Parallel Hierarchical Evaluation of Transitive Closure Queries

Maurice A.W. Houtsma™

Department of Computer Science, University of Twente (email: houtsma@cs.utwente.nl)

Filippo Cacace , Stefano Ceri'
Dipartimento di Elettronica, Politecnico di Milano (email: cacace, ceri @ipmell.polimi.it)

Abstract

This paper presents a new approach to parallel com-
putation of transitive closure gueries using ¢ seman-
tic data fragmentation. Tuples of a large base rela-
tion denote edges in a graph, which models a trans-
portation network. We propose a fragmentation algo-
rithm which produces a partitioning of the base relation
into several fragments such that any fragment corre-
sponds to a subgraph. One fragment, called high-speed
fragment, collects all edges which guarantee mazimum
speed, these edges correspond to highways or to high-
speed inter-city trains. Thus, the fragmentation algo-
rithm induces a hierarchical relationship between the
high-speed fragment and all other fragments. With this
fragmentation, any query aboul paths connecting two
nodes can be enswered by using just the fragments in
which nodes are located and the high-speed fragment.
In general, if each fragment is managed by a distin-
guished processor, then the query can be answered by
three processors working in parallel. This schema can
be applied recursively to generate an arbitrary number
of hierarchical levels.

1 Introduction

Over the past few years, deductive databases
have emerged to bridge the gap beiween data- and
knowledge-base systems. Relational databases are ca-
pable of efficiently handling large amounts of data on
secondary storage, but their interface is sometimes
considered as rather awkward and their expressive
power is limited. Therefore, deductive databases offer
a logic-based interface, called Datalog, that enables

*The research of Maurice Houtsma has been made possible
by a fellowship of the Royal Netherlands Academy of Arts and
Sciences

tFilippo Cacace and Stefano Ceri are supported by the Es-
prit project STRETCH and by the CNR project LOGIDATA+

0-8186-2295-4/91 $01.00 © 1991 IEEE

130

easy formulation of complex queries and, more im-
portant, enables formulation of recursive queries, on
top of a relational system. This has triggered a vast
body of research on optimization strategies for recur-
sive queries, both in an algebraic and in a logic con-
text (see, e.g., [4]). A simple, but very important type
of recursion is the transitive closure operation [11].
Transitive closure operations in algebra amount to the
class of linear sirups in Datalog [3], which class has at-
tracted most research on optimization. An example of
a transitive closure query, combined with an aggregate
computation, is the bill-of-material problem: finding
all transitive components of a given part.

An important feature of database technology of the
nineties is the use of parallelism for speeding up the ex-
ecution of complex queries. In particular, intre-query
parallelism enables the distribution of complex queries
to multiple processors. Fragmentation is essential to
intra-query parallelism, as it enables a very natural
partitioning of query processing. Each processor con-
trols a disk which stores fragments of relations; with
this architecture, it is possible to execute selections,
projections, and some joins in a distributed way on
each processor, and then collect from each processor
the result of these operations. Today, a number of re-
search prototypes and a few commercial systems sup-
port fragmentation parallelism (e.g., {12, 13]).

The new class of recursive queries can, by its regu-
lar structure and complexity of operations, extremely
benefit from intra-query parallelism. Therefore, re-
search is now being conducted on parallel execution of
recursive queries, both in a logic and in an algebraic
context [6, 7, 15]. Some research focuses on the use
of hash-based fragmentation [5, 14]; some logic-based
approaches focus instead on assigning Datalog rules
to processors [10]. An overview of current research
on parallel execution strategies for tramsitive closure
is given in [3].

In this paper we generalize the “disconnection set”
approach introduced in [7, 8). In the disconnection



set approach, the semantics of the application domain
is used to achieve a significant computation speedup
for several types of transitive closure queries: graph
reachability, shortest path, and bill-of-material. In
this paper we concentrate on the shortest path prob-
lem, and we extend and improve on the disconnec-
tion set approach. The approach of this paper, called
parallel hierarchical evaluation, uses a new fragmenta-
tion schema that partitions a base relation into several
fragments; one of them, called high-speed fragment,
has special properties. This fragmentation schema al-
lows us to direct queries to specific fragments (in gen-
eral, 3 fragments are sufficient to solve any shortest
path query); this means that relevant data to answer
a query are pre-selected. At the same time, each query
can be answered in parallel by the processors associ-
ated to the relevant fragments; in particular, when
each fragment is controlled by one processor, then a
query is naturally executed in parallel on three pro-
Cessors.

