
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Parallel I/O, Analysis, and Visualization of a Trillion Particle Simulation

Permalink
https://escholarship.org/uc/item/6vn2z5rd

Author
Byna, Surendra

Publication Date
2012-11-17

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vn2z5rd
https://escholarship.org
http://www.cdlib.org/

Parallel I/O, Analysis, and Visualization of a Trillion Particle
Simulation

Surendra Byna, Jerry Chou, Oliver Rübel, Prabhat, Homa Karimabadi,
William S. Daughton, Vadim Roytershteyn, E. Wes Bethel, Mark

Howison, Ke-Jou Hsu, Kuan-Wu Lin, Arie Shoshani, Andrew Uselton,
and Kesheng Wu

Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, CA 94720

DISCLAIMER

This document was prepared as an account of work spon-

sored by the United States Government. While this document

is believed to contain correct information, neither the United

States Government nor any agency thereof, nor the Regents

of the University of California, nor any of their employees,

makes any warranty, express or implied, or assumes any legal

responsibility for the accuracy, completeness, or usefulness

of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product,

process, or service by its trade name, trademark, manufacturer,

or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United

States Government or any agency thereof, or the Regents of the

University of California. The views and opinions of authors

expressed herein do not necessarily state or reflect those of

the United States Government or any agency thereof or the

Regents of the University of California.

Parallel I/O, Analysis, and Visualization of a

Trillion Particle Simulation

Surendra Byna∗, Jerry Chou†, Oliver Rübel∗, Prabhat∗, Homa Karimabadi‡, William S. Daughton§,

Vadim Roytershteyn‡, E. Wes Bethel∗, Mark Howison¶, Ke-Jou Hsu†, Kuan-Wu Lin†, Arie Shoshani∗,

Andrew Uselton∗, and Kesheng Wu∗

∗Lawrence Berkeley National Laboratory, USA. Email: {sbyna, oruebel, prabhat, ewbethel, shoshani, auselton, kwu}@lbl.gov
†Tsinghua University, Taiwan. Email: jchou@cs.nthu.edu.tw, vidcina@gmail.com, asymplone@gmail.com

‡University of California - San Diego, USA. Email: {homakar, vroytersh}@gmail.com
§Los Alamos National Laboratory, USA. Email: daughton@lanl.gov

¶Brown University, USA. Email: mhowison@brown.edu

Abstract—Petascale plasma physics simulations have recently
entered the regime of simulating trillions of particles. These
unprecedented simulations generate massive amounts of data,
posing significant challenges in storage, analysis, and visual-
ization. In this paper, we present parallel I/O, analysis, and
visualization results from a VPIC trillion particle simulation
running on 120,000 cores, which produces ∼ 30TB of data for
a single timestep. We demonstrate the successful application of
H5Part, a particle data extension of parallel HDF5, for writing
the dataset at a significant fraction of system peak I/O rates. To
enable efficient analysis, we develop hybrid parallel FastQuery
to index and query data using multi-core CPUs on distributed
memory hardware. We show good scalability results for the
FastQuery implementation using up to 10,000 cores. Finally, we
apply this indexing/query-driven approach to facilitate the first-
ever analysis and visualization of the trillion-particle dataset.

I. INTRODUCTION

Modern scientific discovery is increasingly driven by

data [28]. Computational simulations routinely produce 100s

of GBs to 10s of TBs of data per simulation. For instance,

the Inter-governmental Panel on Climate Change multi-model

CMIP-3 archive is about 35 TB in size. The next generation

CMIP-5 archive, which will be used for the AR-5 report

[2] is projected to contain over 10 PB of data. Large scale

experimental facilities produce equally impressive amounts of

data. The LHC experiment is capable of producing 1 TB of

data in a second, many gigabytes of which are recorded for

future analyses. The Large Synoptic Survey Telescope (LSST)

will record many terabytes of data per night. The torrents of

data is expected to overwhelm our capacity to make sense of

them [14]. In the US, a serious national effort is underway to

address challenges of managing and analyzing big data1.

In this paper, we consider the challenges of analyzing the

data from VPIC, a state-of-the-art plasma physics code that

simulates 2 trillion particles (one trillion ions and one trillion

electrons) on 120,000 cores. The simulation produces an

unprecedented amount of data, making storage, analysis, and

visualization extremely challenging. We highlight our scalable

1http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal.

algorithmic and software strategy, and demonstrate how we

can enable meaningful scientific analysis. Our technical con-

tributions are as follows:

• We demonstrate the application of H5Part, a particle data

extension of parallel HDF5, for enabling high perfor-

mance parallel I/O in writing the one trillion electrons.

• We develop a hybrid parallel version of FastQuery using

both MPI and pthreads to enable scalable indexing and

querying for the trillion particle dataset.

• We use query-based visualization to quickly identify and

render particles of interest.

• We apply all of these capabilities to target open scientific

analysis problems, which were simply impossible to

address before.

A. Plasma Physics Simulation

Collisionless magnetic reconnection is an important mech-

anism that releases energy explosively as field lines break and

reconnect in plasmas spanning from the Earth’s magnetosphere

to solar eruptions. Such a reconnection also plays an impor-

tant role in a variety of astrophysical applications involving

both hydrogen and electron-positron plasmas. Furthermore,

reconnection is the dominant mechanism that enables the

plasma from the solar wind to enter the Earth’s magnetosphere.

Reconnection is inherently a multi-scale problem. It is initiated

in the small scale around individual electrons but eventually

leads to large-scale reconfiguration of the magnetic field.

Recent simulations have revealed that electron kinetic physics

is not only important in triggering reconnection, but also in

its subsequent evolution. This finding suggests that we need

to model the detailed electron motion, which poses severe

computational challenges for 3D simulations of reconnection.

A full-resolution magnetosphere simulation is an exascale

computing problem.

The advent of petascale computers together with advances

in particle simulations are now enabling us to conduct simu-

lations a factor of 1000 times larger than the state-of-the-art

just a few years ago. Our main code is the highly optimized

particle code VPIC [4]. This new capability is providing us

with the first glimpse of details of collisionless reconnection

in 3D. We have successfully conducted simulations with

1.2 trillion particles on the Kraken system at Oak Ridge

National Lab (ORNL) using 100K cores, and consisting of

2, 048 × 2, 048 × 1, 024 computational cells in 2011 [10]. In

this paper, we focus on the large data management and analysis

challenges and demonstrate the effectiveness of our approach

using a larger 2 trillion particle run conducted at the National

Energy Research Scientific Computing center (NERSC).

