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Abstract

Graph partitioning is often used for load balancing in
parallel computing, but it is known that hypergraph parti-
tioning has several advantages. First, hypergraphs more
accurately model communication volume, and second, they
are more expressive and can better represent nonsymmetric
problems. Hypergraph partitioning is particularly suited to
parallel sparse matrix-vector multiplication, a common ker-
nel in scientific computing. We present a parallel software
package for hypergraph (and sparse matrix) partitioning
developed at Sandia National Labs. The algorithm is a vari-
ation on multilevel partitioning. Our parallel implementa-
tion is novel in that it uses a two-dimensional data distri-
bution among processors. We present empirical results that
show our parallel implementation achieves good speedup
on several large problems (up to 33 million nonzeros) with
up to 64 processors on a Linux cluster.

1 Introduction

Partitioning and load balancing are important issues in
parallel scientific computing. The goal is to distribute data

∗Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under Contract DE-
AC04-94AL85000.

†This author’s work was mainly performed while visiting the Computer
Science Research Institute at Sandia.

‡Supported by Sandia contract PO283793.

(and work) evenly among processors in a way that reduces
communication cost and achieves maximal performance.
Graph partitioning has long served as a useful model for
load balancing in parallel computing. Data are represented
as vertices in a graph, and edges represent dependencies be-
tween data. Graph partitioning attempts to minimize the
number of cross-edges in the graph between processors,
as these result in application communication. It has been
shown that for many problems, this cut-edge metric is not an
accurate representation of communication cost or volume.
On the other hand, hypergraph models accurately represent
communication volume [3]. A hypergraph H = (V,E)
consists of a vertex set V and a set of hyperedges E . (Hy-
peredges are also called nets.) Each hyperedge is a subset
of V . In parallel computing, communication is required for
a hyperedge whose vertices are in two or more processors.
Catalyurek and Aykanat [3] proposed a hypergraph model
for sparse matrix-vector multiplication, and showed that the
hyperedge cut metric corresponds exactly to the communi-
cation volume. An important advantage of the hypergraph
model is that it can easily represent nonsymmetric and rect-
angular matrices. For more details on different partitioning
models for parallel computing, see [8, 9].
Graph partitioning is frequently used for parallel mesh-

based computations such as finite element calculations.
Since these applications are typically sparse and often reg-
ular, the graph model works quite well. In fact, simple ge-
ometric partitioning methods may work almost as well as
graph partitioning. In this paper, however, we focus on
applications that are non-traditional in some way. Specif-
ically, the sparse matrix representing the problem could be

1-4244-0054-6/06/$20.00  ©2006 IEEE



nonsymmetric, rectangular, semi-dense, or highly irregular.
We demonstrate the utility of hypergraph partitioning on
test data from a variety of areas, including Markov chains,
polymer self-assembly, DNA electrophoresis, electrical cir-
cuit simulation, sensor placement, and information retrieval
(web search).
An important kernel in many scientific computations is

a sparse matrix-vector product. The parallel issue is how
to distribute the sparse matrix between the processors. The
most common approach is to split the matrix in one dimen-
sion (by either rows or columns), assigning approximately
even chunks (of rows/columns) to processors. Both varia-
tions naturally lead to hypergraph partitioning. In the row-
net model, each column corresponds to a vertex and each
row corresponds to a hyperedge. For row partitioning, an
analogous column-net model can be used. Although simply
using hypergraph partitioning gives an improvement over
graph partitioning (25-35% reduction is typical [3]), even
lower communication volumes can be achieved by going
beyond this 1D partitioning. Vastenhouw and Bisseling re-
cently suggested a recursive two-dimensional data distribu-
tion known as Mondriaan [17]. Catalyurek and Aykanat
have proposed a fine-grain partitioning model [4] where
each nonzero in a matrix is independently assigned to a pro-
cessor. Both these methods rely on hypergraph partitioning
as an underlying technique. Software for hypergraph parti-
tioning therefore becomes important.
Several software packages for hypergraph partitioning

exist: e.g., PaToH [5], hMETIS [11], Mondriaan [17] (for
sparse matrices), and MLpart [2] (for circuits). However,
all these packages run in serial. For large-scale parallel ap-
plications, partitioning must be performed in parallel. In
the following, we describe the design and structure of a par-
allel hypergraph partitioner we have developed in Sandia’s
Zoltan toolkit [6, 18], a library of parallel partitioning and
load-balancing methods. Our parallel implementation uses
a two-dimensional data distribution to reduce communica-
tion within the partitioning algorithm. We compare the ef-
fectiveness and performance of our parallel hypergraph par-
titioner with parallel graph partitioners, serial hypergraph
partitioners, and a parallel hypergraph partitioner Parkway
developed by Trifunovic and Knottenbelt [16] largely con-
currently with our work.