Our fragmentation algorithm turns out to be famil-
iar to one of the heuristics proposed in {1]. There the
issue was to divide a relation into domains in such a
way that the search space can be pruned dynamically.
However, they do not consider distributed computa-
tion; instead they focus on storing precomputed infor-
mation (in the order of the size of the relation) about
the shortest connection between any pair of nodes in a
fragment. This leads to a considerable overhead com-
pared to disconnection sets [7]. The assumption made
in [1] that domains do not overlap is rather strict and
not likely in general; overlapping domains would in
their approach lead to a significant effort in trying to
bound the search. Although our approach has some
characteristics in common with [1], there are signifi-
cant differences. We give a proper definition of frag-
ments and a full description of a fragmentation algo-
rithm, concentrating on the use of distributed compu-
tation for all sorts of transitive closure queries (includ-
ing e.g. bill-of-material).

The structure of this paper is as follows. In Sec. 2
we give a short description of the disconnection set ap-
proach. In Sec. 3 we describe the generalization of this
approach to parallel hierarchical evaluation. In Sec. 4
we present an algorithm for fragmentation design’. In
Sec. 5 we discuss query processing, and in Sec. 6 up-
date management. Finally, in Sec. 7 we draw some
conclusions and discuss issues for further research.

! Although a number of strategies use date fragmentation
to achieve parallel execution [5, 14, 15}, they typically assume
fragmentation based on hash functions, without discussing how
to achieve a good fragmentation design.

131

2 A primer on disconnection sets

The disconnection set approach, described in (7, 8],
uses a fragmentation that is especially tailored to par-
allel execution of recursive queries. It was suggested
by real-world observations concerning travel problems.
The basic idea underlying the disconnection set ap-
proach is very simple and can be illustrated by con-
sidering a railway network in Europe.

Assume that connections in the European railway
network are naturally fragmented by nation, and that
each fragment is stored on geographically distributed
computers that can be accessed through a distributed
database system. To find the shortest path from Paris
in France to Milano in Italy we may split the question
in a number of separate subqueries: find a path from
Paris through France to the north-eastern border with
Switzerland, then through Switzerland to the Italian
border, and finally through Italy to Milano.

This fragmentation leads to a highly selective
search process, consisting of determining the proper-
ties of connections from the origin to the first border,
then between borders of the intermediate fragment,
and finally from the last border to the destination
city. These queries have the same structure; they ap-
ply only to a fragment of the database, and can be
executed in parallel.

The relational representation of this is as follows.
The connection information is stored into a relation
R; each tuple corresponds to an arc of the graph G,
which can have cycles. By effect of the fragmenta-
tion, R is partitioned into n fragments R;,1 < 7 < n,
each stored at a different computer or processor. This
fragmentation induces a partitioning of G into n sub-
graphs G;,1 < i < n. Disconnection sets DS;; are
given by G; N G;.

In order to process queries independently on the
fragments, it is required to store some complementary
information about the identity of border cities (i.e.,
the nodes in the disconnection set) and the proper-
ties of their connections; these properties depend on
the particular recursive problem considered. For in-
stance, for the shortest path problem it is required to
precompute the shortest path among any two cities
on the border between two fragments. Such shortest
paths may cross the border many times and, therefore,
have to be computed and maintained based on the en-
tire graph G; this is discussed in [7]. Complementary
information about DS;; is stored together with both
fragments G; and Gj.