B. Science Use Case

Computational Plasma physicists are generally interested in

understanding the structure of high dimensional phase space

distributions. For example, in order to understand the physical

mechanisms responsible for producing magnetic reconnection

in a collisionless plasma, it is important to characterize the

symmetry properties of the particle distribution, such as agy-

rotropy. Agyrotropy is a quantitative measure of the deviation

of the distribution from cylindrical symmetry about the mag-

netic field. Another question of significant practical importance

in studies of magnetic reconnection is characterization of

the energetic particles. Particle properties of interest include

spatial location (x, y, z), energy, and projection of velocity

components on the directions parallel and perpendicular to the

magnetic field (Uk,U?,1,U?,2).

In the scope of this paper, we will explore the following

scientific questions:

• Analysis of highly energetic particles:

– Are the highly energetic particles preferentially ac-

celerated along the magnetic field?

– What is the spatial distribution of highly energetic

particles?

• What are the properties of particles near the reconnection

hot-spot (the so-called X-line)?

– What is the degree of agyrotropy in the spatial

vicinity of the X-line? In other words, is the den-

sity plot of the U?,1 vs. U?,2 components highly

asymmetrical?

While these questions can be addressed to some extent

for smaller scale 2D and 3D simulations involving millions

or billions of particles, it is challenging to address these

questions when the number of particles reach beyond hundreds

of billions or trillions. Hampered by the lack of scalable tools,

physicists have largely ignored the particle data, used some

form of sub-sampling, or relied on coarser gridded data for

their analysis. To the best of our knowledge, this is the first

study that offers flexible technical capabilities for analyzing

trillion particle datasets.

C. Research Challenges

Motivated by these scientific questions and the desire to sup-

port this new regime of petascale plasma physics simulations,

we tackle the following computer science research problems:

• What is a scalable I/O strategy for storing massive particle

data output?

• What is a scalable strategy for conducting analysis on

these datasets?

• What is the visualization strategy for examining these

datasets?

In this paper, we demonstrate the use of H5Part and

HDF5 to address the scalable I/O challenges in Section II-A.

Section II-B describes our effort in developing a hybrid

parallel version of FastQuery, and applying it for indexing

and querying the trillion particle dataset. Section II-C outlines

our approach for query-based visualization in VisIt to select

scientifically relevant particles to render on the screen.

II. APPROACH

We now highlight our technical strategy for addressing the

research challenges outlined in the previous section.

A. Parallel I/O with H5Part/HDF5

The VPIC simulation writes a significant amount of data at

a user-prescribed interval. In this study, we use the data files

from a simulation of 2 trillion particles (including 1 trillion

ions and 1 trillion electrons). The simulation produces field

data and particle data. The field data include information such

as electric and magnetic field strength, and the particle data

include information about its position, momentum and energy.

The data for the ions is not stored to disk to reduce storage

requirement. Furthermore, most of the physics questions can

be answered with only information about electrons. The field

data is relatively small, on the order of tens of GB. The particle

data is much larger, on the order of tens of TB. The challenge

we need to address is to develop a convenient and efficient

storage strategy for handling such large data sets.

In the original implementation of the VPIC code each MPI

domain writes a file in binary format containing for its particle

data[20]. Each of the files has a header with the cell offsets

and the number of particles in the file. This file-per-process

(fpp) approach is able to achieve a good fraction of system I/O

bandwidth, but has a number of limitations. The first is that the

number of files at large scale becomes too large. For example,

in our largest scale test, the simulation generates 20, 000 files

per time step. Performing even a simple ls command on the

directory containing these files has significant latency. Second,

the fpp model dictates the concurrency of subsequent stages in

the analysis pipeline. Often a post-processing step is necessary

to re-factor fpp data into a format that is readable by analysis

tools.

In this work, we take the approach of writing a single global

file with a standard data format known as HDF5 [32]. More

specifically, we use a particle data extension of parallel HDF5

called H5Part. Parallel HDF5 has demonstrated competitive

I/O rates on modern computational platforms [18]. As far

as we know, we are the first to attempt to write tens of

terabytes in a single HDF5 file. The H5Part [16] extension

to HDF5 improves the ease of use in managing large particle

counts. H5Part is a veneer API for HDF5: H5Part files are

also valid HDF5 files and are compatible with other HDF5-

based interfaces and tools. By constraining the usage scenario

to particle-based simulations, H5Part is able to encapsulate

much of the complexity of implementing effective parallel

I/O in HDF5. That is, it trades off HDF5’s flexibility and

complexity in supporting arbitrary data models for ease-of-

use with a specific, particle-based data model.

Using a small set of H5Part API calls, we were able to

quickly integrate parallel HDF5 I/O into the VPIC codebase.

Our simple H5Part interface for writing VPIC particle data is

outlined in the following lines of code:

h5pf = H5PartOpenFileParallel (fname, H5PART_WRITE |

H5PART_FS_LUSTRE, MPI_COMM_WORLD);

H5PartSetStep (h5pf, step);

H5PartSetNumParticlesStrided (h5pf, np_local, 8);

H5PartWriteDataFloat32 (h5pf, "dX", Pf);

H5PartWriteDataFloat32 (h5pf, "dY", Pf+1);

H5PartWriteDataFloat32 (h5pf, "dZ", Pf+2);

H5PartWriteDataInt32 (h5pf, "i", Pi+3);

H5PartWriteDataFloat32 (h5pf, "Ux", Pf+4);

H5PartWriteDataFloat32 (h5pf, "Uy", Pf+5);

H5PartWriteDataFloat32 (h5pf, "Uz", Pf+6);

H5PartWriteDataFloat32 (h5pf, "q", Pf+7);

H5PartCloseFile (h5pf);

The H5Part interface opens the particle file and sets up the

attributes, such as the time step information and the number of

particles. The H5PartWrite· · · () calls wrap the internal HDF5

data writing calls.

The H5Part interface opens the file with MPI-IO collective

buffering and Lustre optimizations enabled. Collective buffer-

ing breaks the parallel I/O operations into two stages. The first

stage uses a subset of MPI tasks to aggregate the data into

buffers, and the aggregator tasks then write data to the I/O

servers. With this strategy, fewer nodes communicate with the

I/O nodes, which reduces contention. The Lustre-aware im-

plementation of Cray MPI-IO sets the number of aggregators

equal to the striping factor such that the stripe-sized chunks do

not require padding to achieve stripe alignment [9]. Because

of the way Lustre is designed, stripe alignment is a key factor

in achieving optimal performance.

B. Indexing/Querying with Hybrid Parallel FastQuery

In this work, we use FastQuery [8], [6], [7] to accelerate the

data analysis process of the trillion particle dataset. Here, we

briefly recap the salient features of FastQuery, and elaborate

on the new hybrid parallel implementation.

1) FastQuery: FastQuery is a parallel indexing and query-

ing system for array-based scientific data formats. It uses the

FastBit bitmap indexing technology [36] to accelerate data

selection based on arbitrary range conditions defined on the

available data values, e.g., “energy > 105 and temperature

> 106.” FastQuery has a unified plug-in interface to enable

the query functionality on varied array-based data formats.

