there exists a I-pixel p belonging to component C j in the

- 16-

same row and it also records the distance from u to v. A scan terminates when another

I-pixel or the border of the mesh is reached. After all horizontal scans have been com

pleted, every upper (resp. lower) contour pixel p initiates a forward scan upward (resp.

downward). The forward scan determines for every processor v visited the I-pixel at

minimum distance from p and in the same row as processor v (by using the information

deposited in v by the previous step). When such a forward scan encounters a I-pixel or

the border of !.he mesh, it backtracks and selects the overall minimum for I-pixel p.

Pixel p can now determine its pixel q at minimum distance in 0 (1) time.

After every contour pixel p has determined a contour pixel q at minimum distance,

we perform a connected component computation in which each component C j deter

mines min (C j), and pixels Pi and qj. As pan of this computation each I-pixel of Ci is

informed of min (C j). Pi, and qj. The 0 (n) connected component algorithms described

in [CSS, lIT] can easily be modified to accomplish these operations. The final step of

the first phase creates image CT. Every I-pixel Pi of component C j changes the O-pixels

on !.he path from Pi to qj to I-pixels. We assume that a I-pixel records the endpoint

and component information of each segment it belongs te:, resulting in 4 registers

needed per segment. This information is used by the cycle-removing phase to deter

mine what actions need to be taken. Since the optimization phase also needs the end

point and associated component information, it is also necessary to keep this informa

tion after the cycle-removing phase. Property 2.4 states that a I-pixel in image CI

belongs to at most three segments. Overall, it is easy to see that the number of regis

ters needed to store all the necessary information about segments is bounded by a con

stant. We refer to [1'] for a more complete discussion on the space requirements of our

algorithms.

We next describe the implementation of the cycle-removing phase which involves

handling cases (3) - (7). In the implementation, the cases are handled in order with the

exception [hat case (6) is processed between cases (4) and (5). Case (6) is processed

out of order to allow groups of adjacent segments to be combined in a way such that

outer adjacencies are handled first and inner adjacencies are handled last.

,,- ,--

- 17 -

Case (3) handles two components C i and Cjl with min (Ci) = Cj , min (Cj) = Cil

Pi = qj. and Pi = qi. This situation can be detected on a local basis by each I-pixel

checking whether the relevant conditions are satisfied. If they are and C j < Cj • then

segment 5.. is deleted, otherwise Sj is deleted. To delete a segment the p-endpoint stans

a scan which deletes the entries about the corresponding segment. If a processor con

tains no segment entry after such a deletion, its I-pixel is changed to a O-pixel.

In case (4) we handle the situation where two segments Sj and Sj cross and

Pi = qj' This situation can also be detected on a local basis. Let y be the I-pixel in

both Sj and Sj' To change S(Pj. qj) to S(Pj. qj) the pixel representing Pi and qj ini

liates a scan which deletes the ennies of S(Pj. qj) between qj and y. Next the horizon

tal portion of S (pj, qj) between y and qi is updated to record the additional segment

entries for S(Pj, qj) and all processors containing a pixel of S(Pj, qj) record the new

q-endpoint and corresponding component for S (Pj, qj).

The next step of the cycle-removing phase handles case (5). Adjacency of seg

ments with neighboring endpoints can be detected locally by considering the endpoints

of segments. If the adjacency occurs along the vertical cfuection, only two segments

can be involved (as stated in Property 2.2). Let Sj be the segment that consists of only

a vertical portion and let Sj be the segment that has row(pj) '* row (qj). In this situa

tion, qi and Pj are the neighboring endpoints. We keep segment Sj and delete the verti

cal portion of Sj. changing S(Pj. qj) to S(qi. qj). If Sj was involved in a case (6) verti

cal adjacency with a segment Ski then segment entries of Sk were added to processors

containing segment entries from the vertical portion of Sj. These segment ennies of Sk

are deleted as well and S (Pb qkJ is changed to S (qi. qk)·

Assume now that adjacency occurs along the horizontal direction. From Property

2.3 we know that the thickness is either 2 or 3. Let Sj be the segment with the longest

horizontal portion involved in creating the thickness. If the thickness is 3, this segment

corresponds to the segment whose p-endpoint and q-endpoint are located on the same

row. Segment Sj remains and the horizontal portions of the other segments are deleted.

Observe that the deletion process may involve segments that are overlapping wi[h other

- 18 -

segments. Let x be a l~pixel of a segment Sj so that x is vertically adjacent to a I-pixel

of segment Sj. If x is not located at position (row (qj), col (Pj» or located at position

(row(qk), CO[(Pk» of a segment Sk which overlaps with Sj. then it and the correspond

ing entries are deleted. If x is not such a pixel, then it remains a I-pixel and it initiates

an updating of the information recorded about the associated. segment. The q-endpoinl

of any segment that is changed in this process becomes the endpoint of Si that was one

of the original neighboring endpoints.

Case (6) handles the situation where Sj and Sj are adjacent with Pi = qj- This

situation can be detected on a local basis by the I-pixel representing Pi and qj_ In the

case of a horizontal adjacency with Pi = qj. Sj is a horizontal segment. See also Figure

2.6(a). We keep segment (pj, qi) as well as the venical portion of segment (Pj, qj)'

We delete the horizontal portion of (Pj, qj), keeping the q-endpoint of segment Sj at 1

pixel Pi = qj' Figure 2.6(b) shows the resulting change in the image. If segment Sj

consists of only a vertical portion, then these actions create a 2 x 2 block of I-pixels.

We remove the I-pixel at position (row(qj), col(pj» to break this cycle.

In the case of a vertical adjacency with Pi = qj, Sj is a ~ertical segment. See Fig

ure 2.7(a). We keep the segment (Pj, qj) as well as the horizontal portion of segment

(pj, qj). We delete the vertical portion of segment (Pi, qj), keeping the p-endpoint of

segment Si at I-pixel Pi = qj' Figure 2.7(b) shows the resulting change in the image.

If segment Sj consists of only a horizontal portion, then these actions create a 2 x 2

block of I-pixels. We remove the I-pixel at position (row (qj), col (Pj)) to break this

cycle.

When case (7) occurs, at least one of the. two adjacent segments has

row(p) '# row (q). W.l.o.g let it be segment Sj. The I-pixel at position (row (qi),

col (Pi» is adjacent to a pixel of segment Sj and it is the job of this I-pixel to detect

case (7) adjacencies. Case (7) (i) covers the situation where the endpoints of segments

Si and Sj come from four different components. In this case we delete the segment Sj

if min (Cj) < min (Cj), and we delete Sj otherwise.

The general solution for Case (7) (ii) (i.e., qi and qj are in the same component),

- 19-

is to change the q-endpoint of one segment to the q-endpoint of the other segment. If

changing segment S(Pi. qi) to S(Pi, qj) causes at least one I-pixel to change into a 0

pixel, we perfonn this change. Observe that in this case the cycle is eliminated by

changing adjacent segments into overlapping ones. Otherwise, we consider changing

S(Pj, qj) [0 S(Pj. qj). If this change in endpoints does reduce the number of I-pixels,

we perlonn the change in endpoints. It is possible that none of the two possible

changes in endpoints reduce the number of I-pixels. Such a situation is shown in Fig

ure 2.5. In such a case the cycle induced by the two adjacent segments cannot be elim

inated by changing endpoints and we remove one of the two segments. The situation

for Case (7) (iii) (i.e., Pi and qj are in the same component) is similar. If changing

S(Pj, qj) to S(Pj. qj) does not reduce the number of I-pixels. we delete one of the two

segments.

A few additional actions need to be taken during the processing of case (7) adja

cencies to ensure that image l* is cycle-free. Assume that segment Sj is involved in a

case (7) configuration with a segment Sj and Sj is deleted. If there exists a third seg

ment Sko such that Sk shares I-pixels with Sj and Sk is also adjacent to Sit then segment

Sk is deleted as well. Now assume that segment Sj is involved in a case (7)

configuration with a segment Sj and that qj is changed to qj. If there exists a third seg

ment Sb such that Sk shares I-pixels with Sj and Sk is also adjacent to Si, then the g e n ~

eral solution is to change qk to qj as well. If changing qk to qj would cause a I-pixel of

Sk to be adjacent to qj, then segment Sk is deleted instead. Assume now that Sj is

involved in a case (7) adjacency with two segments. Sj and Sb such that Sj and Sk are

non-overlapping segments and Pk = qj. Figure 2.8 i l l ~ s t r a t e s this configuration. In this

situation we delete segment Sj to prevent a local cycle that could occur in this

configuration when q ~ e n d p o i n t s are switched during the processing of cases (7) (ii) and

(iii).