In the disconnection set approach, we assume that
disconnection sets are much smaller than the frag-
ments, and that they do not overlap (which will in



general be the case). Given these assumptions, the
disconnection set approach leads to an effective use of
parallel computation on n processors (where n is the
number of fragments involved) [7]. This is especially
true for fragmentations that are loosely connected, i.e.,
whose graph of components is acyclic; the graph of
components has one node for each fragment and one
edge for each nonempty disconnection set.

Proofs on the correctness of the disconnection set
approach for the various types of transitive closure
queries can be found in [8].

3 Parallel Hierarchical Evaluation

In the disconnection set approach, all fragments are
“semantically equal.” The parallel hierarchical evalu-
ation generalizes the disconnection set approach, by
making some of the fragments more equal than oth-
ers. This distinction is based on real-life observations
concerning transport problems.

3.1 Informal Description

If we consider the railway network of many Euro-
pean countries, we note that the countries are sub-
divided into geographical regions. In each region, a
number of slow trains stop at every station; remote re-
gions are connected by inter-city trains that stop only
at a few stations, typically the major cities of a re-
gion. For long-distance travels, one typically uses the
regional network around the departure city in order
to reach the high-speed network of inter-city trains,
then uses the inter-city trains, and finally uses the re-
gional network around the destination city to arrive at
the destination. If arrival and destination are in ad-
jacent regions, an exception to this rule is possible: it
might be better to use the slow trains that connect the
two regional networks, instead of using the high-speed
inter-city trains.

The parallel hierarchical evaluation exactly mimics
this intuitive approach to travelling. A small sub-
set of the connections is declared to be high-speed;
these connections are stored as a separate fragment
H. The remaining connections are partitioned into
n fragments (corresponding to geographical regions).
Each fragment is stored on a separate processor, to-
gether with the complementary information for each
of its disconnection sets. H is stored on a separate
computer, together with the complementary informa-
tion about the disconnection sets between H and the
various other fragments. As in the disconnection set

132

approach, we assume that disconnection sets are small
compared to the size of fragments.

Any two fragments are declared as either adjacent
or nonadjacent. Two adjacent fragments have a non-
empty disconnection set. We build a fragmentation so
that the shortest path between any two nodes belong-
ing to fragments G; and G; is included within these
fragments and within H, but does not include edges
from other fragments. In particular, if G; and G, are
nonadjacent, then the shortest path must include some
edge from H.

Note that for achieving a good balance of the work
and a profitable parallel computation, it is required
that H be small (because it is used in most computa-
tions), the fragments be approximately of similar size
{even workload), and the disconnection sets be small
(to minimize overhead and precomputation).

3.2 Formal Description

We now give a formal description of parallel hier-
archical evaluation in terms of the underlying graph
and its fragmentation. First we introduce a graph
G, its subgraphs G;, and the high-speed fragment
H; DS;; denotes the disconnection set between two
generic fragments G; and G;, DSH; denotes the dis-
connection set between G; and H. The function Wg
is a weight function that assigns a weight to each edge
of G.

G=(V,E) Ws : E(G) — IN
G1=(V1,Ey) Gn = (Va, E,) H =(V', HS)
Tu...uV,uv' =Vv Eiv...UE,UHS=E

Vi,j: E;NE;j=0 Vi: E;NHS=0

DS;; =VinV; DSH; =V;nV’

We assume a function sh(v;,v;) that returns the
set of arcs constituting the shortest path in G between
nodes v; and v;. Whenever we mention the shortest
path we mean the path for which the summation of
the weight of the edges is minimal. We like to design a
data fragmentation which satisfies the following prop-
erty:

Property 3.1 The shortest path between any two
nodes contained in fragments Gy, and Gy, tncludes only
edges from Gy, G, and the high-speed fragment H:

Yu; € Vh,‘Uj € Vk,sh('u.;,u]-) CE,UE,UHS

We now introduce the notions of adjacency and
non-adjacency.



adjacency Two fragments G, and Gy, with h # k,
are adjacent if the following properties hold:

1. Vu; € Vh,’Uj €V sh(vi,vj) - ELUEyUHS
2. VNV £ 0

non-adjacency Two fragments G and Gg, with
h # k, are non-adjacent if the following properties
hold:

1. Vv; € Vi, v € Vi : sh(vi,v;) C ERUERUHS
2. Vpy NV =0, with h £ k

The property that enables parallel hierarchical eval-
uation is the following:

Property 3.2 Any two pair of fragments Gy, Gk,
with h # k, are either adjacent or non-adjacent.