Currently, our implementation of the interface supports a

wide range of scientific data formats including HDF5 [32],

NetCDF [33], pNetCDF [23] and ADIOS-BP [25].

The two main functions of FastQuery are indexing and

querying. Indexing builds the indexes of the data and stores

them into a single file, so it can be conveniently accessed

later for evaluating different queries. The indexing operation

contains three main steps: (1) read data values from the file,

(2) construct indexes data structure in memory, (3) write

bitmaps to the file.

Querying uses the indexes to evaluate user-specified query

conditions on data and retrieve data records satisfying the

conditions. If the necessary indexes have not been built,

FastQuery would scan through the data values to evaluate the

query. Typically, the indexes are available and the querying

process includes two main steps (1) load bitmap from file,

and (2) evaluate indexes for query.

2) Hybrid Parallel Implementation: In order to process

massive datasets, FastQuery uses parallelism across distributed

memory nodes, as well as multiple cores available on each

node. The basic strategy of the parallel FastQuery implemen-

tation is to partition a large-scale dataset into multiple fixed-

size sub-arrays and to assign the sub-arrays among processes

for indexing and querying. When constructing the indexes,

the processes build bitmaps on sub-arrays one after another,

and store them into the same file by using collective I/O calls

in high-level I/O libraries, such as HDF5. When evaluating a

query, the processes apply the query on each sub-array and

return the aggregated results.

In our previous work [8], we have shown that this parallel

strategy can be implemented using MPI alone. While this is an

effective approach, there are limitations to this flat-MPI based

approach. (1) Each MPI task needs to maintain information

about the others so it knows how to communicate with them.

As more MPI domains are used, more memory space has to

be devoted to MPI, which reduces the memory available to

the user operations [3]. (2) For operations on the same node,

efficient MPI implementations will make use of the shared

memory. However, explicitly using the shared memory in user

code is typically more efficient than going through the MPI

interface [17]. (3) It is faster to synchronize and load-balance

among the small number of threads on a computer node than

across a large number of MPI tasks.

In this work, we seek to improve FastQuery by implement-

ing a hybrid parallelism approach with MPI and Pthreads [12],

[17]. This extended implementation supports the HDF5 data

format. Our strategy is to let each MPI task create a fixed

number of threads. The MPI tasks are only responsible for

holding shared resources among threads, such as the MPI

token for inter-process communication and the memory buffer

for collective I/O, while the threads do the actual processing

tasks of creating indexes and evaluating queries.

The hybrid parallel FastQuery divides a dataset into multiple

fixed size sub-arrays, and builds the indexes of those sub-

arrays iteratively. In each iteration, one sub-array is assigned

to each thread, the indexes for the sub-arrays are collected

together and stored to the same HDF5 dataset in the index file.

In each iteration, a HDF5 collective IO call (i.e. H5Dcreate and

H5Dset extent) is required to create or extend the dataset for

storing indexes, the building process is synchronized among

MPI tasks before the indexes can be written to a file. Since

only one thread spawned by a MPI domain can participate in

a collective call, we select one thread to be the master thread,

and use it for making the collective IO calls. In other words,

in each iteration, a thread reads data and constructs indexes

independently for a separate sub-array. Next, the indexes from

all threads are collected to a shared memory buffer. At that

point the master thread can make the HDF5 collective call

along with the other MPI tasks, which will create the bitmap

dataset and write the indexes to the file.

During query processing, the hybrid parallel FastQuery

is able to load indexes from the index file and evaluate

bitmaps in-memory without involving any HDF5 collective

calls. We implement a hierarchical load balancing strategy.

At the MPI level, we use a static assignment to divide sub-

arrays to MPI domains evenly, so that no synchronization or

communication overhead is introduced among domains. Once

groups of sub-arrays are assigned to an MPI task, it becomes

a shared working pool among threads. Among the threads, we

developed a dynamic load balancing strategy that enable the

threads to request sub-arrays one at a time from the common

pool. Since a query may produce different number of hits on

a sub-array, we expect the dynamic approach to provide better

load-balancing and improve overall performance.

C. Query Driven Parallel Visualization with VisIt

We use VisIt for rendering selected output from the particle

simulation. Even though VisIt is demonstrated to operate at

scale [5], a brute force rendering of one trillion particles is

infeasible. Typical computer displays contain O(1M) pixels,

which roughly implies an overdraw factor of O(1M) if all

particles were transparently rendered. Reducing the number

of particles before rendering can be achieved in a number of

ways: a statistical down-sampling technique that preserves the

statistical characteristics of the data could be used, a ’super-

particle’ approach (wherein a single representative particle

can be rendered instead of a collection) can be used, or a

scientifically motivated query-driven criteria can be used to

select particles of interest. All three options are feasible, in the

current paper, we choose the query-driven option to first down-

select scientifically interesting particles, and then visualized

them with VisIt [31]. A novel feature that we use in this paper

is Cross-Mesh Field Evaluation (CMFE) which enables us to

correlate particle data with the underlying magnetic field and

evaluate properties such as field direction and field strength at

particle locations. We use this powerful feature to address the

scientific use cases listed in the previous section.

III. SYSTEM CONFIGURATION

In our work, the test data is produced by running VPIC on

the NERSC Cray XE6 system “Hopper.” Hopper has 6, 384
twenty-four core nodes with 32GB of memory. It employs

the Gemini interconnect with a 3D torus topology. The file

system storing our data is a Lustre parallel file system with

156 Object Storage Targets (OSTs) and a peak bandwidth of

about 35GB/s.

VPIC uses Cray’s MPI library (xt-mpt 5.1.2) and HDF5

version 1.8.8 with local modifications. The particle data is

written with H5Part version 1.6.5, along with Cray’s MPI-IO

implementation. The local modification to the HDF5 library

source code disables the truncate call, which was causing

significant overhead in closing files. We use VisIt 2.4 for our

visualization needs, and a development version of FastQuery

for all of the results reported in the next section.

IV. RESULTS

A. Parallel I/O in VPIC

The VPIC simulation uses 20, 000 MPI domains - four per

node, where each MPI domain spawns 6 OpenMP threads for

a total of 120, 000 cores in the simulation. Each MPI domain

processes ∼ 51 million (±15%) particles. VPIC produces field

and particle data, which are periodically dumped to the file

system. The field portion of the I/O is about 80GB in size

and is not considered for the performance study. Each particle

has eight four-byte fields, and the dump for all trillion electron

particles amounts to ∼ 30TB.

VPICBench is a parallel I/O kernel that uses the same

H5Part calls shown in Section II-A for writing VPIC particle

data. This simplified kernel contains the full data volume

generated by the code with a slightly simplified pattern.