2 Preliminaries

The (unweighted) hypergraph partitioning problem is de-
fined as follows: given a hypergraph H = (V,E) and an
integer k , partition the vertex set V into k disjoint subsets
Vj , j = 0, . . . , k−1 , of approximately equal sizes such that
a cut metric is minimized. We refer to P = {V0, . . . , Vk−1}
as a partitioning and the subsets as partitions. A hyperedge
is cut if it contains at least two vertices belonging to differ-

a11 a12 0 0 a15
a21 a22 0 0 0

a31 0 0 a34 0

0 0 a43 a44 a45

c1 c2

c5

c3c4

r1
r3

r2

r4

Figure 1. The columns in the sparse matrix A
(left) correspond to the vertices (represented
as circles) in the hypergraph H (right). The
rows in A correspond to hyperedges in H
(represented as squares).

ent partitions. We seek to minimize the cut metric

cuts(H,P ) =
|E|−1∑

i=0

(λi(H,P ) − 1), (1)

where λi(H,P ) ≤ k is the number of partitions spanned
by hyperedge i in the partitioning P . This metric is known
as the (k − 1)-cut; it is important because it accurately re-
flects communication cost in parallel computing and, in par-
ticular, sparse matrix-vector multiplication. When k = 2 ,
cuts(H,P ) is simply the number of hyperedges cut.
We allow both vertices and hyperedges to have (scalar)

weights, since this is more general and important in some
applications. In the weighted partitioning problem, the ob-
jective is to minimize the weighted cut subject to the parti-
tions having an approximately equal sum of vertex weights.
A hypergraph can also be viewed as a sparse matrix. We

use the row-net model, where each row in the matrix cor-
responds to a hyperedge and each column corresponds to
a vertex. Let A be the sparse matrix corresponding to a
hypergraph H . Then aij = 1 if vertex j belongs to hy-
peredge i , and zero otherwise. An example of the row-net
model is given in Figure 1.

2.1 Multilevel partitioning methods

Our algorithm follows the well-known multilevel par-
titioning approach, which has proved successful both for
graph partitioning [10, 13] and hypergraph partitioning [3,
11]. The idea is to approximate the hypergraph by a se-
quence of smaller hypergraphs that reflect the original hy-
pergraph. In coarsening, we construct the smaller hyper-
graphs. In coarse partitioning, we partition the smallest hy-
pergraph. In refinement, we project a coarse partitioning to
a finer (larger) hypergraph and improve the partitioning us-
ing a local optimization (refinement) method. We describe
our parallel implementation of this multilevel “V-cycle” in
the next section.
There are two possible approaches to achieve a k -way

partitioning. The first is called direct k -way partitioning,



where the multilevel V-cycle is applied once to directly split
the hypergraph into k parts. The other is recursive bisec-
tion, where the V-cycle partitions the hypergraph into two
parts; such bisection is repeated recursively until the desired
number of partitions k is reached. By allowing the resulting
hypergraphs in each bisection step to have unequal sizes, re-
cursive bisection can support arbitrary k ; it is not limited to
k being a power of two.
Both approaches are viable; PaToH [5] uses recursive bi-

section while hMETIS [11] uses direct k -way. Our imple-
mentation is based on recursive bisection for arbitrary k .
Note that k is a user parameter that may differ from the
number of processors p . However, in dynamic load balanc-
ing, typically k = p .