Note that Property 3.1 is a logical consequence of
Property 3.2, as it is implied by condition 1, common
to both adjacency and nonadjacency conditions.

If we postulate that each fragment is managed by
a separate processor and is stored together with the
complementary information of all its disconnection
sets, we may then formulate the following theorem.

Theorem 3.1 If Property 3.1 holds then the shortest
path between any two internal nodes v; and v; of frag-
ments G; and G; can be computed on three processors
in parallel.

Note that if either of the departure or arrival node
fall into the disconnection set between two fragments,
then the node(s) must be interpreted as belonging to
both fragments; thus, in the worst case (when both
departure and arrival nodes are not internal), four of
the above computations must be performed; the short-
est path is obtained as the minimum of the shortest
paths obtained from each computation. Due to our as-
sumptions on the size of disconnection sets, this case
is unlikely.

Also note that this formalization allows for trivial
solutions, such as declaring the complete graph to be
in HS. Obviously, this is not what we want if we aim
to achieve parallel computation. When designing the
fragmentation we shall generate at least n fragments
{(with n reasonable large), where the fragments are
approximately equal in size.

4 Fragmentation design

In this section we describe how to design a frag-
mentation that satisfies Property 3.1; fragmentation

133

design is a hard problem, and this section constitutes
the core of this paper. Due to space considerations, we
only describe the algorithm informally here, a full ver-
sion is given in [9] The design is initiated by the user’s
choice of “region centers”: the user pre-determines the
number of fragments n, and chooses for each fragment
the node ¢; of the graph which is situated approxi-
mately in its center. This initial choice will influence
the final outcome and is heuristic in nature. From this
choice on, the algorithm develops a fragmentation that
satisfies the requirements described at the end of the
previous section. Let C denote the set of fragment
centers. Fragmentation design is then conducted in
five steps.

Step 1. During this step, the shortest path-—in
terms of the sum of the weight of the edges—between
any pair of the nodes in C is computed. All edges
belonging to these paths are removed from the graph
G and put into the high-speed fragment. Note that
the connections in the high-speed fragment need not
be acyclic.

Step 2. Then, edges of G are progressively as-
signed to fragments. This is done by starting from
center nodes and by progressively including neighbour
nodes and the edges leading to them into the frag-
ments. At each iteration, the next node which is in-
cluded into a fragment is the unassigned node with
minimum distance from a center node—by construc-
tion this node can be reached by an edge starting from
a node that was already assigned to a fragment. In
this way, the fragments being generated have approx-
imately the same diameter (again in terms of the sum
of the weight of the edges, not in terms of the number
of edges constituting a path). Whenever an edge con-
nects two nodes assigned to different fragments, that
edge is marked as “critical” and included into a set D
to be examined in step 3. After step 2, each node is
assigned to exactly one fragment. The following prop-
erty holds, where c; denotes the center of fragment G;
and sl(v;,c;) denotes the length of the shortest path
between »; and ¢;:

Vi, kv € Vi, # 4, sl(vk, &) < sl(vg, ¢5)

However, the fundamental Property 3.1 does not
hold. As an example of possible property violation,
consider Figure 1. Assume that the shortest path be-
tween nodes a and d goes through nodes b and c¢; the
shortest path connecting node a of G and d of G3
thus uses an edge from G, and violates Property 3.1.
Note that this problem cannot be solved by assigning
critical edges (in this case edges (a,b) and (c,d)) to
H.