VPICBench disables the simulation component of the VPIC

code, which enables testing without exhausting our project’s

compute allocation. The simplified pattern uses an equal

number of particles on all participating cores, whereas the

number of particles in a real VPIC run varies across cores by

a small amount. The I/O rate for VPICBench (and for VPIC)

is the total amount of data written divided by the total time in

opening, writing all the variables, and closing the file.

A parallel file system (Lustre in this case) can have a

significant impact on performance based on properties of the

file established at the time it is opened. The number of I/O

resources available (the number of OSTs) can be set as the

file’s stripe count, and the amount of data sent to one OST as

a contiguous region of the file can be set as the stripe size. We

conducted a series of tests with VPICBench ran using 8k tasks,

and varied the stripe count from 64 OSTs to the maximum

of 156. The best performance was at 144 OSTs. Similarly, a

series of tests using stripe sizes from 1MB to 1GB established

that choosing 64MB gave the best performance. All the tests

reported here use stripe count 144 and stripe size 64MB.

1) Weak scaling study: Figure 1 shows the results of a

scaling study for 1K to 128K MPI tasks. This is a weak

scaling study in that the number of particles per task is constant

at eight million. As the number of MPI tasks increases, the

I/O rate becomes greater. With fewer MPI tasks running on

a highly shared system such as Hopper, interference from

I/O activity of other jobs reduces the maximum I/O rate

could be achieved. At the scale of 128K cores, VPICBench

occupies 85% of Hopper, which reduces the interference from

other jobs sharing the I/O system. The 128K task instance

writes about 32TB of data, and Figure 1 shows that at that

scale the delivered I/O performance is about 27GB/s, which

compares favorably with the rated maximum on Hopper of

about 35GB/s.

Fig. 1. VPICBench weak scaling study: I/O performance with increasing
number of processes writing data to a HDF5 file using H5Part.

Fig. 2. The eight VPIC variables are written out in sequence, for 32TB in
the 128K task test. Transient I/O rates at the servers can exceed the rated
maximum bandwidth for Hopper. The dotted lines for “ave” indicate the actual
begin and end of the I/O.

Figure 2 shows the transient I/O rates for the largest

VPICBench test in the scaling study. In this case, writing the

32TB of data takes around 20 minutes. In the graph, time

is along the x-axis and the aggregate observed data rate at

the severs is on the y-axis. The data is gathered on Hopper

via the Lustre Monitoring Tool (LMT)[13], [34] by recording

the server I/O counters (bytes read and bytes written) every

five seconds. The difference between successive bytes written

gives a data rate for each OST and the sum of those values

(across all OSTs) for a five second interval gives the aggregate

rate observed by the servers. Note that transient values in the

graph can be well above the rated maximum bandwidth for

Hopper of 35GB/s. This is not surprising, since any sustained

test of I/O performance is going to amortize very fast transient

behavior with other, slower behavior, e.g. while files are being

opened or closed. Section IV-A-2 will return to the LMT data

while reviewing the results of the trillion particle VPIC I/O.

Historically[1], the performance of MPI-I/O collective, sin-

gle file I/O was considered inferior to a POSIX, file-per-

process I/O model due to concerns with lock contention.

Figure 2 shows that the current MPI-I/O and HDF5 libraries

can perform quite well, with no obvious penalty for lock

Fig. 3. The 120K core VPIC run showed comparable performance except
for a couple of slow servers. The slower servers lead to a small amount of
I/O continuing after the bulk had completed, and leads to the slightly wider
gaps between individual variable dumps.

management. The only odd feature in Figure 2 is that the

aggregate rate goes to zero briefly after a variable is written.

This is due to an implicit MPI collective operation in the

MPI I/O layer, an MPI Allgather(), at the beginning of each

variable’s I/O in the collective buffering algorithm.

2) Writing one trillion particles: The I/O performance of

VPICBench in the weak scaling study was encouraging, and

the VPIC case study adopted the same H5Part interface and

the same file system tuning parameters. The simulation uses

120,000 cores of hopper. The write phase for a dump produced

30TB, and Figure 3 shows the observed I/O rates.

In Figure 3, the initial spikes are due to the simulation’s

magnetic field data dump - the small file-per-process phase

that is not part of this study. After that, each peak corresponds

to writing one of the eight variables of the particle data. In

addition to providing a time series plot of the I/O, the LMT

data also gives some confidence that no other I/O intensive

activity was taking place at the same time on Hopper. All of

the I/O in the graph is accounted for by the expected data dump

volume. Figure 3 shows transient I/O rates above 35GB/s
as was the case in Figure 2. The I/O peak for each variable

is followed by a short interval of slower I/O activity, which

reduces the amortized I/O rate to about 23GB/s. Two servers

shared a failed RAID controller and had their traffic diverted

to it’s fail-over partner. The twelve affected OSTs ran 30%
slower but otherwise performed correctly. That delay shows

up as the small continuing I/O following each variable’s main

peak. Without the faulty OSTs, VPIC’s data dump with H5Part

and HDF5 will achieve the similar performance seen in the

VPICBench.

The question arose as to whether the fpp strategy would

have performed better. For comparison, a 120K core in-

stance of VPIC ran using an fpp model writing directly via

the POSIX interface. Figure 4 shows the result and also

shows two important features. First, there is no pause for

an MPI Allgather() between the variables, which gives it a

small advantage. Second, the aggregate I/O rate across all

the OSTs starts out quite high but then trails off alarmingly.

Fig. 4. A 120K core VPIC test run using a file-per-process (fpp) model does
not show the pause between variables but does exhibit a common feature
of fpp runs at scale. The files can end up non-uniformly distributed over
the OSTs. The OST with the greatest load takes the longest, slowing down
throughput.

This is partly due to the same slow OSTs already mentioned,

but is also a common feature of fpp I/O at scale[35]. The

distribution of the 20, 000 individual files among the OSTs is

not uniform. Some OSTs will be assigned significantly more

files than others. The OST with the heaviest burden will take

the longest, while lightly loaded OSTs complete their work

early. That is why the aggregate rate tends to drop towards

the end of the job. Nevertheless, the amortized, aggregate data

rate was a respectable 26GB/s. Despite this, the fpp I/O model

does have disadvantages compared to a single-file I/O model

like H5Part/HDF5. For example, with a single file, the file

system can apportion data uniformly across OSTs, but with

the fpp approach, it is very unlikely the data can be allocated

evenly across the OSTs. Furthermore, the fpp is only effective

for writing, but not for later data analyses as discussed before.

Considering the ease of use and metadata management

provided by the HDF5 and H5Part libraries, their use is well

justified in VPIC. Finally, the barrier between the I/O of each

variable in both VPIC and VPICBench is not strictly necessary,

and its removal may allow a little more concurrency in the I/O,

thereby further improving the performance.