After the cycle-removing phase has been completed, a I-pixel in image 1* can

belong to at most five different segments [T]. This is also the maximum number of

segments a I-pixel can belong to any time during the first two phases of lhe MCS

method.

- 20-

As already stated, when image I contains components with dist (P, q) = 1, the

image generated by the cycle-removing phase is not necessarily cycle-free. Turning

image CI into a cycle-free image in these situations can no longer be done efficiently by

local scanning methods. Since distances of length 1 do not occur often, the MCS

method does not detect cycles caused by components that are distance 1 from other

components. The additional effort required to remove single pixels does not seem to be

worth the improvement obtained. Mter image 1* has been generated by lhe cycle

removing phase, we determine its connected components. Every step of the first two

phases of the MCS method is thus either an 0 (n) time connected component computa

tion or a scanning operation which partially scans a constant number of rows or

columns.

2.2. Optimizations

The cycle-removing phase reduces the number of I-pixels in image 1* by turning

adjacent segments into overlapping ones and by eliminating cycles. In this section we

describe optimizations that can be applied to image 1* to funher reduce the number of

I-pixels. After the cycle-removing phase image 1* may contain segments for which a

I-pixel on the vertical (resp. horizontal) pprtion is close to another segment so that the

number of I-pixels would be reduced by making a horizontal (resp. vertical) "shortcut".

Shoncutting creates overlapping segments from segments that are "not too far apan".

We present two techniques for shortcutting and an algorithm for selecting an optimum

set of shortcuts. The first technique we describe is a shortcutting technique applied to

non-overlapping segments in 1*. (We call a segment non-overlapping if it does not

overlap with any other segment.) The second technique we describe is a shoncutting

technique applied to overlapping segments in 1*.

Let C I , C2, ...• Ck be the components of image I and let C'l. C'2 • ... ,C'l

be the components of image 1*. Our optimizations do not change any pixels in

C I , C2 • ...• Ck. Let I;p be the image after the optimizations described in [his sec

tion have been applied to 1*. As f*. image l;p contains I components and two pixels

x E Cj and y E Cj are in the same component in I;p if and only if they are in the same

- 21 -

component in I*. Figure 2.9 shows an example of how these optimizations can change

an image 1*.

We start by describing the shortcmting technique applied to non-overlapping seg

ments in 1*. We first describe how each segment proposes a shortcut. Given all the

proposed shortcuts. we give a graph formulation for determining which proposed

shortcuts to take and then a dynamic programming fonnulation of the problem. We

finally describe how to use the dynamic programming fonnulation to obtain an 0 (n)

time mesh algorithm.

Let Cj be a component of image I and let Sj be the segment formed by Pi and qj.

Let Nj be the set containing the non-overlapping segments that have their q-endpoint in

C i • Let OJ be the set cOllmining segment Sj plus the segments that have their q

endpoint in Ci and which overlap with at least one other segment. The main idea of

shortcutting is to have every segment Sj in N j propose a horizontal or vertical shortcut

to a segment in Nj U OJ. Formally, segment Sj proposes a shortcut if there exists a 1

pixel bj on Sj and a I-pixel ej on some segment in Ni U OJ such that bj and ej are

either in the same colunm or in the same row and dist(Pj. eN < dist(Pj, qj). Pixels bj

and ej can be viewed as the pixels on the begin and on the end of the shortcut proposed

by segment Sj, respectively. Observe that we do not allow segment Sj to shortcut to a

segment not in Nj U 0i. If we would allow Sj to shortcut to such a segment, we could

create cycles in image I;p and/or disconnect components of 1*.

Having each non-overlapping segment detennine its best shortcut can easily be

done in 0 (n) time by using simple scanning methods. The difficulty lies in detennin

ing which shortcuts to make. Obviously, not all proposed shortcuts can be made since

the shortcut made by segment Sj counts on using a certain portion of another segment.

Furthermore, if we allow segments to propose shortcuts in all four direction simultane

ously, the proposed shortcuts can contain cycles; e.g., segment Sjl proposes a shortcut

to Sh.' Sh proposes one to Sh and Sh proposes a shortcut to Sj I' Detecting and han

dling cycles of this nature could no longer be done by simple local scanning methods.

We avoid the creation of cycles altogether by separating the directions in which

- 22-

shortcuts can be proposed. As it rums Qut. handling the proposed shortcuts in one

direction, say horizontal to the right, is already challenging. The algorithm determining

which of the proposed shortcuts should be made requires only simple data movement

operations and runs in 0 (n) time with a small associated constant. The interesting and

non-trivial part of this algorithm is the way the selection of shortcuts is done and its

correCOless.

We next describe how to determine the shortcuts when horizontal shortcuts to the

right can be made. The algorithms for the other three directions are analogous. As

already stated, in 0 (n) time every segment can determine whether and how much it

gains by making a horizontal shortcut to the right Let G=(V, E) be the directed,

weighted graph in which every segment of 1* corresponds to a vertex and an edge

<i, k> implies that

(i) segment Si proposes a shortcut to segment Sk and

(ii) pixel ej, which is on the vertical portion of Sb is not necessary for segment Sk

when Sk selects to make its proposed shortcut.

The weight Wi of vertex i corresponds to the number of I-pixels saved when Si selects

the proposed shortcut; i.e., Wi = disl(Pi. qi) - dist(Pi, ej). Every vertex of G has out

degree at most 1 and for every edge (i, k) we have col (Pi) < col (Pk). Thus, G is a

directed forest. Since every vertex i in G corresponds to segment Sit we will no longer

distinguish between vertex i and the segment Sj.

The problem of detennining which of the proposed shortcuts to take can be fonnu

lated as a graph problem as follows. We point out that the graph model is only used in

our explanation and that the algorithm does the corresponding actions directly on the

image. If we require that, whenever segment Sk selects to make its proposed shortcut,

no segment Sj with <i, k> E E is allowed to take its proposed shortcut, then finding a

maximum weighted independent set of G gives the optimum selection of shortcuts. A

maximum weighted independent set of G is a subset W ~ V such that any two vertices

in Ware not adjacent in G (t) and w* = L. Wi is a maximum. However, it is not true
i E IV

(t) If u and v are in W,men neither <u, v> nor <v, U> is in E.

- 23 -

that, if in an optimum solution segment Sk takes its shortcut, none of the segments Sj

with <it k> E E take their shortcut. An example of this is shown in Figure 2.10. In

this figure segment Sk saves 6 pixels by making its shoncut, and segment Sj l saves 3

pixels by making a shortcut to Sko Assume segment Sk makes its shortcut. Even when

5
i1

pays for the 2 pixels needed to connect to Sb it still saves one pixel. We will show

that, if in an optimum solution segment Sk takes its proposed shoncm, then at most one

segment Sj with <i, k> E E takes its shortcut (and it pays for the extension of the vert

ical ponion of the modified segment Sk)·

Let Sk be any segment. We define D (k), the diamond of segment Sb to be the set

containing the positions a with dis! (Pb a) < discCpk> qk). Endpoint qk is at minimum

distance and thus. if an element of D (k) corresponds to a I·pixel already present in I.

this I-pixel belongs to component Ck' Let the border of D (k) be the set containing the

positions a. with disl(Pk' a) = disr(Pk. qk). The border of D (k) contains at least one

I-pixel (namely qkJ belonging to another component. Suppose Sk proposes a shoncut

and assume w.l.o.g. that row(Pk) < row(qk)' Let iI, i2, ...• if be the vertices with

<ij' k> E E (i.e., they correspond to segments shoncutting3nto Sk) with row(ei) <

row (ei:) < ... < row (ej,). Let T(ij) be the set of positions in diamond D (ij) which

are in column col (Pk), 1 ~ j ~ I.

Lemma 2.1. Let W be an optimum selection of shortcuts containing the shortcut pro

posed by segment k. If i 1 E W, then T(i 1) contains pixel bk. Furthermore, none of

12•...• if is in W.