G2

G

Gs

Figure 1: Critical nodes and edges during fragmenta-
tion design

Step 3. Step 3 considers “critical edges” in D. We
start by building the set B of “boundary nodes” of
fragments, defined as the set of nodes from which one
critical edge departs:

B = {v,-|3e,<,- ED}

Then, for every pair of nodes v; and v; in B, with
v; € Gy and v; € Gi, we compute the shortest path
that connects them. If this path includes any edge
from another fragment G, (w # h A w # k), then all
the edges of this path are inserted into the high-speed
fragment H and deleted from D and G,. After this
step, Property 3.1 holds; intuitively, it holds for all
pairs of “border nodes” of fragments, by direct con-
struction; but all paths connecting any pair of “inte-
rior nodes” have to go through some “border nodes”,
where they connect to the high-speed fragment, if that
is needed.

Although this step is highly combinatorial, its com-
putation is not too hard, since we assume |B| << |V,
and we need to consider |B| x (|B| — 1)/2 possible
combinations. Section 4.1.2 shows optimizations that
apply to Step 3.

Step 4 This step determines whether any two frag-
ments are adjacent or nonadjacent. For all pairs of
fragments, the number of critical edges in D that
connect them is counted. If this number is below a
threshold ¢, then the fragments are defined as non-
adjacent and the edges connecting them are put into
the high-speed fragment HS. If the number of con-
necting edges is greater than t, then fragments are
defined to be adjacent, and each connecting edge is
arbitrarily assigned to either of them. Eventually, D
becomes empty and all edges are assigned to a frag-
ment; this terminates the fragmentation design.

Note that if ¢ is very high, then many pairs of frag-
ments are defined as non-adjacent, and the high-speed
fragment is large. Conversely, if ¢t is very low, then
many pairs of fragments are defined as adjacent, and
the high-speed fragment is small. Query processing is
best performed in parallel when most fragments are
nonadjacent. The “optimal” situation (i.e., balancing

134

the size of HS, the size of the disconnection sets, and
the size of the fragments to achieve a fast response
time) for a specific graph may be found by adjusting
t.

Step 5. The last step computes the complementary
information (see Sec. 2) for the disconnection sets be-
tween the adjacent fragments and between each frag-
ment and the high-speed fragment.

Note that this algorithm indeed avoids a trivial so-
lution, and keeps to the guidelines mentioned at the
end of Sec. 3.2. In particular, by building fragments
where the boundaries are approximately the same dis-
tance from the center, and by delaying the assignment
of critical edges to fragments, the generated fragments
are more or less of equal size.

4.1 Efficient implementation

In this section we discuss the efficient implementa-
tion of the hardest steps of the allocation algorithm.
Step 4 is computationally easy. Steps 1, 3, and 5
are structurally very similar, as they require solving
a large number of shortest path problems. We first
address the optimization of Step 2, then we consider
Steps 1, 3, and 5 together.

4.1.1 Step 2

In Step 2 of the algorithm we add edges to fragments,
based on the minimal distance of nodes to centers.
This step is repeated O(|G|) times, and thus must be
performed efficiently. Indeed, there is an efficient im-
plementation that greatly reduces its complexity.

We store a list LI of ternary tuples (ci,vn, din),
representing that the shortest path from center ¢; to
node vy, has length d;;. L1 is sorted based on the third
column and represents the partial spanning trees that
start from the center nodes in C. We also store a list
of edges L2 that can be joined to either one center ¢;
or to one node v, of L1 and have not yet been included
into a spanning tree; L2 is sorted based on the weight
We(enk). Initially, L1 is empty and L2 includes all
tuples of E which survive Step 1 and can be joined
with any center ¢;, i.e., one of the nodes connected by
the edge s a center node.

At each iteration, we search for the shortest con-
nection that can be made between an element of L7
and an element of L2, to include edges from L2 into
fragments in increasing order of their distance from
the centers. An iteration corresponds to adding one
tuple to L1, deleting one tuple from L2, and possibly
moving some tuples from E to L2



An iteration is done in the following way. We take
the first element ey of L2 and find the first matching
tuple (ci,va,din) of L1; this is a candidate shoriest
connection, with a distance from the center ¢; given
by dir = din + Wg(enk); we denote the prefix of the
L1-list between its top and the matching tuple as PL1.