B. Parallel Indexing/Querying

To demonstrate scalability of our indexing and querying

approach, we measured FastQuery performance on two sets of

VPIC particle data, one with 100 billion electrons and another

with one trillion electrons. The data is stored in HDF5 files,

with one file per time step. With 100 billion particles, each

HDF5 file is ∼ 3.2TB. As mentioned earlier, with 1 trillion

particles, each HDF5 file is ∼ 30TB. We use the smaller data

set to study the performance of building indexes and use the

larger data set to study both indexing and querying functions.

The visualization tools described in the next section use the

indexes generated in this process for accelerating analysis of

the particle data.

In our strong scaling study, we vary the number of cores

from 500 to 10,000. Given the fixed number of cores, we

TABLE I
THE TOTAL INDEXING TIME (IN SECONDS) FOR 100-BILLION PARTICLE

DATASET.

#cores 500 1,250 2,500 5,000 10,000

MPI-alone 1704s 935s 572s 423s 280s

hybrid 1660s 850s 587s 347s 256s

500 1250 2500 5000 10000
0

100

200

300

400

500

600

700

number of cores

ti
m

e
 (

s
e

c
o

n
d

s
)

read data(MPI,hybrid)

write bitmap(MPI,hybrid)

build index(MPI,hybrid)

sync time(MPI,hybrid)

Fig. 5. Time for indexing 100-billion particle dataset with different number
of cores.

arrange them either in an MPI-only configuration or in a hybrid

parallel configuration. The hybrid configuration launches 3

threads for each MPI process.

Based on earlier study of sub-array size to use for Fast-

Query, we have chosen the sub-array size to be ∼10 mil-

lion [8]. We carefully choose this number so that the total

number of particles can be evenly distributed among the sub-

arrays and the sub-arrays can then be evenly divided among

the cores.

1) Strong Scaling: In this strong scaling study, the number

of cores increases but the data set of 100-billion particles is

the same. We measure the time to index 4 variables (the x, y,

and z coordinates, and the energy field), which is half of the

variables in the data file. The indexes use a 3-digit precision

binning option from the FastBit indexes. This option allows

us to answer most of the user queries without going to the

raw data while at the same time keep the index size relatively

small. The size of the resulting index file is ∼ 1.3TB, which

is about 80% of the original data size (∼ 1.6TB) for the

corresponding variables.

Table I summarizes the total time spent in building indexes

using 500, 1250, 2500, 5000 and 10,000 cores. As shown from

0 2000 4000 6000 8000 10000
0

5

10

15

20

number of cores

s
p
e
e
d
u
p
 f
a
c
to

r

total time

read data

write index

build index

Fig. 6. The speedup factor of each indexing steps for the hybrid configuration.

TABLE II
THE TOTAL TIME (SECONDS) OF QUERYING ON 1-TRILLION PARTICLES.

#cores scan MPI-alone hybrid

250 975 10.1 10.8

500 532 8.6 5.5

1250 266 4.1 2.7

this table, the total time reduces from 30 mins to less than

5 mins as the number cores increases from 500 to 10,000.

Furthermore, the hybrid configuration shows consistent im-

provement over the MPI-alone configuration.

Figure 5 shows the breakdown of total time in building

indexes. Since the size of data, 1.6TB, is more than the size

of indexes, 1.3TB, it requires more time for reading data than

writing bitmaps. However, as shown in Figure 6, the scalability

of writing bitmaps is worse than reading data and in-memory

computation. Thus, as the number of cores increases, the write

time quickly becomes the most significant part of the total

indexing time.

While building an index, FastQuery iterates through groups

of sub-arrays. The “sync time” shown in Figure 5 measures the

delay between two consecutive iterations. This delay is caused

by the synchronization implicitly in the HDF5 collective op-

erations, but are not completely captured by the timer around

the write operation. In general, as more cores are used, there

are fewer iterations and therefore less delays to be accounted

for by this “sync time.”

From Table I, we see that the MPI-only configuration takes

more time than the hybrid configuration. From Figure 5,

we see that the in-memory computation time for the two

configurations are very close. Therefore, the main difference

must come from the I/O time. The key difference between

the two configurations in FastQuery is that the hybrid parallel

configuration consolidates the write operations into a smaller

number of cores than the MPI-only case. In general, reducing

the number of concurrent I/O calls can reduce I/O contention

and improve I/O throughput [12], [17]. Figure 6 provides

another view of the relative efficiency of the three indexing

steps by showing the speedup factors. This figure shows that

the in-memory computation time is perfectly scalable, but the

speedup factor of I/O time gradually decades toward some

I/O rate limit. With 10,000 cores, the maximum I/O rate we

achieved is around 14GB/s for read and 12GB/s for write.

2) Indexing/Querying Trillion Particles: On the larger data

set with 1 trillion electrons, we indexed the variable “Energy”

using 10,000 cores. The total time of building the index using

MPI-alone configuration is 629 seconds, while using hybrid

configuration is 511 seconds. The hybrid configuration used

about 18.8% less time than the MPI-only configuration. In

the hybrid configuration, FastQuery took 215 seconds to read

3.8TB data from the file, built indexes in 67 seconds and then

wrote the 2.6TB indexes to file in 172 seconds. The I/O rate

was 17.7GB/s for read and 15.1GB/s for write.

For measuring the time spent in querying functions, we

use a sample query of the form “Energy > 1.2.” Table II

and Figure 7 show the time needed to answer this query on

250 500 1250
0

2

4

6

8

10

12

number of cores

ti
m

e
 (

s
e

c
o

n
d

s
)

total time(MPI,hybrid)

read bitmap(MPI,hybrid)

computation(MPI,hybrid)

sync time(MPI,hybrid)

Fig. 7. Time for querying 1-trillion particles with different number of cores.

1 trillion particles. From the total time in Figure II, we see

that the time needed to answer the same query without index

(marked as scan) is 60 – 100 times longer than using FastBit

indexes. Without index, it took more than 4 minutes to scan

through the 3.8T data by using 1250 cores. In contrast, with

index, the query can be resolved in 10 seconds by using just

250 cores. With 1,250 cores, MPI-alone implementation took

4.7 seconds, but hybrid FastQuery only took 2.7 seconds.

Between the two configurations of FastQuery, the hybrid

option is typically better and in some cases, a lot better. The

reduction in execution time seems to be mostly due to the

reduce in time needed to perform the read operation according

to Figure 7. This agrees with our earlier observations based

on indexing time as well as those published in literature. We

use the “sync time” to indicate the average time of waiting the

last MPI task to finish in Figure 7. Because our hybrid imple-

mentation dynamically assigns sub-arrays among threads, the

load could be more evenly distributed. Thus we also observed

less synchronization time for hybrid implementation.

Overall, hybrid parallel FastQuery performs both indexing

and querying more efficiently than the put MPI implementa-

tion of FastQuery.