3 Parallel Hypergraph Partitioning Algo-
rithm

3.1 Data distribution

A major decision for our parallel partitioner is how to
distribute the data (the hypergraph or matrix) between pro-
cessors. Perhaps the most natural options are to divide
either the vertices or the hyperedges between processors.
These options correspond to distributing the matrix along
columns or rows, respectively. We have opted for a third
option, namely to divide the matrix along both rows and
columns in a way that produces a Cartesian distribution of
the matrix. We call this a two-dimensional (2D) layout since
each processor is assigned a rectangular submatrix. Con-
ceptually, we think of the processors also as being organized
in a 2D fashion, and we will refer to rows and columns of
processors. Note that this is only a logical arrangement; the
physical interprocessor network may be different.
The main advantage of the 2D layout is that most com-

munication can be done either along rows (horizontally) or
along columns (vertically). Suppose we have p = px × py

processors, where px and py are the number of processors
in a row and a column, respectively. Then only px or py

processors need to participate in collective communication
operations. Typically px = O(

√
p) . Such 2D data distribu-

tions have been used successfully for several matrix com-
putations [1, Ch.2,Ch.4].
Another way to view our data layout is that each proces-

sor knows only partial information about some vertices and
some hyperedges. In contrast to Parkway [16] which uses
1D distributions for both vertices and hyperedges, we do
not use any type of ghosting, thereby significantly reducing
the memory required.
Note that a 2D parallel data distribution was proposed

for graph partitioning in [12]. In that case, the vertices were
split among

√
p processors while the adjacency matrix was

split among all p processors. It was observed that speedup

was limited to
√

p because the “diagonal processors” be-
came a bottleneck, so those authors later adopted a 1D dis-
tribution. We believe a 2D distribution is more suitable for
hypergraph partitioning because the most time-consuming
parts of the algorithm are distributed among all p proces-
sors. There are only a few sub-tasks that are solely vertex-
based or solely edge-based and parallel speedup of some of
these tasks may be limited to px and py , respectively; this
should not become a bottleneck for the overall algorithm.

3.2 Coarsening

The coarsening phase approximates the original hyper-
graph via a succession of smaller hypergraphs. When the
smallest hypergraph has fewer vertices than some thresh-
old (e.g., 100), the coarsening stops. Several methods have
been proposed for constructing coarser representations of
graphs and hypergraphs. We consider only methods based
on merging pairs of vertices. The issue then becomes how
to select vertices to merge together. Intuitively, we wish to
merge vertices that are similar and therefore more likely to
be in the same partition in a good partitioning. Catalyurek
and Aykanat [3] suggested a heavy-connectivity matching,
which measures a similarity metric between pairs of ver-
tices. Their preferred similarity metric, which was also
adopted by hMETIS [11] and Mondriaan [17], is known
as the inner product. The inner product between two ver-
tices is defined as the Euclidean inner product between their
binary hyperedge incidence vectors, that is, the number of
hyperedges they have in common. (Edge weights can be
incorporated in a straight-forward way.) Our code also has
the option to compute the cosine similarity metric, which
is a scaled version of the inner product commonly used in
information retrieval.

3.2.1 Matching

Given the inner product values, the problem of finding
good pairs to merge can be modeled as a maximum-weight
matching problem, where the edge weights in the graph are
the inner products between vertices from the hypergraph.
Previous work indicates that the matching problem does not
need to be solved optimally, so quick heuristics are com-
monly used. We use variations of the greedy strategy (also
known as first-choice).
The sequential greedy algorithm works as follows. Pick

a (random) unmatched vertex v . For each unmatched
neighbor vertex u , compute the inner product < v, u > .
Select the vertex with the highest non-zero inner product
value and match it with v . Repeat until all vertices have
been considered. Care must be taken to implement this ef-
ficiently; see Algorithm 1.
In parallel, this simple algorithm becomes much more

complicated. Each processor knows about only a subset of



Algorithm 1 Serial inner-product matching
1: procedure SERIAL-IPM(H = (V,E))
2: initialize ip[v ] ← 0 for v ∈ V
3: for all unmatched v ∈ V do

� Compute all inner products with v
4: for e ∈ E such that v ∈ e do
5: for all unmatched u ∈ e , u �= v do
6: ip[u ] ← ip[u ] + 1
7: w ← argmax(ip)
8: for e ∈ E such that v ∈ e do
9: for all unmatched u ∈ e do