To ensure that the candidate connection is really
the one that minimizes the distance of an unassigned
edge from a center, we scan the L2 list forward and
search for second match with the PLI list. If such
a match is found, we compare the candidate shortest
connection with the second matching tuple, and possi-
bly exchange them. This process needs to be iterated
until either L2 is completed, or the distance dix of the
current candidate shortest connection is less than the
weight of the current element of L2.

At the end of this process, the new tuple (¢;, vk, dix)
is entered into L1; epi is deleted from L2; and all
edges of E which match with vy are entered into L2.
The process continues until E is empty and Step 2 is
completed.

4.1.2 Steps1l,3,and 5

Steps 1, 3, and 5 are structurally very similar; they
require computing the shortest path among all pairs
of nodes within a set. Step 1 considers as initial set
the fragment centers, Step 3 the boundary nodes, and
Step 5 the nodes within disconnection sets. Each step
then has a complexity O(4%) times the complexity of
solving a shortest path problem in |G|, where i equals
the number of fragments in Step 1, the number of
boundary nodes in Step 3, and the number of nodes in
a disconnection set in Step 5; Step 5 has to be repeated
for each nonempty disconnection set. The number of
boundary nodes is in general much larger than the
number of fragments or the size of disconnection sets
and therefore dictates the overall complexity of the
algorithm. However, to all these steps we can apply
the same optimization technique, which reduces the
complexity of each step from quadratic to linear.

Let X denote the subset of V for which we want
to compute all pairs of shortest paths in G. We se-
lect the node z; of X, and compute all shortest paths
departing from z; by using Dijkstra’s algorithm; we
recall that the algorithm progressively labels all other
nodes of G with the minimum distance from z;. A
version of Dijkstra’s algorithm that uses an eXtended
Relational Algebra (XRA) and is optimized for rela-
tional databases is discussed in [7]. Whenever another
node z; € X is reached, the shortest path sh(zi, z;)
becomes available; when all nodes in X have been
reached, the construction is arrested, and z; is deleted.

135

In this way, the complexity of each step becomes linear
in the size of X, rather than being quadratic. We re-
call that in Dijkstra’s algorithm constructing all short-
est paths from a given node has the same worst case
complexity as constructing a single shortest path.

In Step 3, the action to be performed when
sh(z;, z;) is computed consists in checking that the
shortest path is not violating Property 3.1; this does
not change Step 3’s complexity.

One optimization is specific to Step 3. Each short-
est path sh(z;, z;) has an upper bound in accumulated
weight of the edges given by: si(zi, &) + sl(ei, ) +
sl(cj, zj), where ¢; denotes the center of the fragment
which includes z;. These numbers are available from
Steps 1 and 2. Thus, the computation of shortest
paths originating from z; can be suspended when the
greater upper bound of distances between z; and all
nodes in X which have not yet been reached is less
than the distance between z; and the node that was
last reached by Dijkstra’s algorithm.

5 Query Processing

Suppose that we need to compute the shortest path
between nodes v; in fragment G, and v; in fragment
Gy. Assume that v; and v; are internal to Gy and
Gt, i.e., they do not belong to any disconnection set.
5.1 Nonadjacent fragments
If fragments Gy and Gy are non-adjacent, we may

divide the computation into three independent sub-
queries:

e From v; to DSHy;
e From DSH; to DSHy;
¢ From DSH; to vj.

Note that the first subquery is computed by using G;
the second subquery is computed on the high-speed
fragment and the complementary information associ-
ated to both DSHy and DS Hy; the third subquery
only requires Gx. (The complementary information
can be used in the computation on either fragment or
even in the post-processing phase instead; the choice
is arbitrary.) The complementary information corre-
sponding to DS Hj, and DS Hy, can be relationally rep-
resented as ternary relations; each of them stores in
the first and second column all the combinations of
nodes of the disconnection set, and in the third col-
umn the distances between them. Each subquery may



be computed by running the Dijkstra algorithm on a
separate processor; a version of the algorithm which
uses extended relational algebra is discussed in [7].