C. Scientific Use cases

We developed a plugin within VisIt that uses the hybrid

parallel FastQuery software for parallel evaluation of queries

on H5Part files. The plugin is capable of operating in parallel

on distributed memory nodes. Armed with this powerful

capability, we now revisit the scientific questions postulated

in Section I-B.

1) Analysis of highly energetic particles: Identification of

mechanisms leading to particle energization remains an impor-

tant unsolved problem in plasma physics. There are indications

that the energization mechanism may be different in 2D and

3D models. A critical analysis capability for identification of

acceleration mechanism is the ability to i) determine prefer-

ential acceleration direction with respect to local magnetic

field and ii) determine where energetic particles are located

and how their concentration correlates with magnetic field

structures. Specifically, an important physics result obtained in

3D magnetic reconnection simulations of the type considered

here is the formation, evolution, and interaction of so-called

1.0
0.5

0.0
-0.5

-1.0 Ux

Uz

Uy

1.0

0.5

0.0

-0.5

-1.0

-1.0

-0.5

0.0

0.5

1.0

1.880

Energy

1.735

1.590

1.445

1.300

Fig. 8. Visualization of the 1 trillion electron dataset at timestep 1905
showing all particles with Energy > 1.3 (gray). In addition all particles with
Energy > 1.5 are shown in color, with color indicating Energy. A total of
164, 856, 597 particles with Energy > 1.3 and 423, 998 particles with Energy
> 1.5. The particles appears to be accelerated preferentially along the direction
of the mean magnetic field (oriented at 45� in the x−y plane), corresponding
to formation of four jets. The distribution of energetic particles is asymmetric,
with the most energetic particles acquiring negative Uy .

-0.5

Ux

0.0U
y

#Particles

-1.0 0.0 0.5 1.0

-0.5

-1.0

0.5

1.0

0

9809

1.987e4

2.993e4

3.999e4

Fig. 9. Visualization of the 1 trillion electron dataset at timestep 1905
showing the density of all particles with Energy >1.3 (see also Figure 8).

flux ropes — twisted bundles of the magnetic field lines. Some

of the unresolved issues include the association of the energetic

particles with flux ropes, the contribution of energetic particles

to the overall current, and whether their energy predominantly

corresponds to the motion parallel to the magnetic field. We

applied the visualization tools developed in this paper in order

to address the questions posed in Section I-B.

Are the highly energetic particles preferentially accelerated

along the the magnetic field?

Figures 8 and 9 show the phase space of particles with

energies > 1.3 from the 1 trillion particle dataset. Even though

the dataset corresponds to an early time in the simulation,

these two figures clearly show that magnetic reconnection has

2.01.00.0-1.0-2.0-3.0-4.0
Uy

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

U
||

Energy

4.579
3.81

3.041.5
2.27

Fig. 10. Scatter plot showing all particles with Energy > 1.5 (see also
Figure 11) in Uy and Uk space colored by Energy. We observe a strong
positive correlation between Uy and Uk. The particles of highest Energy
appear in regions of high negative Uk (and Uy) values, indicating that the
high energy particles are aligned (i.e., move parallel) to the magnetic field.

..

-150

-100

-50

0

50

100

150

y

0
50

100
150

200
250

300
x

z

-60

-40

-20

0

20

40

60

2.0

1.0

0.0

-1.0

-2.0

U
||

Fig. 11. Plot showing all particles with Energy > 1.5. The query selects
57,740,614 out of the 114,875,956,837 particles, i.e., ≈ 0.05% of all particles.
Color indicates Uk. We observe different particle structures with strong
positive (red) and negative (blue) Uk values.

already started. Phase space formation of reconnection gener-

ated energetic jets at 45� in the x− y plane, corresponding to

the direction of average magnetic field, is apparent, especially

in the 2D density plot in the Ux − Uy plane (Fig. 9). These

figures also show evidence of preferential acceleration of the

plasma in the direction parallel to the average magnetic field

as evidenced by the highly distorted distribution function in

the x−y plane in Figure 8. Another important finding evident

from the phase space figures is that energetic particles carry

significant current. These two findings, enabled for the first

time through the new analysis capabilities discussed here,

are quite encouraging and are leading us to formulate new

questions regarding the particle behavior in 3D reconnection.

In order to understand properties of the energetic particle at

0
50

100
150

200
250

300
-150

-100

-50

0

50

100

150

y

x

z

-60
-40
-20

0

20

40

60

0.5027

0.07391

0.01087

0.001598

0.000235

|J|

Fig. 12. Iso-surface plot of the positron particle density np with color
indicating the magnitude of the total current density |J |. Note the logarithmic
color scale. The blue box (indicated by the arrow) is located in the X-
line region of the simulation and illustrates the query (157.654 < x <

1652.441)&&(−165 < y < −160.025)&&(−2.5607 < z < 2.5607),
which we use in Figure 13 to study agyrotropy.

-1.5
U ,1

U
,2

0.0

-1.0 -0.5 0.0 0.5 1.0 1.5

-0.5

-1.0

0.5

1.0

Fig. 13. Particle scatter plot (black) of U?,1 vs. U?,2 of all energetic
particles (with Energy > 1.3) contained in the box in the x-line region
indicated in Figure 12. Additional iso-contours indicate the associated particle
density (blue=low density and red=high density). The complete query used
to extract the particles is defined as: (Energy > 1.3)&&(157.654 < x <

162.441)&&(−165 < y < −160.025)&&(−2.5607 < z < 2.5607). The
query results in a total of 22,812 particles. The elliptical shape of the particle
distribution is indicative of agyrotropy in the x-line region.

later timesteps, when the dynamics have evolved sufficiently

far away from the initial conditions, we considered a 100-

billion-particle simulation with equivalent physics2. We ap-

plied query based techniques to create a scatter plot of Uy

vs Uk in Fig. 10. Two important results can be immediately

deduced from the plot: i) the highest energy particles tend

to have Uk ∼ Uy , which indicates that they are localized in

the reconnection regions where the in-plane magnetic field

vanishes and ii) the plot is asymmetric, with the highest energy

particles having negative values of Uk, indicating that they

carry significant current in agreement with the analysis of the

2Due to a compute node failure, the trillion particle simulation did not
produce data for timesteps later than 1905. We expect to have data for later
timesteps of the trillion particle dataset available soon.

trillion particle simulation.

What is the spatial distribution of highly energetic particles?

As is illustrated by Fig. 11, energetic particles are predom-

inantly located within the current sheet, suggesting they carry

significant current. These results also suggest that the flux

ropes can confine energetic particles (as illustrated by the red

regions in Fig. 11), but more careful analysis is needed to

resolve this issue, which is beyond the scope of this paper.