Proof:. If T(i I) contains pixel bko then segment i.1 reduces I-pixels by making a

shortcut to segment k and to "pay" for the row (Pi l) - row (bk) pixels needed to extend

the vertical portion of segment k. If T (i 1) does not contain pixel bko segment i I does

not gain anything by such an extension. Hence. the first pan of the lemma follows.

We next show that TCij) (] T(ij + d = 12'; i.e., no two diamonds can share pixels in

col (Pt). Let

d j = col(p') - co/(P') - 1
Ii + 1 Ii'

- 24-

d 2 ~ col (Pk) - col (PI; ..) - 1,

F. ~dist(p· q·)-d,-d2 -2
J IJ Ij' Ij ,

d) = row(pj. ,) - roW(p;.) - t. -I, and
1+ J J

d 4 = dist(ei
i

+
l

• qk).

as shown in Figure 2.10 for j = 1. The entry Ii. + 1 represems the number of pixels,

saved by segment Ij when Ij shortcuts into segment k. Since Pk did not choose Pi
j

.... ,

we have d 2 ::::: d4. Pixel Pi/+-
l

has its q-endpoint no further away than qk and thus

Ii. ~ d 4 . Adding these twO inequalities gives Ii. ~ d 2 . Since Pi. did not choose
I_I } +1 1

Pi. ,we have d3 ~ d2 + 1. Hence, Ii. < d 3 · In order for TCiJ" + 1) to contain an ele-
J • I /. I

Hence, the number of pixels needed to extend any vertical portions for segment Ij

is at least iii for j > 1. Thus. for j '2: 2, segment Ij does not reduce I-pixels by making

a shortcut in the case when the shortcut proposed by segment k got selected, and the

second part of the lemma follows. 0

Determining the optimum selection of shortcuts for one tree of forest G can now

be modeled as follows. Let T = (VT. ET) be a rooted tree in which the relationship

between vertices and edges to segments and shortcuts is as defined for G. Every vertex

of T is either red or blue. A blue vertex corresponds to a segment that could gain by

taking its shortcut even though its parent takes its shortcut. Because of Lemma 2.1,

every vertex has at most one blue child and the root of T is red. Let i be a vertex and k

be its parent. Vertex i is a blue vertex if and only if dist(pj. bk) < dist(pj, qj}. Recall

that bk is the pixel on the begin of the shortcut proposed by Sk. Let w/ =

Wi - dist(ej, bk) -I, where Wi = dist(pj, qj) - disr(Pi. ej), as already defined earlier.

A blue vertex i has two weights, Wj and w/, associated with it. A red vertex i has one

weight, namely Wj, associated with it. We are to determine a subset W = WR U WB of

the vertices. where WR (resp. Wn) are the red (resp. blue) vertices, such that no two ver

tices in WR are adjacent and w* is a maximum. In order to define w*, let tVa =

- 25 -

WB' U WBU. where WB' are the blue vertices whose parents are not in W, and WB" are

the blue vertices whose parents are in W, respectively. Then, the value w* to be max

imized is L Wi + L Wi"

i E WR V W8 ' i E WB"

We next give a dynamic programming fannulation of this problem. For any ver

tex i , let Ti be the subtree rooted at i. Let s (0 be the maximum weight achievable for

Tj when vertex i is to be included in the solution and let s'U) be the maximum weight

achievable for T j when vertex i is not present in the solution. For any leaf node i of T

we have have

sCi) = Wi and

s'(i) ~ o.

For any interior venex k with children i I. i 2, ... ,if. where i 1 is either a blue vertex

or not existing, we have

I

s(k)=max{s'(i,).s(i,)-(Wi, -Wi,')) + Ls'(ij) + w.and
j=2

I

s'(k) = L max(s(ij). s'(ij)}.
j=l

Obviously, w* = max{s(r), s'Cr)}, where r is the root of T, and w* can be detennined

in a (I VT I) sequential time. By using the sand s' entries in a traversal of T initiated at

the root r, we can determine a set W achieving weight w* in additional 0 ([Vr I) steps.

We now describe how to use the dynamic programming fonnulation to obtain an

a (n) time mesh algorithm. The logic of our algorithm is based on the computation of

the s and s' entries. Their computation is done while traversing paths of I-pixels in the

image. Let P be a path from a leaf of T to the root of.T and let P' be the sequence of

pixels in the image corresponding to path P. The next lemma shows that the number of

pixels on P' is 0 (n). P' consists of horizontal movements (i.e., the shortcuts) and veni

cal movements (i.e., the portions of the segments between the incoming and outgoing

shoncut). A corner pixel is considered to belong to the horizontal movement. The hor

izontal portions of P' contain a total of at most n pixels (since all shortcuts go from left

to right). We note that for any given row the number of pixels belonging to vertical

portions of P' is not bounded by a constant. If this property were true, the 0 (n) length

- 26-

of p' would follow immediately. Our proof of the O(n) length of a path in the image

is based on a non-trivial accounting technique.

Lemma 2.2. The number of pixels on path p' is 0 (n).

Proof: Let i
l

, i 2 , .•• , id be the segments on path p' with i 1 being the leaf and id

being the root. The shortcut proposed by segment ij • 1 ::;; j < d, leads from pixel hi} on

segment f
J
" to pixel ej. on segment iJ"+ 1· Let hi. = dist(bi_. ed + 2 and Vi, =

} } J J

dist(ei
i

_
1

, h ij). Segment Ij accounts in P' for a vertical movement of length Vi) and a

horizontal movement of length hij . We first show how to assign to segment Ij at least

Vi. /8 pixels belonging to a horizontal movement (not necessarily to the horizontal,

movement done by the shortcut proposed by segment ij). Funhennore, no two pixels

of a horizontal movement get assigned twice.

Let ij and i j + 1 be two consecutive segments on path r. As defined in section

2.1.2, we say ij and ij + 1 are of the same type if either row (Pi) < row (qjJ) and

row(pj) < row (qi.) or row (Pi.) > row (qi,) and row (Pi.) > row (qi). Assume
J+ I J + I I 1+1 j + I

the assignments for i 10 ••• , ij _ I have been made witho_u;: assigning pixels on hor

izontal movements to the right of col (Pd·,

Consider first the situation when segments ij and ij + I are of the same type. We

then have hi. :2: Vj. /2. This holds since vi. < disc (pj" qj,) and hi. ~ disc (Pi., qi) /2 (if
J) J IJ I)}

the latter were not true. Pi}+L would choose Pi
J

instead of qi
j
+

L
)' See Figure 2.11(a).

Thus, we can assign to segment ij at least Vi
J
/2 pixels belonging to the horizontal

movement made by the shortcut of ij.

Assume now that segments ij and ij + 1 are' of opposite types. W.l.o.g let

row(piJ > row (qi.) (which implies row (Pi. ,) < row(qj, ,)). If hi. :2: vi. /2, we again
J J /+ 1+) /

assign Vii 12 pixels from the shortcll[of ij to segment ij. Otherwise, we distinguish

whether ij + 1 and i j + 2 have the same type.

Case 1. Segments i j + 1 and i j +2 have the same type. It then follows from above that

h
ij

_
1
~ Vi

j
_ L /2. We assign Vii ~ 1 14 pixels of the shortcut of ij + 1 to each of segment

ij and segment i j + 1. It remains to show that Vi
j

+ L 14 > Vj
j
18. This holds since

- 27-

Case 2. Segments ij + 1 and Ij +2 are of opposite types. It is easy to see that segments

Ij and Ij + 1 together make a horizontal movement of at least dist (bij , qi
j
)'

Case 2.1. row(pj) 2: row(Pi
j

) - dist(pj., qj.). Informally, this means that Pi. , does
}+1 J J J+

not lie above the top corner of the diamond DCi)·). This implies Vi. :s; dist(bj .• qj.).
I + I I I

We can thus assign a horizontal movement of length dist (bi/' qj) / 2 to each of ij and

ij + 1 and continue with segment Ij + 2·

Case 2.2. row(pj.) < row(pjJ - disr(pj., qd. We will go through the argument for
J + I I I J

the situation when col (qiJ :S col (Pi.)' The other situarion is handled in a similar way, ,

and is omitted. The goal is again to assign a horizontal movement of length

disr(bj
j

, qi
j
)/2 to each of Ij and ij+ 1. Let 0 be the number of pixels on segment ij + 1

above row row(pj) - disl (Pi" qi
j

) - 1, and let p be the number of pixels on the hor-
j ,

izomal portion of segment f)" as shown in Figure 2.11(b). If Pi and qi are in
}+ I }

different components, then, hi} + P ~ 2'''\ + p - hiJ • The right-hand side accounts for a

vertical movement of at least Vi
J

and a horizontal movement of at least Vi
J
+ P - hi}

within D(ij) done by segment i j + 1. This contradicts our assumption of hiJ < Vi} /2.