Once the three subqueries are processed, a post-
processing phase is needed to choose the shortest path
by taking into consideration the various alternative
ways of combining the three parts. Let:

e P1 denotes a binary relation storing the result
to the first subquery; the first column stores the
nodes of DSHj, and the second column stores the
distance from v; to them.

P2 denotes a ternary relation storing the result
to the second subquery; the first column stores
nodes of DSH), the second column stores nodes
of DSHy, and the third column stores the dis-
tance between them.

e P3 denotes a binary relation storing the result to
the third subquery; the first column of P1 stores
the nodes of DSH; and the second column stores
the distance from them to v;.

Then, in the following relational expression, each
tuple corresponds to a different path traversing dis-
connection sets in all possible ways:

T= ((Pl N1=1 P2) N4=1 P3)

The following tuple function can be evaluated, adding
column 8 to T: 7.8 := T.2 + T.5 + T.7. The short-
est path corresponds to the minimum value of column
T.8. Note that all these operations are here described
relationally, but are really performed in main memory
using arrays as data structures.

5.2 Adjacent fragments

If fragments Gj, and Gy are adjacent, we also need
to consider paths directly connecting them; these are
divided into two independent parts:

e From v; to DSpy;
¢ From DSy to v;.

The first part is computed by using Gy, and the com-
plementary information associated to DSux; the sec-
ond part requires only G¢. (The complementary in-
formation can again be used in the computation on
either fragment.) Each subquery can be performed
independently, hence two processors may be used.
Postprocessing is needed to evaluate the best direct
shortest path. In order to do so, we denote P1 as the

136

binary relation storing the results of the first subquery
and P2 as the binary relation storing the results of
the second subquery. P1 and P2 are now processed in
a similar way as discussed in the previous subsection.
Finally, the best direct shortest path is compared with
the best shortest path computed by using the high
speed fragment, as discussed in Section 5.2.1.

6 Update Management

Unfortunately, hierarchical fragmentation is very
sensitive to updates, and therefore is recommended
for base relations which are rather stable. An update
is localized within a fragment if the following two con-
ditions hold:

1. The tuple which is either added or deleted or up-
dated connects two nodes which are internal to
the same fragment G;.

2. This change does not alter the shortest path be-
tween any pair of “border nodes” of the fragment,
i.e., nodes included in a disconnection set.

Localized updates can be performed on each frag-
ment, without need of recomputing hierarchical frag-
mentation. Updates which are not localized, however,
cannot be dealt with easily?. For this reason, we as-
sume that nonlocalized updates should be collected
over rather long periods of time, and then applied all
together; data distribution should then be re-designed.
This update practice is typically used in transporta-
tion systems.

7 Conclusions and further research

This paper has presented an approach to the paral-
lel evaluation of shortest path queries on a large base
relation. We have discussed the properties that make
hierarchical evaluation possible and attractive; we also
have discussed how to develop an initial fragmentation
that is suited to hierarchical evaluation, how to pro-
cess queries in parallel, and how to deal with updates.
In this paper we have concentrated on the shortest
path problem, but our approach can easily be gener-
alized to other problems—such as graph reachability
or bill-of-material—by using slightly different comple-
mentary information (see [8]).

2The apparently casy solution of adding new tuples to
the high-speed fragment is unfortunately incorrect; finding a
counter-example is an easy exercise, left to the reader.



In the implementation of hierarchical fragmenta-
tion, several other optimizations are possible. In par-
ticular, the high-speed fragment can be stored in main
memory, and shortest paths of the high-speed frag-
ments can be pre-computed and permanently stored.

The hierarchical approach can be generalized to
an arbitrary large number of levels. For instance,
the high-speed fragment can be further partitioned
into one super-high-speed fragment and several high-
speed fragments; this is particularly useful if the high-
speed fragment is relatively large. Such generaliza-
tions correspond to real-life heterogeneous transport
systems (for instance, local transportations, trains,
and airplanes). In [1]—where distributed computa-
tion was not considered, but similar techniques were
used for pruning the search space—such a generaliza-
tion proved useful for two levels, and assuming that
the top levels are small compared to the lower level
fragments it would also be useful for multi-level frag-
mentation. This is exactly what we envision to be the
case when we fragment the high-speed network using
our fragmentation algorithm.