� Reset all inner product values to zero
10: ip[u ] ← 0
11: match(v ,w ) � Match v with best candidate w

the vertices and the hyperedges. Computing the inner prod-
ucts requires communication. If we consider the hypergraph
as a sparse matrix A , we essentially need to compute the
matrix product AT A . We use the sparsity of A to compute
only entries of AT A that may be nonzero. Since we use a
greedy strategy, we actually compute only a subset of the
nonzero entries in AT A .
Even if A is typically very sparse, AT A may be fairly

dense. Therefore we cannot compute all of AT A at once,
but instead compute parts of it in separate rounds. In each
round, each processor selects a (random) subset of its ver-
tices that we call candidates. These candidates are broad-
cast to all other processors in the processor row. This re-
quires horizontal communication in our 2D layout. Each
processor then computes the inner products between its lo-
cal vertices and the external candidates received. Note that
these inner products are only partial inner products; verti-
cal communication along processor columns is required to
obtain the full (global) inner products. One could let a sin-
gle processor within a column accumulate these full inner
products, but this processor may run out of memory. So to
improve load balance, we accumulate inner products in a
distributed way, where each processor is responsible for a
subset of the vertices.
At this point, the potential matches in a processor col-

umn are sent to the master row of processors (row 0). The
master row first greedily decides the best local vertex for
each candidate. These local vertices are then locked, mean-
ing they can match only to the desired candidate (in this
round). This locking prevents conflicts between candidates,
which could otherwise occur when the same local vertex is
the best match for several candidates. Horizontal commu-
nication along the master row is used to find the best global
match for each candidate. Due to our locking scheme, the
desired vertex for each match is guaranteed to be available
so no conflicts arise between vertices. The full algorithm is
summarized in Algorithm 2.

Observe that the full inner-product matching is com-
putationally intensive and requires several communication
phases along both processor rows and columns. Empiri-
cally, we observed that the matching usually takes more
time than the other parts of the algorithm. We are there-
fore currently exploring faster, approximate matching meth-
ods. We have implemented one such alternative matching
method where the matching is limited to pairs of vertices
within the same processor column.1 This way, no horizon-
tal communication is required; only vertical communication
to sum the inner products is needed. Communication cost
is reduced, but the matching quality is often worse.

3.2.2 Contraction

After a matching (pairing of vertices) has been computed,
we build the coarser hypergraph by merging matched ver-
tices. Matched vertices in the finer hypergraph become
a single vertex in the coarser hypergraph, with its vertex
weight equal to the sum of the fine vertices’ weights. The
new coarse vertex is a member of each hyperedge that con-
tained at least one of its fine vertices. This merging reduces
the number of vertices by the number of matches. To fur-
ther reduce both memory requirements and run time, we
take two steps to reduce the number of hyperedges. First,
we discard all hyperedges of size one, as they cannot con-
tribute to the cut metric (1). Second, we collapse identical
hyperedges into a single hyperedge. Two hyperedges are
identical if they contain the same vertices. Such a compar-
ison can be done efficiently using a hash function based on
the vertices in a hyperedge; edges with different hash val-
ues are not identical. Since our hyperedges are distributed,
computing the hash function requires horizontal communi-
cation. For hyperedges with identical hash values, we com-
pare their vertex lists to determine whether the hyperedges
are truly identical; this step requires vertical communica-
tion. When hyperedges are collapsed, the new edge gets an
edge weight equal to the sum of all the edges it represents.
In this way, the cut metric is preserved, so the coarse prob-
lem is equivalent to the case with no edge removal.

3.3 Coarse Partitioning

The coarsening stops when the hypergraph is small.
Since the coarse hypergraph is small, we replicate it on ev-
ery processor. Each processor runs a randomized greedy
algorithm to compute a different partitioning into k parti-
tions. (For the recursive bisection algorithm, we use k =
2 .) We then evaluate the cut metric (1) on each processor
and pick the globally best partitioning.

1Due to space limitations, we do not present results for this method
here.