Hence, Pi
j

and qi
j

must belong to the same component. In this case we have 8 < hj
., I

(otherwise qi
j

would be the p-endpoint of this component). Thus,

Vi}+1 5: dist(bj
j

, qi
J
) + 8 :s; disl(b iJ , qi/) + hi

J
~ ; dist(bi

j
, qi

j
).

We can now assign to each of ij and ij + 1 a horizontal movement of length

dist (hi., qi ,) /2. From the above inequality it follows that !.he condition on the vertical
J 1 . .

movement made by segment fj + 1 is satisfied; Le., Vi
/

+ I / 8 ~ dist(bi/ , qi
j

) /2.

d

Therefore, if path P' makes a total of k;;; L Vi_ vertical movements, then P',
j=2

makes a horizontal movement of at least k /8. Since the horizontal portions of P' con

rain a total of at most n pixels. the length of path p' is 0 (n). 0

- 28-

We point out that the objective was to prove the 0 en) length and we omitted the

~ s and f's from the analysis. We also did not aim for the tightest bound possible since

doing so does not affect the performance of the algorithm.

After all the children of venex i have computed their corresponding values and the

values of s (i) and s'(i) are available in the processor containing bi, this pmcessor sends

these two values to bk via ej. If segment i corresponds to a blue vertex, we also send

the difference between the two weights. If along the path to bk the entries from another

child of vertex k are encountered, entries are combined; Le., we stan building up the

entries s (k) and s'Ck). It is easy to show that the entries moving along the longest path

are never delayed. Since the length of the longest path is 0 en), the 0 (n) time bound

for computing the s- and s'-entries follows. The actual selection of proposed shortcuts

is then made by running the just completed data movement backwards. The decision

made for the parent, together with the s- and s'-entries, is used to make the decision of

a child. Hence, the optimum selection of proposed shortcuts to the right can be made

in 0 (n) time by using simple scanning methods.

After the shortcuts to the right have been selected, the_ other three directions are

handled in a similar way. Again, only segments that do not overlap with other seg

ments are allowed to propose a shortcut. Assume the shortcuts are processed in the

order of right shortcuts, left shoncuts, up shortcuts, and then down shortcuts. In order

to avoid having initial shortcuts that result in only a small savings, it appears reasonable

to require that proposed shortcuts save at least a certain minimum number of pixels.

One might require that proposed shortcuts save a fixed. amount depending on the size of

n and the direction of shortcuts currently being considered. For example, for n = 128,

one might require that proposed shortcuts to the right must save at least 8 pixels, pro

posed shortcuts to the left must save at least 5 pixels, proposed shortcuts in the up

direction must save at least 3 pixels, and proposed shortcuts in the down direction must

save at least 1 pixel. Another possibility is to require that proposed shortcuts save an

amount which varies with the length of the segment proposing a shortcut and depends

on the direction of shoncuts currently being considered. For example, if segment Si

proposes a shortcut, then a proposed shortcut to the right must save at least

- 29-

dis! (Pi, qj) {4 pixels, a proposed shortcut to the left must save at least disl (Pi. qi) / 4

pixels. a proposed shortcut in the up direction must save at least dist(Pi. qi) /8 pixels,

and a shoncut in the down direction must save at least 1 pixel. If a segment Sj cannot

propose a shortcut of sufficient lenglh for the direction currently being considered, then

Sj does not propose a shortcut for that direction.

We conclude this section by sketching similar optimizations that can be applied to

overlapping segments. Let C j be a component of image I, y E Ci, and OV(y) be the

set containing the overlapping segments in image 1* that have pixel y as their q

endpoints. Recall mat in image I* there can be at most 5 overlapping segments whose

q-endpoint is pixel y. Let S(Pi
l

• y), ... , S(Pj5' y) be five overlapping segments.

Using an idea similar to the shortcutting described earlier, we allow shortcuts between

these overlapping segments. The implementation is now much simpler. Consider two

such segments, say S(Pi
l

, y) and S(Pi
2

, y) which, w.l.o.g., are both + segments. If

col (Pj2) is between col (y) and col (Pi
l
), then S (Pi" y) determines if pixels can be saved

by making a horizontal shortcut to S(Pi
2

, y). If yes. 5i
l

next checks whether it is possi

ble to change enough I-pixels into O-pixels so that it gairfs by making the shortcut.

Observe that the optimizations made by non-overlapping segments may have created

additional overlaps with segment 5i\ and thus 5i\ cannot simply erase itself. Pixel Pi,

determines in 0 (n) time whether it should perform the shortcut. The other cases for

performing shortcutting between segments in OV(y) are handled in an analogous way.

3. Steiner-Pixel-Selection Method

In this section we describe our second method ·for connecting components, the

Steiner-Pixel-Selection (SPS) method. In the SPS method every component of image I

selects a Steiner pixel to which it attempts to connect by either a vertical or a horizontal

segment. The image generated by one application of the SPS method is cycle-free.

The SPS method consists of four phases. In the first phase every component Cj in

image I selects a Steiner pixel Sj_ The second phase establishes a vertical or horizontal

connection from a contour pixel in component C i to the selected Steiner pixel Sj. The

third phase handles Steiner pixels that are adjacent to only one other I-pixel. In such a

- 30-

case funher steps are taken to either assign the component another Steiner pixel or to

erase the connection altogether. The final phase makes the image cycle-free. Figure

!.l(d) shaws the image abtained by applying the SPS methad ta the image af !.l(a).

We next describe how the Steiner pixels are detennined. Every component C i first

determines the distance between itself and the component at minimum distance from it.

Let min_disr(C;) = dist(pj, qi) - 2, where Pi and qj are defined as in the MCS method.

Let Wil, wi2 • ... ,wu
j

be the contour pixels of component C j . Every contour pixel

Wij of component C j initiates a constant number of scans. The purpose of these scans is

[0 deposit at every processor that can be reached by a vertical or horizontal segment

adjacent to Wjj a scan pair (Wij. C j). A contour pixel initiates at most twelve such

scans. This happens in the case when component Ci consists of a single pixel, as

shown in Figure 3.1. A scan terminates when either a scan pair has been deposited in

min_disc (Cj) processors, a scan pair has been deposited at a processor adjacent to the

border of the mesh, or a scan pair has been deposited at a processor adjacent to a pro

cessor containing a pixel of component C j • Under these rules at most four scan pairs

are deposited at any processor. Observe that a scan cannol ~ n c o u n t e r a O-pixel that is

adjacent to a I-pixel belonging to another component (since any I-pixel of another

component is at least min_disc (C j) + 2 positions away).

When all scans have been completed, a processor containing a O-pixel v contains

up to four scan pairs and we next remove multiple entries originating from the same

co:mponent. Let (Wjj. Cj) and (w,p. C,) be two scan pairs. If Ci = C" then one of the

pairs is deleted. If disc(wij. v) > disc (w,p. v). pair (wij. Ci) is deleted. In case of

equality. the pair with the larger w-value is deleted. A.processor containing fewer than

three scan pairs does not represent a Steiner pixel and it deletes all its scan pairs.

Let p be a processor containing O-pixel v and m scan pairs (Wi j • C j),
~ . .

1 S; u ~ m, m = 3,4; 1.:::;: ju ~ Ii.. We next compute My. the cost of pixel v as a

Steiner pixel. The cost is the arithmetic mean of the distances of the contour pixels to

v; i.e.• My = _1_ :E disc(v, Wi.j). Every component Cj next selects, among the preces-
m u=1

- 31 -

sors containing a scan pair originating from a CQn[Qur pixel of C i, the a-pixel associated

with the minimum cost entry. This O-pixel is the selected Steiner pixel for component

Cj. If a component C j selects pixel v as its Steiner pixel (i.e., v = Si), then for all other

possible Steiner pixels t the following rules are satisfied:

(i) M, :? M.

(ii) if M, = Mv • then t > v.

