
Parallel I/O Performance: From Events to Ensembles

Andrew Uselton†, Mark Howison†, Nicholas J. Wright†, David Skinner†,

Noel Keen†, John Shalf†, Karen L. Karavanic⋆, Leonid Oliker†

†CRD/NERSC, Lawrence Berkeley National Laboratory Berkeley, CA 94720
⋆Portland State University, Portland, OR 97207-0751

Abstract—Parallel I/O is fast becoming a bottleneck
to the research agendas of many users of extreme scale
parallel computers. The principle cause of this is the
concurrency explosion of high-end computation, coupled
with the complexity of providing parallel file systems
that perform reliably at such scales. More than just
being a bottleneck, parallel I/O performance at scale
is notoriously variable, being influenced by numerous
factors inside and outside the application, thus making
it extremely difficult to isolate cause and effect for
performance events. In this paper, we propose a statistical
approach to understanding I/O performance that moves
from the analysis of performance events to the exploration
of performance ensembles. Using this methodology, we
examine two I/O-intensive scientific computations from
cosmology and climate science, and demonstrate that
our approach can identify application and middleware
performance deficiencies — resulting in more than 4×

run time improvement for both examined applications.

I. INTRODUCTION

The era of petascale computing is one of unprece-

dented concurrency. This daunting level of parallelism

poses enormous challenges for I/O systems because

they must support efficient and scalable data movement

between a relatively small number of disks and a large

number of distributed memories on compute nodes. The

root cause of an application’s poor I/O performance

may be found in the code itself, in a middleware library

it relies upon, in the file system, or even in the config-

uration of the underlying machine running the applica-

tion. Worse, there may be unexpected interplay between

these possibilities resulting in significant performance

deterioration [13]. The performance of individual I/O

events can vary by several orders of magnitude from run

to run, making bottleneck isolation and optimization ex-

tremely challenging. It is therefore critical for the high

performance computing (HPC) community to develop

performance monitoring tools and methodologies that

can help disambiguate the sources of I/O bottlenecks

for supercomputing applications.

In this paper, we propose a statistical approach to

understanding I/O behavior that transitions from the

typical analysis of performance events to the explo-

ration of performance ensembles. A key insight is

that although the I/O rate an individual task observes

may vary significantly from run to run, the statistical

moments and modes of the performance distribution are

reproducible. To efficiently collect parallel I/O statistics

in a scalable fashion, we have extended an existing

performance tool called IPM (Integrated Performance

Monitoring) [19] to add I/O operation tracing (IPM-

I/O). IPM is a scalable, portable, and lightweight frame-

work for collecting, profiling, and aggregating HPC

performance information.

Using this tool, we evaluate the I/O behavior on

large-scale Cray XT supercomputers of the Interleaved-

Or-Random (IOR) micro-benchmark as well as two

I/O-intensive numerical simulations from cosmology

and climate modeling. For the MADbench application,

which studies the cosmic microwave background, our

approach helps isolate a subtle file system middleware

problem, that results in performance improvement of

4×. Additionally, our exploration into the 10,240-way

I/O behavior of the global cloud system resolving

model (GCRM) resulted in several successful opti-

mizations of the application and its interaction with

the underlying I/O-library, causing a net performance

increase of over 4×. Overall our work successfully

demonstrates that the statistical analysis of ensembles

can be used effectively to isolate complex sources of

I/O bottlenecks on high-end computational systems.

A. Related Work

There are several performance tools that measure

I/O performance of scientific applications, including

KOJAK [10], TAU [18], CrayPat [9], Vampir [16] and

Jumpshot [8]. All are general purpose tools that include

some I/O measurement and analysis capability. From

the variety of tools available there is a wide range in the

scope of information collected, performance overhead,

and impact on the application being studied. We chose

to use IPM-I/O for this study because of its focus

upon recording a limited set of metrics in a lightweight

manner.

A number of published studies investigate I/O per-

formance on high end systems, as we do in this

paper. One investigation [12] characterizes a large-



scale Lustre installation relating poor performance to

default striping parameters. Another study of high-

end file system performance [20] evaluated the I/O

requirements and performance of several applications

over 18 months. The often unexpected performance

shifts as applications and systems changed over time are

a strong argument for the use of scalable, application-

centric I/O performance tools and methodologies, as

presented in this paper.

Interpreting performance information using statistical

techniques has been the subject of several previous

works. For example, Ahn and Vetter used a variety

of multivariate statistical techniques to analyse per-

formance counter data [5]. This approach is similar

in spirit to ours, in that it attempts to combine large

amounts of performance information into a more com-

pact representation; however, it does not focus on the

specific challenges of understanding large-scale I/O

behavior characteristics.

II. PLATFORMS AND TRACING TOOLS

In this section we briefly define the features of our

experimental platforms and the IPM-I/O trace tool.

A. Architectural Platforms

Most of the experiments conducted for this study

used Franklin, the 9660 node Cray XT4 supercomputer

located at Lawrence Berkeley National Laboratory

(LBNL). Each XT4 node contains a quad-core 2.1 GHz

AMD Opteron processor, which is tightly integrated

to the XT4 interconnect via a Cray SeaStar-2 ASIC

through a 6.4 GB/s bidirectional HyperTransport inter-

face. All the SeaStar routing chips are interconnected

in a 3D torus topology, where each node has a direct

link to its six nearest neighbors. Franklin employs the

Lustre parallel file system as its temporary file systems

scratch and scratch2 each with 24 Object Storage

Servers (OSSs) and with 2 Object Storage Targets

(OSTs) on each OSS.