References

[1] AcrawaL, R. aND JacapisH, H.V. “Efficient
search in very large databases,” in Proc. 14th Int.
Conf. on Very Large Data Bases, Los Angeles,
1988, pp. 407-418.

[2

—

BanciLaoN, F., Maier, D., Sacw, Y.,
AND UrLLMaN, J.D. “Magic sets and other
strange ways to implement logic programs,” in
Proc. ACM SIGMOD-SIGACT Symp. on Prin-
ciples of Database Systems, Cambridge, USA,
March 1986, pp. 1-15.

Cacace, F., Ceri S., anp HouTsma,
M.A.W. “An overview of parallel strategies for
transitive closure on algebraic machines,” in
Proc. Workshop on Parallel Database Systems,
Noordwijk, the Netherlands, Sept. 1990; also ap-
peared as Lecture Notes in Computer Science No.
503, Springer-Verlag, pp. 44-62.

CerI, S., GorTLOoB, G., aND TaNca, L.
Logic programming and databases, Springer-
Verlag 1990.

CHEINEY, J.P. AND DE MANDREVILLE, C. “A
parallel strategy for transitive closure using dou-
ble hash-based clustering,” in Proc. 16th Int.

137

(10]

[11]

[12

(13]

(14]

[15]

Conf. on Very Large Data Bases, Brisbane, Aus-
tralia, Aug. 1990, pp. 347-358.

GANGULY S., SILBERSCHATZ A., AND TSUR, S.
“A framework for the parallel processing of Dat-
alog queries,” in Proc. ACM-Sigmod Conference,
Atlantic City, USA, May 1990.

Houtsma, M.A.W., Apers, P.M.G., AND
CEgl, S. “Distributed transitive closure compu-
tations: the disconnection set approach,” in Proc.
16th Int. Conf. on Very Large Data Bases, Bris-
bane, Australia, Aug. 1990, pp. 335-346.

HouTsMa, M.A.W., ApPERs, P.M.G., AND
CERI, S. “Complex transitive closure queries on
a fragmented graph,” in Proc. 3rd Int. Conf on
Database Theory (ICDT’90), Lecture Notes in
Computer Science, Springer-Verlag, Dec. 1990.

HouTsMa, M.A.W., CacacEg, F., aND CERI,
S. “Parallel Hierarchical Evaluation of Transitive
Closure Queries,” Technical Report 924, Univer-
sity of Twente, the Netherlands, Dec. 1990.

HuLiN, G. “Parallel processing of recursive
queries in distributed architectures” in Proc. 15th
Int. Conf, on Very Large Data Bases, Amsterdam,
the Netherlands, 1989, pp. 87-96.

IoaNNIDIS, Y.E. “On the computation of the
transitive closure of relational operators,” in
Proc. 12th Int. Conf. on Very Large Data Bases,
Kyoto, Japan, Aug. 1986, pp. 403-411.

KeRsTEN, M.L., ApErs, P.M.G., HouTsMma,
M.A.W., vaNn Kvwuk, H.J.A.,, AND VAN DE
WeG, R.L.W. “A distributed, main-memory
database machine,” in Proc. of the 5th Int. Work-
shop on Database Machines, Karuizawa, Japan,
Oct. 5-8, 1987.

TANDEM DaTaBAsE GRroUP “NonStop SQL,
a distributed, high-performance, high-availabil-
ity implementation of SQL,” Tandem report,
April 1977.

VALDURIEZ, P. AND KHOSHAFIAN, S. “Paral-
lel Evaluation of the Transitive Closure of a
Database Relation,” in Int. Journal of Parallel
Programming, 17:1, Feb. 1988.

WoLFsoN, O. “Sharing the Load of Logic-
program Evaluation,” in Proc. Int. Symp. on
Databases in Parallel and Distributed Systems,
Austin, Texas, Dec. 5-7, 1988, pp. 46-55.