Assume every component C j selected its Steiner pixel Sj and that 5j is reached by a

scan initiated by contour pixel Wis. 1 ~ i s: k. Let bi be the pixel adjacent to Wis such

that bi and Sj are in the same row or column. Note that, since we allow up to twelve

scans from a contour pixel, Wis and Sj may not be in the same row or column. Let

S[b j • 51) be the segment consisting of the sequence of pixels that connects bi and 51 and

in which bi. but not Si. is included. Let S [bit sd be the segment consisting of the

sequence of pixels that connects bj and Si and in which bi and Sj is included. See Fig

ure 3.2(d) for illustration.

The second phase tries to establish the connections from the b/s to the Steiner

pixelS. It is easy to see that changing the O-pixels on S [bj.- sil to I-pixels can create

cycles and use more pixels than necessary. In order to avoid cycles, component C j may

end up not connecting to pixel Si, but to a another pixel on S [b j , silo Let ej be the pixel

to which component C i ends up connecting. The connections and the end pixels are

detennined as follows. First all vertical connections are made. If b j and Sj are in the

same column, a scan is initiated at bj. This scan moves towards Si and changes O-pixels

to I-pixels. It tenninates when it either reaches S; (in this case we have ej = sa or

when a O-pixel changed into a I-pixel is adjacent to a n ~ t h e r I-pixel. In both cases, ej is

the last pixel changed on the scan. Next, every b j representing the begin of a horizontal

segment starts a scan with the same terminating conditions. One way a horizontal scan

can now terminate is by "running into" a vertical connection. Figure 3.2 shows exam

ples of how connections are made.

The third phase of the SPS method handles end pixels that are adjacent to only

one other I-pixel. Note that whenever an end pixel is adjacent to only one other pixel

·32·

we have ej = Si. Every horizontal segment S [hi. ed with ei adjacent to only one other

I-pixel is extended beyond ej in an attempt to locate a I-pixel the component can con

nect to. Such an extended scan terminates when either a O-pixel adjacent to a I-pixel is

encountered, min_disc (C j) processors have been visited (counting from the begin of the

scan at hi), or the border of the mesh is reached. All O-pixels traversed by the scan are

changed to I-pixels. An exception is made when the last O-pixel encountered is adja

cent to a I-pixel belonging to component Ci . In this case the last O-pixel remains a 0

pixel. The last O-pixel changed to a I-pixel becomes the new ej for component Ci .

After the horizontal extensions have been made, pomans of horizontal and venical seg

ments are erased according to the following rules. If S [bi, e;l is a horizontal segment

in which ei is still adjacent to only one I-pixel, then the entire segment is erased.

Assume now that S [bi. e;l is a vertical segment in which ej is adjacent to only one 1

pixel. If there exists a I-pixel s on S [bj. ej] that is adjacent to the end pixel of a hor

izontal segment, then pixel s is made the end pixel for C j (and I-pixels between ej and

s as well as I-pixel s are erased). Should there exist more than one such pixel on the

segment, we choose the one closest to ej. If no such end pixel s exists, the entire seg

ment S [bi, ei] is erased.

Let CI be the image created by the second and third pbase of the SPS method.

Image CI may not be cycle-free and the final phase removes cycles. Cycles can only be

created in a very local way. namely in the form of blocks of size 2 x 2. It is clear that

the tenninating conditions of the scans used in the second phase do nOl allow the crea

tion of larger blocks. At the same time, the existence of a 2 x 2 block does not neces

sarily imply a cycle. The algorithm checks whether a 2 x 2 block creates a cycle. If it

does, one of the I-pixels in this block is removed. A 1~pixel that can be removed is a

I-pixel adjacent to only two other I-pixels. Such a I-pixel is an end pixel ej for some

component Ci involved in the creation of the 2 x 2 block. After the I-pixel is removed,

Ci's new end pixel is the pixel of S[b i• ei] adjacent to ej. In Figure 3.2(c) pixel el

belongs to a 2 x 2 block and it is removed during the cycle-removing phase.

Let 1* be the image generated by the fourth phase. We next show Ihat image 1*

satisfies the cycle-free propeny. Every component Ci contains at most one conlour

. ,.-,
,

- 33 -

pixel that connects to a Steiner pixel and no pixel on S [bi • eil is adjacent to a I-pixel

belonging to a component, with the exception of pixel bi' Any cycle caused by the seg

ments S (b i , ej] consists thus of horizontal and vertical portions that belong entirely to

these segments. We first prove a property about horizontal and vertical segments.

Properly 3.1. Let S [b i • e;l and S [bj • ejl be two vertical (resp. horizontal) segments.

Then, no pixel in S[bi. ej) can be adjacent to a pixel in S[bj • ej]' In addition, pixel ej

cannot be adjacent to a pixel in S[bj , ej)'

Proof (by conrradicrion): Assume that there does exist a pixel in S rbi, ea that is adja

cent [0 a pixel in S[b j • ej]' Let aj be the pixel on S [bi> ei) closest to bi (aj could be

identical to bi) that is adjacent to a pixel in S [b j • ejl. If Qj = bi, then a pixel of

S[b
j

, ej] is distance one from component Ci . However, phase one deposits scan pairs

only at processors within distance min_dist(C j) = dist(Pi, qj) - 2 of Cj and phase three

extends segments to at most length min_dist(Cj). Therefore, this is not possible. If

aj '# bj, then pixel aj is adjacent to either bj or ej- Consider first a possible adjacency

with pixel ej' Since in phases two and three all scans terminate at the first occurrence

of an adjacent I-pixel and all 2 x 2 blocks of I-pixels causing cycles are eliminated, it

is impossible for Qj to be adjacent to such a pixel. Next consider a possible adjacency

with pixel bj. If a pixel aj of S[bj, eil is adjacent to bj , then ai is distance one from

component Cj and as stated previously, this is not possible. The same type of reason

ing can be used to show that pixel ej cannot be adjacent to a pixel in S [bj , ej) and thus

Property 3.1 follows. 0

The only adjacency between two vertical (resp. horizontal) segments S [bi, ej] and

S [bj , ej] that can be possible is between pixels ej and ej-

Theorem 3.1. Image 1* satisfies the cycle-free propeny.

Proof (by contradiction): Assume that image J* does not satisfy the cycle-free property.

As stated previously, every component C.. contains at most one contour pixel Wis that

established a connection from bi to ei. No pixel on S[b j , eil is adjacent to a I-pixel

- 34-

belonging to a component, with the exception of pixel bi- Therefore any cycle consists

of I-pixels that are pan of the horizontal and vertical segments. The cycle must contain

at least one horizontal segment S[b i• ell such that at least two pixels on this segment

belong [0 the cycle. However. because of Propeny 3.1 and the fact that only ei can be

adjacent to a vertical segment, no such horizontal segment can exist. Similarly, the

cycle must contain a vertical segment S [b i • ei] such that at least two pixels on this seg·

ment belong to the cycle. But, because of Property 3.1 and the fact that horizontal seg

ments cannot belong to a cycle. no such vertical segment can exisL Hence, image 1*

satisfies the cycle-free propeny. 0

The implementation details for the SPS method are straightforward. We only pro

vide details about the last step of the first phase in which every component C i selects,

among the processors containing a scan pair originating from a contour pix.el of Cit the

O-pixel associated with the minimum cost entry. The selection process of Steiner pixel

Sj for component C i is done in two steps. First every contour pixel Wjj of C j selects the

minimum cost Steiner pixel containing the scan pair (Wij, Ca, and then the Steiner

pixel Sj is detennined. This pixel is the best among the pIxels chosen by the contour

pixels of Cj and it is found by perfonning a connected component computation.

Known connected component algorithms can easily be changed to compute the addi

tional information needed in the Steiner pixel selection process. At the end of the first

phase of the SPS method every component C j has thus selected. its Steiner pixel Si

which was reached. by a scan originating at contour pixel Wis.

The final action in the SPS method (after the four phases have been completed) is

a connected component computation to determine the components in image 1*. Every

phase can thus be accomplished by either a scanning operation which partially scans a

constant number of rows or columns or an 0 (n) time connected component computa

tion. Hence, the overall running time of the SPS method for connecting components is

O(n).