Algorithm 2 Parallel inner-product matching
1: procedure PARALLEL-IPM(H = (V,E)) � H is the local part of the hypergraph
2: rounds ← 8 × px � px is the #processors in a processor row
3: ncand ← |V |/(2 × rounds ) � each match pairs 2 vertices
4: for k ← 1 to rounds do
5: C ′ ← ncand unmatched candidate vertices in my processor column
6: Broadcast C ′ and their columns (hyperedges) to all processors in my processor row
7: C ← all received candidates
8: for v ∈ C do � Compute all local inner products with v
9: initialize ip[u ,v ] ← 0 for u ∈ V
10: for e ∈ E such that v ∈ e do
11: for all unmatched u ∈ e , u /∈ C ′ do
12: ip[u ,v ] ← ip[u ,v ] + 1 � ip[u ,v ] is a local inner product
13: for v ∈ C do
14: For all ip[u ,v ]> 0 , send ip[u ,v ] to row (v mod py )
15: Receive partial inner products, ip[u ,v ].
16: for v ∈ C , where v mod py = my processor row do
17: For all received ip[u ,v ], gip[u ,v ] ← gip[u ,v ] + ip[u ,v ] � Sum received values to global inner product gip
18: Send gip[∗ ,v ] to master row (row 0)
19: if my processor row = 0 then � master row
20: for each candidate v ∈ C do
21: Select unmatched local vertex w with highest gip[v ,w ]
22: Store (v, w ,gip[v, w ]) in array local best
23: Compute global best from local best by AllReduce communication along master row
24: for each local candidate v ∈ C ′ do
25: if (v, w) ∈ global best then
26: Match v and w .

3.4 Refinement

The refinement phase takes a partition assignment pro-
jected from a coarser hypergraph and improves it using a
local optimization method. The most successful refinement
methods are variations of Kernighan–Lin (KL) [15] and
Fiduccia–Mattheyses (FM) [7]. These are iterative meth-
ods that move (or swap) vertices from one partition to an-
other based on gain values, that is, how much the cut weight
decreases by the move. While greedy algorithms are of-
ten preferred in parallel because they are simpler and faster,
they generally do not produce partition quality as good as
KL/FM. Thus, we have adopted an FM-like approach.

We have implemented a parallel two-way (k = 2) re-
finement heuristic based on FM. The algorithm performs
multiple pass-pairs until either a predefined pass limit is
reached or no further improvement is achieved in the last
pass-pair. Each pass-pair consists of two consecutive passes
where, on each pass, vertices from alternating partitions are
moved to the other partition. Doing one-directional moves
on each pass guarantees that none of the concurrent moves
adversely affects the gain of vertices in other processors. In
other words, if a set of vertices is moved to the other parti-
tion, the actual reduction in the cut metric (1) is at least the

sum of the gains of the vertices moved.

Our local refinement is performed with the goal of im-
proving balance and cuts within processor columns and,
thus, in the global partitioning. At the beginning of each
pass, even though the partitioning satisfies the global bal-
ance constraints, local balances on each processor column
might violate the balance constraint. Based on this initial
distribution, we adjust the move-feasibility constraints on
each processor to guarantee that no moves violate the global
balance constraint. Each processor contributes to the com-
putation of vertex gains at the beginning of a pass. Within
each processor column, the processor with the largest num-
ber of nonzeros is selected as the vertex mover. The vertex
mover tries to move all vertices from the source partition to
the destination partition without violating the balance con-
straint. After moving each vertex, the vertex mover updates
the gain values of the adjacent vertices using only its lo-
cal data. Although this scheme deviates from the original
FM algorithm, it allows each vertex mover to work concur-
rently without any synchronization. By selecting the pro-
cessor with the largest number of nonzeros, we make more
informed vertex moves.

We have observed that our parallel method produces
quite good partitionings, but it is possible that its effective-



ness will decrease for very large numbers of processors due
to its local perspective. In future versions, we will explore
other parallel refinement schemes.

3.5 Recursive Bisection Data Splitting

After a multilevel V-cycle computes a bipartitioning of
the hypergraph, we split the hypergraph into two subsets
(one for each partition), and apply the multilevel algorithm
recursively to each subset. There are two options for man-
aging data during parallel recursive bisection. One option
is to leave the data in place, and let all processors first work
on one subset of the hypergraph, then the other subset. The
advantage of this approach is that no data movement is re-
quired.
An alternative approach is to split the processors into