2) What are the properties of particles near the recon-

nection hot-spot?: Fig. 13 shows the particle distribution

F (U?,1, U?,2) in the vicinity of an X-line. The particles

are selected in a small box, as indicated in Fig. 12. The

distribution clearly shows the agyrotropy of the distribution,

i.e. the lack of cylindrical symmetry about the local magnetic

field. Agyrotropy is an expected signature of the reconnection

site in collisionless plasma. While it has been well-documented

in simple 2D simulations, classification of agyrotropic distri-

butions in 3D simulations have been much more challenging.

While some information about agyrotropy can be recovered

from coarser-level moment computations, a direct computation

based on particle data provides richer information about the

structure of particle phase space. With these new capabilities,

we are now well poised to compute agyrotropy and other finer

characterizations of distribution functions.

To summarize, the query-based visualization techniques

presented in this paper have enabled us to explore and gain

insights from massive particle datasets for the first time.

We have verified localization behavior of energetic particles,

gained insights into relationship between the structure of

magnetic field and energetic particles, and discovered agy-

rotropic distribution of particles near the reconnection hot-spot

in 3D. Several of these phenomena have been conjectured

about in the past, but it is only by the development and

application of these new analysis capabilities that we can

unlock the scientific discoveries and insights present in these

unprecedented simulations.

V. RELATED WORK

A. Parallel I/O

High-level libraries such as Parallel netCDF (PnetCDF) [23]

and ADIOS [22], [25], [24] provide support for writing and

reading large files. PnetCDF is developed to perform parallel

I/O operations on files larger than 4GB in size. The ADIOS

library has demonstrated high I/O rates in writing large-

scale simulation data. ADIOS provides a light-weight API for

applications to modify their I/O interface and write data into

a newly introduced BP format. ADIOS also provides various

tools for converting data from BP to the standard file formats,

such as netCDF5 HDF5. While the conversion cost is linear

with respect to data sizes [24], for analyses and visualizations

that touch datasets on the order of TB the cost can be very

high. Both PnetCDF [11] and ADIOS support writing data into

subfiles to reduce the number of nodes writing data to OSTs.

To reduce the number of writers in file-per-process approach

of writing data, Karimabadi et al. [20] used a technique called

gating. This technique partially serializes I/O by controlling

the number of processes that can write data concurrently.

Filesystem-aware MPI-IO implementations, such as Cray’s

MPI library, optimize the number of aggregator nodes directly

interacting with OSTs in writing or reading data [9].

In this work, we choose to use a particle data extension

of HDF5, called H5Part, because its API conveniently match

with the application of interest. It provides good read and write

performance for the specific application while other formats

maybe efficient for write only or read only.

B. Analysis

Most analysis systems assume the whole dataset could be

stored in memory. As data sets grow in size, the analysis

operations are forced to concentrate on the most relevant data

records to reduce the memory requirement. Here we briefly

mention a few examples that integrate querying functions

with visualization and analysis [19], [29]. One of the earliest

example is the VisDB system, which combines a guided query-

formulation facility with relevance-based visualization [21].

Data items are ranked in terms of relevance to a query, and

the top quartile of most relevant results are then input to a

visualization and rendering pipeline. This approach examines

all data records in order to determine relevance, even though it

only displays the most relevant records. Another early system

is the TimeFinder system [15], which supports interactive

exploration of time-varying data sets. It provides a way to

quickly construct queries, modify parameters, and visualize

query results. However, it also needs to examine all data

records in order to answer these queries.

To speed up the selection process, there has been a number

of efforts on query-driven visualization and analysis which

make use of database indexing techniques to accelerate data

queries [31]. We have chosen to use a set of efficient bitmap

indexing techniques in FastBit [37], [38] because they have

been demonstrated to work well on scientific data [30], [27].

Rübel et al. demonstrated the use of FastBit to accelerate query

driven visualization of laser plasma accelerator simulations

containing on the order 100s of millions of particles per

timestep [27], [26]. Evaluation of queries for single files were

performed in serial in these efforts. In order to be able to

evaluate queries efficiently also for trillions of particles, we

integrated FastQuery with VisIt, enabling parallel evaluation

of queries for massive data files.

VI. CONCLUSIONS

In this paper, we have addressed data management and

analysis challenges posed by a highly scalable, plasma physics

simulation that writes one trillion particles. On the parallel

I/O front, we demonstrated state-of-the-art collective write

performance using H5Part and HDF5 to a single, shared 30TB

file. We demonstrate a write performance of 23GB/s, and

peak rates utilizing the entire system I/O bandwidth. Without

hardware and file system failures that we experienced, this I/O

rate will be even higher.

We developed and applied a hybrid parallel version of

FastQuery to index and query the trillion particle dataset. We

show strong scaling for FastQuery up to 10,000 cores, and

demonstrate indexing times of ≈ 9 minutes and querying times

of ≈ 3 seconds to process the trillion particle dataset.

We apply query-driven visualization to render selected par-

ticles of interest in VisIt. We apply these techniques to address

open scientific problems in plasma physics, and demonstrate

that our approach holds much promise for data-driven scien-

tific discovery for the future. The test runs of the new software

have provided strong evidence for confirming the agyrotropy

near X-line and preferential acceleration of energetic particles

along the magnetic field direction. These insights are only

possible with advanced data analysis techniques developed

here.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science,

Office of Advanced Scientific Computing Research, of the

U.S. Department of Energy under Contract No. DE-AC02-

05CH11231. This research was supported in part by National

Science Foundation under NSF grant OCI 0904734. This

research used resources of the National Energy Research

Scientific Computing Center. Simulations were also supported

by an allocation of advanced computing resources provided

the NSF at the National Institute for Computational Sciences

and by NASA (Pleiades), and the National Center for Compu-

tational Sciences at Oak Ridge National Laboratory (Jaguar).

The authors would like to thank NERSC and Cray staff

for troubleshooting I/O issues on hopper. We would also like

to thank members of the HDF Group for their advice on

HDF5 I/O optimizations, and Burlen Loring for his advice

and support.

REFERENCES

[1] K. Antypas and A. Uselton. MPI-I/O on Franklin XT4 System at
NERSC. In 52nd Cray User Group Conference, Edinburgh, UK, 2010.

[2] IPCC Fifth Assessment Report. http://en.wikipedia.org/wiki/IPCC
Fifth Assessment Report.

[3] P. Balaji, A. Chan, W. Gropp, R. Thakur, and E. L. Lusk. Non-data-
communication overheads in MPI: Analysis on blue gene/P. In A. L.
Lastovetsky, M. T. Kechadi, and J. Dongarra, editors, PVM/MPI, volume
5205 of Lecture Notes in Computer Science, pages 13–22. Springer,
2008.

[4] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan.
Ultrahigh performance three-dimensional electromagnetic relativistic
kinetic plasma simulation. Physics of Plasmas, 15(5):7, 2008.

[5] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat,
G. H. Weber, and E. W. Bethel. Extreme scaling of production visual-
ization software on diverse architectures. IEEE Computer Graphics and

Applications, 30:22–31, 2010.