.>1.,

- 35-

4. Comparisons of the Methods and the Algorithms

In Sections 2 and 3 we presented two methods for connecting components. We

now compare these two methods and describe the connected component labeling alga

rilhms based on them. Assume input image J consists of k connected components. One

application of the MCS method generates a new image consisting of at most 4k /5

components. If no segments were deleted. in the cycle-removing phase, then one appli

cation of the MCS method would result in at most k /2 components. However, in the

processing of case (7) during the cycle-removing phase, segments can be deleted. The

worst case scenario is that two overlapping segments are deleted, leaving only one of

the original three segments. Five components were initially involved in this

configuration and since we have reduced the number of components by one (since the

remaining segment connects two components), we obtain the 4k /5 bound. However,

in practice, most applications of the MCS method will reduce the number of com

ponents by at least 1 /2. Note that it is also possible that one iteration of the MCS

method succeeds in connecting all components.

One application of the SPS method does, in the wot:St case, connect no com

ponents. Possible reasons are that the first phase of the SPS method does not create

enough potential Steiner pixels, every component selects a unique Steiner pixel, and

components are too close together. Recall that we deposit scan pairs in processors at

most distance dist(pj. qj) - 2 away from a contour pixel of component C j • By chang

ing the method slightly. it is possible to increase this distance to dist(pj, qi) -1 and

still obtain a cycle-free image. The proof of the theorem that 1* is cycle-free is more

involved in this case and we thus chose to present the version with the disl (pj, qi) - 2

bound. Our implementation of the SPS method considered both distance bounds.

Even with the possibility that the SPS method does not connect any components,

there are a number of situations in which the SPS method outperfonns the MCS

method. Consider, for example, the point set given in [Hw] for which the cost of a rec

tilinear minimum Steiner tree is indeed 2/3 of the cost of a minimum spanning tree.

This point set is illustrated in Figure 4.1(a). When rransfonning this example to an

- 36-

image and running one application of the MCS method on it, we generate the solution

shown in Figure 4.1(b) consisting of 27 I-pixels. which corresponds to the minimum

spanning tree solution. On the other hand, if we run one application of the SPS method

on this image, we generate the solution shown in Figure 4.1(c), which consists of 17 1

pixels, or approximately 2/3 of the cost of a minimum spanning nee solution and is

thus optimal. Note that this example can be made arbitrarily large by replicating the

point set shown in Figure 4.l(a) and spacing point sets in the manner illustrated in the

figure.

The MCS and SPS methods each have an 0 (n) asymptotic running time with a

small associated constant. The cycle removing phase of the SPS method is simpler

(han that of the MCS method. This is true since we avoid creating nearly all cycles in

the SPS method by separating vertical and horizontal movement. A corresponding

approach. however, does not work for the MCS method. Both methods perform con

nected component computations, scans on rows and columns, and local operations. We

refer to [T] for a derailed discussion of the time and space requirements of the mesh

implementations of the two methoos. Note that the i m p l e m ~ n ? t i o n of the MCS method

does not perlorm any of the optimizations described in Section 2.2.

Our algorithms based on the two methods consist of a number of iterations, with

each iteration applying one of the two methods. Our first algorithm, referred to as the

MCS algorithm, uses the MCS method in each iteration.

Recall that in the MCS method Steiner pixels are created and i-pixels are saved

when segments overlap. This segment overlap can occur within an iteration or in mul

tiple iterations. We define this to be intra-iteration overlap and inter-iteration overlap,

respectively. Intra-iteration overlap occurs when segments fonned in the same iteration

overlap. Inter-iteration overlap occurs when a segment fonned in an iteration chooses

as its q-endpoint a I-pixel that was pan of a segment in a previous iteration. In the first

iteration of the MCS method, many components are connected, which reduces the

number of components that can participate in inter-iteration overlap in succeeding itera

£ions. In order to facilitate more inter-iteration overlap, we created our second algo-

- 37-

rithm, the MCS_SLOW algorithm. In this algorithm, every component chooses its seg

ments as in the MCS algorithm However, in the first iteration, only approximately half

of the segments chosen are actually created. The result is that in succeeding iterations.

there are more components to take advantage of connecting to l~pixeLs resulting from

segments created in the first iteration.

Our third algorithm, referred to as the MIXED a/gon"rhm, alternates between the

SPS and the MCS methods, beginning with an SPS iteration. In the MIXED algorithm,

the first iteration of the MCS method fOnTIS all of the segments as in the MCS algo

rithm. We also experimented with another version of this algorithm, one in which we

alternated between two applications of the SPS method and one application of the MCS

method. However, the solutions produced by this algorithm were inferior to the ones

produced by alternating one SPS application with one MCS application. Therefore, we

do not consider this version any further.

All three algorithms have a worst-case running time of 0 (nlogk). It is easy to see

that the solutions generated by the MCS and MeS_SLOW algorithms are never worse

than the solutions generated by a rectilinear minimum spanning tree algorithm. While

we have never experienced the MIXED algorithm to generate a solution of cost larger

than that of a minimum spanning tree, this is theoretically possible and we briefly

explain how. Assume we have three componems, C 1 •C 2. and C 3> positioned as shown

in Figure 4.2. The SPS method connects the three components by using 8 + 8 + 8 +

1 = 25 pixels, as illustrated by dIe shaded squares. A minimum spanning tree would

connect the three components by using two edges and only 20 pixels, as illustrated by

the empty squares. Hence, assuming we would use t h ~ SPS method in each iteration,

we could use I / 2 more pixels than used by a minimum spanning tree algorithm. This

behavior could be corrected by depositing scan pairs in processors at most distance

dist(Pi, qi) / 2 from the contour pixels. However, in practice this happens too infre

quently to justify such a restriction.

We have run our algorithms on random images of size 128 x 128 which consist of

m unifonnly distributed I-pixels. Tables 4.1, 4.2, 4.3, and 4.4 summarize our perfor-

- 38 -

mance results for m = 100, m = 250, m = 500, and m = 750, respectively. For each

value of m, we ran each algorithm on 20 images. The MIXED algorithm shown in the

tables uses the SPS method with a dist(pj, qj) - 1 bound. The last line in both tables

gives the average performance for the considered set of data. Recall that k is the

number of connected components in the input image I. In actual number of l ~ p i x e l s .

for images consisting of m = 100 I-pixels, the average minimum spanning tree consists

of 983.45 I-pixels, the Steiner tree created by the MCS algorithm consists of 907.9 1

pixels, the Steiner tree created by the MCS_SLOW algorithm consists of 903.6 1

pixels, and the Steiner tree created by the MIXED algorithm consists of 897.75 1

pixels. For images with m = 250, these values are 1417.65 I-pixels, 1301.9 I-pixels,

1297.05 I-pixels, and 1289.7 I-pixels, respectively. For images with with m = 500

these values are 1869.0, 1702.1, 1696.85, and 1690.15 I-pixels, respectively, and for

images with m = 750, these values are 2129.05, 1934.3, 1920.55, and 1925.55 I-pixels.

From Tables 4.1, 4.2, 4.3, and 4.4 one can see that for the images we tested our

algorithms on, our solutions average about 91 % of the cost of a minimum spanning tree

solution. In terms of the solutions produced, all of the algQ.r!.thms performed similarly,

with the MCS_SLOW algorithm and the MIXED algorithm performing slightly better

than the MCS algorithm As m increased, the perfonnance of the algorithms generally

increased, which can be explained as follows. As m increases, the MCS method needs

more segments to connect the components, therefore there is more of a chance that seg

ments overlap, creating Steiner pixels. In addition, as m increases, there are more

potential Steiner pixels for the SPS method, which helps increase the performance of

the MIXED algorithm as well.

One downfall of the MIXED algorithm is the fact that it takes about twice as

many iterations to complete as the other two algorithms. The first two SPS iterations of

the MIXED algorithm are the SPS iterations where the most Steiner pixels are formed.

One solution to the iteration problem would be to alternate SPS and MCS iterations for

four iterations of the algorithm, and then to finish the algorithm using only MCS itera

tions. This would reduce the number of iterations with little affect on the performance

of the algorithm.

- 39-

The perfonnance of our algorithms compares favorably with the results of other

algorithms cited in the literature [HVWl, HVW2, Ri]. These algorithms often have

solutions averaging approximately 90% - 92% of the corresponding minimum spanning

tree [HVWl, HVW2, Ri]. The algorithms cited in the literature are sequential algo

rithms. Therefore, if a segment is formed, the algorithm can use this segment immedi

ately in fanning succeeding segments. For parallel algOridlIns such as ours, in one

iteration many segments are fonned simultaneously, and it is not until the following

iteration that the algorithm can use these segments when forming additional connec

tions. Considering these facts, we consider the performance of our algorithms to be

good.