two subsets, and move the hypergraph corresponding to
each subset (after the first bisection step) onto separate sets
of processors. This allows each half of the processors to
work on independent subproblems simultaneously. There is
a cost associated with remapping (moving) the hypergraph
data, but the communication cost within the partitioning is
reduced because the communication becomes more local.
Moreover, each processor in the subset gets a larger per-
centage of the split hypergraph and, thus, a more complete
view of it, resulting in higher quality. Figure 2 illustrates
processor and hypergraph splitting during recursive bisec-
tion with p = 6 . In this example, partitioning of the hyper-
graph is illustrated with color-coded vertices (circles) and
hyperedges (squares). Red and blue circles represent ver-
tices assigned to partitions 0 and 1, respectively. Yellow
and magenta squares represent un-cut and cut hyperedges.
During splitting, vertices of partition 0 are moved to four
processors (P11, P12, P21 and P22 ); vertices of partition 1
are moved to the remaining 2 processors (P31, P32 ). Un-
cut hyperedges are preserved. But to accurately measure
cut size in further bisections, each cut hyperedge is split
into two hyperedges: one connecting vertices in partition 0,
and one connecting vertices in partition 1. If this process
yields hyperedges of size one, they are discarded, as they
cannot contribute to the cut metric in further bisections.
We have tested both strategies in our code. Splitting the

processors both reduced execution time and improved qual-
ity. Thus, we made splitting the default option and used it
in all experiments reported here.

4 Experimental Results

Our parallel hypergraph code is part of the Zoltan [6, 18]
toolkit for load balancing and parallel data management,
which is open-source and freely available. It has been im-
plemented in ANSI C and uses MPI for communication.
Only collective communication calls are implemented in

MPI directly; unstructured (point-to-point) communication
is performed in BSP-like [1] supersteps via Zoltan’s com-
munication layer.
We ran our tests on a Linux cluster at Sandia that has

dual-processor Intel Xeon (3.0 GHz) nodes. Its interconnect
network is Myrinet-2000.

4.1 Test data and software

We collected a set of test problems from a variety of ap-
plications. A summary of the test hypergraphs and matri-
ces is given in Table 1. The matrices 2DLipidFMat and
polyDFT are from the Tramonto density functional theory
code and represent self-assembly of lipid bilayers and poly-
mers, respectively; cage14 is a DNA electrophoresis model;
d256 is a random matrix in which each vertex has degree
256; ibm18 is the largest test problem in the ISPD98 cir-
cuit benchmark suite; roads2 is a mixed-integer linear pro-
gramming matrix from sensor placement; StanfordBerke-
ley is a matrix representing web links between Stanford’s
and Berkeley’s web sites; StanfordBerkeleyT is the trans-
pose of the StanfordBerkeley matrix; tbdlinux is a term-by-
document matrix from a Linux manual; voting250 repre-
sents a Markov transition matrix from a model of voters
and polling stations; and the xyce680 problem represents
an ASIC model. The xyce680 problem comes in two varia-
tions: a “base” version and a “stripped” version where dense
rows and columns in the matrix have been removed. For
all experiments, we partitioned matrix columns with unit
weights per column.
The partitioners we used were ParMETIS 3.1 [14] (par-

allel graph partitioner), PaToH 3.0 [5] (serial hypergraph
partitioner), Parkway 2.0 [16] (parallel hypergraph parti-
tioner), and our own parallel hypergraph partitioner imple-
mented in Zoltan. Although Zoltan has many different par-
titioners, we use the name Zoltan in this paper to denote
its parallel hypergraph partitioner. Parkway can use PaToH
or hMETIS as its coarse partitioner; we used PaToH with
Parkway as it was faster and gave cut quality at least as
good as hMETIS. In all experiments, we requested a load
balance tolerance of 10%; that is, loadmax /loadavg ≤ 1.1 .
All partitioners managed to satisfy this condition, so we do
not report the actual load imbalances. All data is based on
the average of 25 runs. Parkway results for some problems
are based on fewer than 25 iterations due to their long run
times.
Because graph partitioners operate on undirected graphs,

we ran ParMETIS only on symmetric problems. Non-
symmetric matrices can be symmetrized into (undirected)
graphs, but it has been shown [3] that graph partitioning
gives a worse approximation to communication volume for
nonsymmetric than symmetric problems, so the hypergraph
model is clearly preferable in such cases.



P3,2P2,2P1,2

P3,1P2,1P1,1

(a) Before split

P3,2P2,2P1,2

P3,1P2,1P1,1

(b) After split

Figure 2. An illustration of splitting for p=k=6. For the sake of illustration, assume that the first
bisection has a ratio of 4 to 2, and processors are also split into two by the same ratio. Circles
represent vertices (columns), and squares represent hyperedges (rows).