[6] J. Chou, K. Wu, and Prabhat. FastQuery: A general indexing and
querying system for scientific data. In SSDBM, pages 573–574, 2011.
http://dx.doi.org/10.1007/978-3-642-22351-8 42.

[7] J. Chou, K. Wu, and Prabhat. FastQuery: A parallel indexing system
for scientific data. In IASDS. IEEE, 2011.

[8] J. Chou, K. Wu, O. Rübel, M. Howison, J. Qiang, Prabhat, B. Austin,
E. W. Bethel, R. D. Ryne, and A. Shoshani. Parallel index and query
for large scale data analysis. In SC11, 2011.

[9] Getting Started with MPI I/O. http://docs.cray.com/books/S-2490-40/
S-2490-40.pdf.

[10] W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. J. Albright,
B. Bergen, and K. J. Bowers. Role of electron physics in the develop-
ment of turbulent magnetic reconnection in collisionless plasmas. Nature

Physics, 7(7):539–542, July 2011.

[11] K. Gao, W. keng Liao, A. Nisar, A. Choudhary, R. Ross, and R. Latham.
Using subfiling to improve programming flexibility and performance of
parallel shared-file I/O. In Proceedings of the 2009 International Con-

ference on Parallel Processing, ICPP ’09, pages 470–477, Washington,
DC, USA, 2009. IEEE Computer Society.

[12] D. S. Henty. Performance of hybrid message-passing and shared-
memory parallelism for discrete element modeling. In SC’00, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[13] C. M. Herb Wartens, Jim Garlick. LMT - The Lustre Monitoring Tool.
https://github.com/chaos/lmt/wiki. Developed at Lawrence Livermore
National Lab.

[14] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft, Oct. 2009.

[15] H. Hochheiser and B. Shneiderman. Visual specification of queries for
finding patterns in time-series data. In Proceedings of Discovery Science,
pages 441–446, 2001.

[16] M. Howison, A. Adelmann, E. W. Bethel, A. Gsell, B. Oswald, and
Prabhat. H5hut: A High-Performance I/O Library for Particle-Based
Simulations. In Proceedings of 2010 Workshop on Interfaces and

Abstractions for Scientific Data Storage (IASDS10), Heraklion, Crete,
Greece, Sept. 2010. LBNL-4021E.

[17] M. Howison, E. W. Bethel, and H. Childs. MPI-hybrid parallelism
for volume rendering on large, multi-core systems. In Eurographics

Symposium on Parallel Graphics and Visualization, pages 1–10, 2010.

[18] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf. Tuning
HDF5 for Lustre File Systems. In Proceedings of 2010 Workshop

on Interfaces and Abstractions for Scientific Data Storage (IASDS10),
Heraklion, Crete, Greece, Sept. 2010. LBNL-4803E.

[19] C. R. Johnson and J. Huang. Distribution-driven visualization of volume
data. IEEE Transactions on Visualization and Computer Graphics,
15(5):734–746, Sept. 2009.

[20] H. Karimabadi, B. Loring, A. Majumdar, and M. Tatineni. I/O strategies
for massively parallel kinetic simulations, 2010.

[21] D. Keim and H.-P. Kriegel. VisDB: Database exploration using multi-
dimensional visualization. IEEE Computer Graphics and Applications,
14(4):40–49, 1994.

[22] ADIOS. http://www.nccs.gov/user-support/center-projects/adios/.

[23] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF:
A high-performance scientific I/O interface. In SC’03, page 39, New
York, NY, USA, 2003. ACM.

[24] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata
rich IO methods for portable high performance IO. In Proceedings

of the 2009 IEEE International Symposium on Parallel&Distributed

Processing, IPDPS ’09, pages 1–10, Washington, DC, USA, 2009. IEEE
Computer Society.

[25] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible
IO and integration for scientific codes through the adaptable IO system
(ADIOS). In CLADE’08, pages 15–24, New York, NY, USA, 2008.
ACM.

[26] O. Rübel, C. G. R. Geddes, E. Cormier-Michel, K. Wu, Prabhat, G. H.
Weber, D. M. Ushizima, P. Messmer, H. Hagen, B. Hamann, and
W. Bethel. Automatic beam path analysis of laser wakefield particle
acceleration data. IOP Computational Science & Discovery, 2(015005
(38pp)), November 2009.

[27] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith, C. G. R. Geddes,
E. Cormier-Michel, S. Ahern, G. H. weber, P. Messmer, H. Hagen,
B. Hamann, and E. W. Bethel. High Performance Multivariate Visual
Data Exploration for Extemely Large Data. In SuperComputing 2008

(SC08), Austin, Texas, USA, Nov. 2008.

[28] A. Shoshani and D. Rotem, editors. Scientific Data Management:

Challenges, Technology, and Deployment. Chapman & Hall/CRC Press,
2010.

[29] G. Smith, M. Czerwinski, B. Meyers, D. Robbins, G. Robertson, and
D. S. Tan. Facetmap: A scalable search and browse visualization. IEEE

Transactions on Visualization and Computer Graphics, 12(5):797–804,
Sept. 2006.

[30] K. Stockinger, E. W. Bethel, S. Campbell, E. Dart, , and K. Wu.
Detecting Distributed Scans Using High-Performance Query-Driven Vi-
sualization. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference

on High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, Nov. 2006.

[31] K. Stockinger, J. Shalf, W. Bethel, and K. Wu. Query-driven visualiza-
tion of large data sets. In IEEE Visualization 2005, Minneapolis, MN,

October 23-28, 2005, page 22, 2005. http://doi.ieeecomputersociety.org/
10.1109/VIS.2005.84.

[32] The HDF Group. HDF5 user guide. http://hdf.ncsa.uiuc.edu/HDF5/doc/
H5.user.html, 2010.

[33] Unidata. The NetCDF users’ guide. http://www.unidata.ucar.edu/
software/netcdf/docs/netcdf/, 2010.

[34] A. Uselton. Deploying server-side file system monitoring at NERSC.
In Cray User Group Conference, Atlanta, GA, 2009.

[35] A. Uselton and B. Behlendorf. Visualizing I/O performance during
the BGL deployment. In 8th LCI Conference on High-Performance

Clustered Computing, South Lake Tahoe, CA, 2007.
[36] K. Wu. FastBit: an efficient indexing technology for accelerating data-

intensive science. Journal of Physics: Conference Series, 16:556–560,
2005. http://dx.doi.org/10.1088/1742-6596/16/1/077.

[37] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-
Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret,
J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer,
Prabhat, O. Rubel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and
W.-M. Zhang. FastBit: Interactively searching massive data. In SciDAC,
2009.

[38] K. Wu, A. Shoshani, and K. Stockinger. Analyses of multi-level and
multi-component compressed bitmap indexes. ACM Transactions on

Database Systems, pages 1–52, 2010.