References

[AH]

[Ba]

[Be]

[CSS]

[CSW]

[GJ]

[H]

[Ha]

[Hw]

[HCS]

M.J. Atallah and S.E. Hambrusch, "Solving Tree Problems on a Mesh
Connected Processor Array", Proceedings of 26th FOCS, pp. 222-231,
1985.

K.E. Bateher, "Design of a Massively Parallel Processor", IEEE Transac
tions on Computers, Vol. C-29, No.9, pp. 836-840, September 1980.

M.W. Bern, "Two Probabilistic Results on Rectilinear Steiner Trees",
Proceedings of 18th Annuai ACM Symposium on-Theory of Computing, pp.
433-441, 1986.

R.E. Cypher. J.L.c. Sanzo and L. Snyder, "Algorithms for Image Com
ponent Labeling on SIMD Mesh Connected Computers", IEEE Transac
tions on Computers, Vol. 39, No.2, pp. 276-281, February 1990.

C. Chiang, M. Sarrafzadeh, and C.K. Wong, "Global Routing Based on
Steiner Min-Max. Trees", IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 9, No. 12, pp. 1318-1325, December
1990.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness, W.H. Freeman, 1979.

S.E. Hambrusch, "VLSI Algorithms for "the Connected Component Prob
lem", SIAM Journal on Computing, Vol. 12, No.2, pp. 354-365, 1983.

M. Hanan, "On Steiner's Problem with Rectilinear Distance", SIAM Jour
nolan Applied Mathematics, Vol. 14, No.2, pp. 255-265, March 1966.

F.K. Hwang, "On Steiner Minimal Trees with Rectilinear Distance", SIAM
Journal on Applied Mathematics, Vol. 30, No. I, pp. 104-114, January
1976.

D.S. Hirschberg, A.K. Chandra, and D.V. Swane, "Computing Connected
Components on Parallel Computers", Communicarions 0/ the ACM. Vol.
22, No.8, pp. 461-464, August 1979.

1

·>1

!

[lIT]

[HVWI]

[HVW2]

[LAN]

[LBH]

[MS1]

[MS2]

[MS3l

[NASA]

[NS]

[Ril

[RM]

ESt]

[SV]

[1']

[Ul]

- 40-

S. Hambrusch and L. TeWinkel, "A Study of Connected Component Algo
rithms on the MPP", Proceedings of 3rd [neernan"onal Conference on
Supercomputing, pp. 477-483, May 1988.

J. Ho, G. Vijayan, and C.K. Wong, "A New Approach to the Rectilinear
Steiner Tree Problem", Proceedings of 26th ACMIIEEE Design Automation
Conference, June 1989.

1. Ho. G. Vijayan, and C.K. Wong, "New Algorithms for the Rectilinear
Steiner Tree Problem", IEEE Transacn"ons on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 9, No.2, pp. 185-193, February
1990.

W. Lim, A. Agrawal, and L. Nekludova, "A Fast Parallel Algorithm for
Labeling Connected Components in Image Arrays", in Parallel Processing
for Computer Vision and Display, Ed. P.M. Dew, R.A. Earnshaw, T.R.
Heywood, Addison-Wesley, 1989.

I.H. Lee, N.K. Bose, and F.K. Hwang, "Use of Steiner's Problem in Subop
timal Routing in Rectilinear Metric", IEEE Trans. on Circuits and Systems,
Vol, CAS-23, No.7, pp. 470-476, July 1976.

R. Miller and Q. Stout, "Geometric Algorithms for Digitized Pictures on a
Mesh-Connected Computer", IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-7, No.2, pp. 216-228, March 1985.

R. Miller and Q. Stout, "Mesh Computer Ahmrithms for Computational
Geometry", IEEE Transactions on Computers, ~ o l . 38, No.3, pp. 321-340,
March 1989.

R. Miller and Q.F. Stout, Parallel Algorithms for Regular Architectures,
manuscript, (to be published by MIT Press).

"
MPP Pascal Programmer's Guide, National Aeronautics and Space
Administration - Goddard Space FlIght Center, March 1988.

D. Nassimi and S. Sahni, "Finding Connected Components and Connected
Ones on a Mesh-Connected Parallel Computer", SIAM Journal on Comput
Ing, Vol. 9, No.4, pp. 744-757, November 1980.

D. Richards, "Fast Heuristic Algorithms for Rectilinear Steiner Trees",
Algorithmlca, Vol. 4, No.2, pp. 191-207, 1989.

A. Reeves and C. Moura. "Data Mani.lmlation on the Massively Parallel
Processor", Proceedings of 19th Hawau International Conference on Sys
tems Sciences, pp. 222-229, 1986.

Q. Stout. "Tree-based Graph Algorithms .for some Parallel Computers",
Proceedings of 1985 International Conference on Parallel Processing, pp.
727-730, 1985.

Y. Shiloach and U. Vishkin, "An 0 (logn) Parallel Connectivity Algo
rithm", Journal ofAlgorithms, Vol. 3, No. I, pp. 57-67, March 1982.

L. Te Winkel, "Mesh Algorithms for Problems in Image Processing", Ph.D.
Dissenation, Purdue University, 1991.

J.D. Ullman, Computational Aspects of VLSI, Computer Science Press,
1984.

C"...

•
c.{,

•
C"

etc Cz
CDICD

••• DD !:Ia.

• 0 •• • •C41 r, I· ~ .• ••••• DD•••

e,

C'\'
CIS ~

•••• D
•• 0

• 0 0
• C[Hll:lCCI
..DDDD ~

~ 18
o
•

0"

(b) Image Cl

C,
..cc
00 0
00 0

C g [lOCI

~ ~ C7

gool ~
ell.CODOI ClO

00.
o
o
•

C12

••••••...
e,

C,
•

CIS

••••• •••..

...
•• •

c4: ~
•••••

Cr
CJ
••

Cs •
• C,•

• e"
ell_ • elO•

•
el2

C"
C"
••

/
C" •

C19

r-.. •
C~ll

e21
JC2J

(a) Image I

•
en

C'\'
Cl5 ~

•••• CDDIJDD
•• 0

• 0• •.. r!..
IS

C,
• ••••••...
e,

••••• •
c4 : q;

•••••

C,~c""c Cz
-I CD.CD

••• •• •• • •C41 r, I· ~ .• •••••DC •••

e,

e"...
Cl5 ~

•••• D
•• 0

• 0 0:. CCl~DZ

~ 18
o

•
0"

C,
•• ce
o 0
o 0

Cg D.

~ ~ C7

~ • 0)
Cll1Cl][\[n Cto

o •
o
o
•
Cl2

(e) Image 1* using the MeS method (d) Image 1* using the SPS method

Illustrations for the MCS and SPS Methods
Figure 1.1

C3 c,,1..0...... c... []

• [I c.c lJ

• r~[]. - •••• ccce
• ~ •• C7 .DDE!I.ElCI:J.C9_ _ _ C'-.
- r __ C-c - Cs
• "")c 6 •_ c _

- - -- CIQ -- -- -••••••••••••••
Cz

Image I contains components at distance 1
Figure 2.1

Segments Sj and Sj are crossing segments with non-shared endpoints
Figure 2.2

,COEIOCE!

•p.
1

•p.
J

13m
c
c
c
c
c
c
c
c
c
c
c

~~cc
~ v3

•
Pk

Segments Sj. Sj. and Sk are overlapping segments of type
Figure 2.3

p.
J
•

•

Segments Sj, Sj. Sko and Sf are overlapping s..::gments with
segments Si and Sj of type + and segments Sk and SI of type

Figure 2.4

Pi

•c
q. c go

••••\ ~ E 1 / . J ••••· [] .
• I] •

• C •• • •
• p. •
• J •• •• •• ••••••••••••••

Illustration of case (7) (ii) where changing
q-endpoims does not reduce the number of I-pixels

Figure 2.5

p.
J

•c
c
c
c
c
c
c
Dcce. p.= q.