Name |V | (cols) |E| (rows) pins (nonzeros) Sym. Application Area
2DLipidFMat 4,368 4,368 5,592,344 Yes Lipid bilayer self-assembly
cage14 1,505,785 1,505,785 27,130,349 Yes DNA electrophoresis
d256 100,000 100,000 25,600,000 No Random matrix
ibm18 210,613 201,920 819,697 No VLSI design
polyDFT 46,176 46,176 3,690,048 No Polymer self-assembly
roads2 1,284,498 1,683,554 7,713,905 No Sensor placement
StanfordBerkeley 683,446 683,446 7,583,376 No Web-links
StanfordBerkeleyT 683,446 683,446 7,583,376 No Transpose of StanfordBerkeley
tbdlinux 112,757 20,167 2,157,675 No Information retrieval
voting250 5,218,300 5,218,300 32,986,597 No Markov process
Xyce680b 682,862 682,862 3,871,773 Yes VLSI design
Xyce680s 682,712 682,712 2,329,176 Yes VLSI design

Table 1. Test hypergraphs and matrices.

4.2 Comparison of partitioners

First, we consider the case where we fix the number of
partitions k = 64 and the number of processors p = 1 and
p = 64 . We show in Tables 2 and 3 the cut metric (1) and
partitioning times for each test matrix. Results marked with
“-” indicate unsuccessful runs, typically due to insufficient
memory. For p = 1 , we compare Zoltan’s hypergraph par-
titioner with PaToH and METIS. METIS was applied only
to symmetric test matrices. With PaToH, the processor had
insufficient memory to partition the cage14, voting250, and
d256 matrices. Thus, we exclude voting250 and d256 from
Table 2, as Zoltan was the only method to partition them.
For p = 64 , we compare Zoltan’s hypergraph partitioner
with Parkway and ParMETIS. ParMETIS was applied only
to symmetric test matrices. Parkway ran out of memory
for the d256, StanfordBerkeley, and Xyce680b matrices;
we exclude d256 from Table 3 because Zoltan was the only
method that partitioned it.
As expected, hypergraph partitioners generally give

higher quality (i.e., lower cut metric (1)) than graph parti-
tioners. This higher quality translates directly into reduced

communication volume for operations such as matrix-
vector multiplication. Furthermore, we see that Zoltan’s
partition quality is competitive with the serial hypergraph
partitioner PaToH. Parkway sometimes produces fewer
cuts than Zoltan. However, Zoltan runs are typically much
faster than Parkway.
The Xyce680 problems display a dramatic difference be-

tween the base and the stripped version. Zoltan and PaToH
have implemented special handling of dense hyperedges;
we applied this same handling to Parkway’s input as well.
It is much more difficult for a graph partitioner to detect
such structure, and we see that ParMETIS ran slowly and
showed fluctuating quality for the base version. It ran more
quickly on the stripped version.

4.3 Scalability

We examine the scalability of Zoltan, Parkway, and
ParMETIS on a subset of our test problems. We select
cage14, 2DLipidFMat and Xyce680s, as their symmetry al-
lows us to apply ParMETIS to them. Additionally, these
test problems represent well the range of performance we



Hypergraph cut metric Partitioning time
normalized w.r.t. Zoltan in seconds

Matrix Norm. Value METIS PaToH Zoltan METIS PaToH Zoltan
2DLipidFMat 107,736 1.82 1.29 1.00 7 17 109
cage14 1,550,618 1.15 - 1.00 26 - 829
ibm18 25,787 1.01 1.00 14 16
polyDFT 82,420 0.96 1.00 34 36
roads2 5,681 0.65 1.00 30 66
StanfordBerkeley 25,676 0.89 1.00 33 2489
StanfordBerkeleyT 158,064 1.20 1.00 84 45
tbdlinux 232,895 1.00 1.00 29 73
Xyce680b 726,663 1.23 0.94 1.00 913 1650 36
Xyce680s 25,521 2.12 0.83 1.00 17 12 29

Table 2. Comparison of Zoltan hypergraph partitioning with METIS graph partitioning and PaToH
hypergraph partitioning with k = 64 on one processor.