Qi_ DE3C1D E3.E1IlC£lC 1 J

(a) After segments have been created

~ j
c
c
c
c
c
c
c
c • p.=q.

qi-CCtlEUaIllCE3CUJ 1 J

(b) After cycle-removing phase

Si and Sj are adjacent horizontal segments with Pi = q.
Figure 2.6 J

C·Pi=q"
EJD J
cc
CIJCCO_g.
C I

C
C

C
C

•p.
J

(a) After segments have been created

E1·Pi=qJ·
c
c
cecco_q.
c 1

c
C

C

C

•
Pj

(b) After cycle-removing phase

5 i and Sj are adjacent vertical segments with p' = q'
F· , J

19ure 2.7

p.
1

qk ...-'m..... qi

Pk=qj

p.
J

Segment Si is adjacent with non-neighboring
endpoints to both segment Sj and segment Sk

Figure 2.8

"a
a
a
a

" aa a
a a
[][][][]o[Jc.oc.

a
a
a
a

"

"

"a
a
a
a

" aa a
a a
a a
cooc ••

"".OCDO.

"""ac.co •

a "••••••

"a
a
a
a

.DCCODe
a
a

DO.DC.
a
a
a
a

"

"a
a
a
a

.coooo
a
a
a

""""" "a "
a "
a ".oao[] •

a "• •••••

Image 1* uses 45 pixels and image I;p uses 39 pixels;
components are indicated by solid squares. segments by empty squares

Figure 2.9

An example of the situation when both segment i 1 and k
do better by taking their proposed shoncllts; segments are

indicated by filled squares, proposed shoncuts by empty squares
Figure 2.10

... ecce

[]

[]

•
p.

Ij+l

(a) Segments ij and ij + 1 have the same type

-,

.. p....
mccc ecce···..
[]....
[]

[]

[]

[]

b i j ~ E I C c-c c [] C C C IJ C C

IJ hi·
• J
P

ij

p

CeDEI C..
ceccccca

[]....
v· []

Ij C..

Pi· 1
• 1+

o

(b) Pi lies "above the top of D UJ·) (Case 2.2),. ,

Illustration for the proof of Lemma 2.3
Figure 2.11

column
c

rowr

The twelve scans initiated. by an isolated I-pixel
Figure 3.1

(c)

Ca) Selection of Steiner pixels

Image after horizontal segments
have been created

(b) Image after vertical segments
have been created.

(d) Image after cycle-removing phase

• i-,

Illustration of how segments are created in the SPS method
Figure 3.2

•

•

•

(a) Point set

•

(b)

CC.I3E1rJ.ElDCElC
C C []
[] C E'!

tI E:I D
C [] D
• C •

C
C
C
C

•

MCS method and minimum
spanning tree solutions
consisting of 27 I-pixels

•
C
C

C
C

.aCElCc.ElIHilS_
C
C
C
C

•

(e) SPS method solution
consisting of 17
I-pixels

Example of where the cost of the rectilinear minimum
Steiner tree is 2/3 of the cost of the minimum spanning tree

Figure 4.1

CI
••••••••• •• •· .[] []c c
c c
c c
c c
c c
c c
c c
c c

•• aCCCCCCDCElCCDCCDC ••

• •• •
C2 : : C3

• •• •
•••••• C[][][][J[][][][Jc •••••

Example of where SPS method (25 shadeti squares)
exceeds cost of mInimUm ~ p a n n i n g tree (20 empty squares)

FIgure 4.2

MCSAl~lhm MCS SLOW Ahrorilhm MIXED AlJrorilhm

k iterations % of msp iterations % ofmsp iterations % ofmsp

98 4 92.70 5 92.60 8 91.14

97 4 92.78 4 92.88 8 91.98

99 4 91.78 4 91.60 6 91.12

100 4 91.45 4 91.66 6 91.97

99 4 92.50 4 91.88 8 89.31

99 4 90.74 5 90.53 8 90.11

100 4 91.96 4 91.45 8 91.25

99 4 93.63 4 93.19 8 92.86

99 3 92.77 4 92.29 8 90.63

99 4 92.11 4 91.71 6 91.71

99 4 92.05 5 91.05 8 91.25

98 4 90.42 4 90.94 8 91.25

97 4 92.02 5 92.41 8 91.23

96 4 92.04 4 91.14 6 89.43

100 3 91.92 4 90.93 6 91.82

94 4 92.04 5 91.62 8 91.20

99 4 94.23 4 93.61 8 93.08

100 4 92.20 4 90.68 8 90.27

100 4 93.27 5 93.18 8 91.42

99 4 93.83 4 92.37 8 92.89

Averages 3.90 92.32 4.30 91.89 7.50 91.30

Results for random images of size 128 x 128 with m = 100
Table 4.1

MCS All!:orithm MCS SLOW All!:otilhm MIXED Al,gorilhm

k iterations % ofmsp iterations % ofmsp iterations % ofmsp

240 4 91.08 5 91.22 8 90.44

243 5 90.88 5 90.61 8 90.07

242 5 90.75 5 90.55 8 89.74

239 5 93.20 5 92.61 10 92.47

242 5 92.26 5 92.04 8 90.97

242 5 91.29 5 90.94 10 90.80

244 4 92.69 4 91.79 8 92.34

245 4 91.84 5 91.29 8 90.11

242 5 91.63 5 91.70 10 90.93

241 5 90.99 5 91.14 10 89.18

242 5 92.35 5 92.28 8 90.96

243 5 92.65 5 92.80 10 92.00

239 5 91.58 5 91.79 8 91.50

241 4 91.95 5 91.13 8 90.18

241 5 91.87 5 91.58 8 91.08

243 5 91.44 5 91.01 8 90.72

242 5 91.57 5 91.30 8 91.36

240 5 93.36 6 91.41 8 92.93

246 5 91.05 5 91.12 10 90.69

242 5 92.39 5 91.69 8 91.20

Averages 4.80 91.84 5.00 91.50 8.60 90.98

Results for random images of size 128 x l28 wilh m = 250
Table 4.2

MCS Algorilhm MCS SLOW A1Jrorilhm :MIXED Alrnrithm

k ilerations % of msp ilerations % ofmsp ilerations % ofmsp

464 5 91.93 5 91.66 10 90.95
469 5 91.12 6 91.02 10 90.43
467 4 90.55 5 89.80 10 89.91
474 5 90.11 6 90.59 10 89.58
471 5 90.90 5 90.69 8 90.49
481 5 91.43 5 91.06 10 90.96
470 5 90.89 6 90.59 10 90.32
463 5 90.21 6 89.63 10 89.21
481 4 90.83 5 90.51 8 90.24
467 5 91.57 5 91.51 10 91.07
473 5 90.83 6 90.61 10 90.08
466 5 90.35 6 89.91 10 89.53
466 5 91.29 6 91.68 10 90.91
479 5 90.62 5 90.83 10 89.94
466 5 91.91 6 91.74 10 91.14
473 5 91.17 5 90.81 10 90.71
471 5 92.56 6 92.56 10 91.75
469 5 90.65 6 90.12 10 90.01
465 5 90.78 6 90D3 10 90.19
474 5 91.78 6 90.50 10 91.25

Averages 4.90 91.07 5.60 90.79 9.80 90.43

Results for random images of size 128 x 128 with lit = 500
Table 4.3

MCS Algorilhm MCS SLOW ~lhm MIXED Algorithm

k ilerations % ofmsp Herations % of msp % ilerations % ofmsp

677 6 90.91 6 90.26 12 90.40
677 5 90.58 5 90.29 10 90.05
685 5 90.92 6 90.17 10 90.36
683 5 91.68 6 91.21 10 91.26
677 5 90.19 5 89.55 10 89.92
680 5 91.31 6 90.85 10 90.85
684 5 90.69 5 90.55 10 90.17
689 6 90.47 6 89.38 12 90.18
680 5 90.79 6 89.70 10 90.46
683 5 91.03 6 90.32 10 90.37
687 5 90.00 5 89.73 10 90.05
679 5 91.57 6 90.52 10 91.09
677 5 91.97 6 91.01 10 91.49
674 6 91.30 6 90.92 10 91.01
692 6 90.63 5 89.74 12 90.26
663 5 91.95 5 91.90 10 91.37
678 5 90.49 6 90.16 10 90.11
694 5 90.15 6 89.01 10 89.74
694 5 89.83 5 89.38 10 89.51
671 5 90.75 6 89.65 10 90.32

Averages 5.20 90.86 5.65 90.22 10.30 90.45

Results for random images of size 128 x 128 with m = 750
Table 4.4

	Parallel Heuristics for Determining Steiner Trees in Images
	Report Number:
	

	tmp.1307986960.pdf.pYWtX