Hypergraph cut metric Partitioning time
normalized w.r.t. Zoltan p = 1 in seconds

Matrix Norm. Value ParMETIS Parkway Zoltan ParMETIS Parkway Zoltan
2DLipidFMat 107,736 1.90 1.08 1.05 5 466 4
cage14 1,550,618 1.26 0.97 1.02 2 2899 79
ibm18 25,787 1.12 1.08 55 5
polyDFT 82,420 0.90 1.03 93 3
roads2 5,681 0.68 1.13 17 19
StanfordBerkeley 25,676 - 0.86 - 805
StanfordBerkeleyT 158,064 1.02 1.36 144 16
tbdlinux 232,895 1.05 1.07 565 73
voting250 511,609 1.03 1.04 266 117
Xyce680b 726,663 1.15 - 0.99 1027 - 13
Xyce680s 25,521 2.20 0.89 1.07 13 10 11

Table 3. Comparison of Zoltan hypergraph partitioning with ParMETIS graph partitioning and
Parkway hypergraph partitioning with k = 64 on 64 processors.

observe for the entire test suite.

For each test problem, we set k = 64 , and we vary
p from p = 1 to 64. We partition each matrix with
Zoltan, Parkway, and ParMETIS. (Parkway does not run
with p = 1 , so Parkway results are shown only for p > 1 .)
In Figure 3, we show the cut metric (1) normalized with re-
spect to the cut metric for Zoltan with p = 1 . We observe
that Zoltan’s partition quality remains stable with increasing
p .

In Figure 3, we also show the execution times for each
partitioner. Again, we see that while Zoltan produces
decompositions with lower communication volume than
ParMETIS, it is typically slower than ParMETIS. Parkway
sometimes obtains even fewer cuts but takes a longer time.
The run time of Zoltan generally decreases with p but scala-
bility is not perfect. Its scalability is comparable to or better
than that of ParMETIS and Parkway, respectively.

4.4 2D processor configuration

We test the effectiveness of Zoltan’s 2D processor con-
figuration with experiments using various 1D and 2D pro-
cessor configurations. By default, Zoltan’s 2D processor
layout is as square as possible; that is, px ≈ py . A square
layout may not be optimal for each phase of the algorithm
(e.g., matching, coarsening, refinement), as each phase has
different communication requirements in the x and y di-
mensions. Our approach assumes that distributions with
px ≈ py work well on average.
Choosing p = 64 , we experimented with different val-

ues of px and py . We set k = 2 to ensure that the speci-
fied ratio could be maintained throughout the computation;
for k > 2 , the recursive bisection would require some vari-
ance in the processor ratios. Results for several test matrices
and configurations of px × py are shown in Figure 4. We
observe that rectangular configurations with px small but
greater than one generally worked best. Interestingly, we
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Figure 3. A comparison of partition quality (left) and execution time (right) for Zoltan, Parkway, and
ParMETIS with k = 64 on p = 1 to 64 processors.

observe that the “natural” strategy of distributing vertices
among processors and maintaining full connectivity infor-
mation for each vertex (py = 1) worked least well. This
strategy is typical in parallel graph partitioners. Distributing
hyperedges among processors while maintaining full vertex
information for each hyperedge (px = 1) was the better 1D
layout on most problems, but generally less efficient than a
2D approach.

5 Conclusions and Future Work

We have described the design of a parallel multilevel
hypergraph (or sparse matrix) partitioner that runs on
distributed-memory computers. We have shown that the
partition quality is similar to that of serial hypergraph par-
titioners (PaToH), and in most cases it runs much faster
than the recent similar code Parkway. Our code gives fairly
good parallel speedup without compromising partition qual-
ity on a Linux cluster with up to 64 processors. Our 2D data
distribution gives better performance than the standard 1D
layout.
As future work, we want to improve the parallel scala-

bility so that partitioning will be fast even on machines with
thousands of processors. In order to achieve that, we will
investigate faster matching and coarsening methods. We
do not necessarily need to do the complete inner product
matching (which requires a lot of communication); other
simpler (approximate) and faster variations are under de-
velopment.
Another potential source of improvement is better load

balancing within the partitioner. This is a chicken-and-egg
problem, since hypergraph partitioning is the best way to

compute a good data distribution! However, simpler heuris-
tics to balance the work may prove useful. Finally, we plan
to add new features to our partitioner, in particular, dynamic
repartitioning and multi-constraint partitioning.
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