Additionally, several experiments were conducted on

Jaguar, the Cray XT4/XT5 system located at Oak Ridge

National Laboratory (ORNL), which also uses Lustre.

The combined Jaguar system has 7832 nodes in the

XT4 portion and another 37,544 nodes in the XT5

portion. The results reported in Section IV use the XT4

portion with 72 OSSs hosting 2 OSTs each for a total

of 144 OSTs.

B. IPM-I/O Tracing

IPM has previously [19], [21] been used to un-

derstand computation, communication, and scaling be-

havior of parallel codes. These studies focused on

performance limitations related to the compute node re-

sources (caches, memory, CPU), messaging and switch

contention, and algorithmic limitations. I/O brings with

it a new set of shared resources in which contention

and performance variability may occur. Metadata lock-

ing, RAID subsystems, file striping, and other factors

compound the complexity of understanding measured

wall clock times for I/O. While contention for node and

switch hardware resources do affect, for example, MPI

performance, the impact of contention upon parallel

I/O at scale is much more prevalent and significant,

mostly because there are (generally) relatively few I/O

resources compared to computational ones.

The work reported here employs newly developed

I/O functionality for IPM to generate trace data in a

lightweight, portable, and scalable manner. IPM-I/O

works by intercepting an application’s POSIX I/O calls

into the libc library. To use IPM-I/O an application

is linked against the IPM-I/O library using the -wrap

functionality of the GNU linker, which provides a

mechanism for intercepting any library call. In this

case it redirects POSIX I/O calls to IPM-I/O. During

the application run IPM-I/O collects timestamped trace

entries containing the libc call, its arguments, and

its duration. A look-up table of open file descriptors

allows IPM-I/O to associate events interacting with the

same file. By default IPM-I/O emits the entire trace.

This approach has proved to be scalable for I/O tracing

applications running with up to 10K MPI tasks without

any significant slowdown being observed.

III. PERFORMANCE ENSEMBLES

Most parallel I/O in High Performance Computing

(HPC) is distinct from the random access seen in

transaction processing and database environments [11].

From profiling workloads at supercomputing centers

[17] we have observed that HPC I/O in this environment

frequently involves large-scale data movement, such

as check-pointing the state of the running application.

Furthermore, reviewing user requirements documents

confirms this observation, as do complaints from HPC

users.

In a production supercomputing environment, it is

common that observed details of I/O performance

change from one application run to the next. Factors

affecting performance include the load from other jobs

on the HPC system, task layout, and multiple potential

levels of contention, among numerous others. Our goal

is to determine robust ways of examining I/O perfor-

mance that are stable under the changing conditions

from one run to the next. To this end we examine the

distribution of individual I/O rates observed during a

test, and study the statistical properties of the distribu-

tions.

To present an example of this approach, we first ex-

amine results using the Interleaved-Or-Random (IOR)
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Figure 1: IOR 512 MB transfers using 1024 processors. a) The trace diagram: the y-axis represents the

tasks (1 - 1024) and the x-axis represents time in seconds; blue indicates time spent in write() and white

space indicates all other time. This diagram shows 5 phases of I/O. b) The aggregate data rate over all

tasks (y-axis) is plotted versus wall clock time (x-axis). c) The two distributions each count (y-axis) events

for a given amount of time (x-axis), on different Franklin parallel file systems, scratch and scratch2

(R = 512MB
16MB/s ).

[14] code. IOR is a parametrized benchmark that per-

forms I/O operations for a defined file size, transaction

size, concurrency, I/O-interface, etc. For our experi-

ments, shown in Figure 1, IOR has been configured to

run with 1024 tasks on 256 nodes of Franklin. Each task

writes 512 MB to a unique offset within a shared file,

and does so in a single write() call, followed by a

barrier. This is then repeated five times. The IOR binary

has been augmented with the IPM-I/O library to capture

I/O events. In this context we refer to a particular choice

of test parameters as an experiment and a specific

instance of running that experiment simply as a run.

Figure 1(a) depicts the I/O traces for five runs of

the experiment, all in a single job. Each task’s time

history is represented with a separate horizontal line,

with task 0 at the top and task 1023 at the bottom.

The x-axis is wall-clock time and each trace proceeds

from left to right showing the I/O pattern from the

beginning to the end of the test. Each bar corresponds

to the write (blue) of 512 MB, and its length gives

the duration of the I/O. White space represents non-I/O

activity, which is a barrier wait in these experiments.

Since all of the write calls transfer the same amount,

short bars represent fast I/O and longer bars slower I/O

performance.

The trace in Figure 1(a) shows two phenomena

common to HPC I/O at scale. The first is that the syn-

chronous nature of many applications leads to vertically

banded intervals during which parallel I/O occurs, i.e.,

the I/O happens in synchronous phases. As a conse-

quence the task that arrives last at the barrier will define

the performance of the application for that phase. Thus

a small number of events, or even a single event, can

define the performance of an application. The second

is that there is great variability in the performance

of individual (theoretically identical) I/O events. This

variability appears to be random in the sense that a

given individual MPI task is not consistently slow or

fast. Figure 1(b) shows the instantaneous data rate,

across the 1024 tasks taken together, over the life of

the job. There does seem to be a consistent initial

high plateau around 60 GB/s followed by another brief

plateau around 10 GB/s and a final long tail that is

slower still.

In this situation a statistical representation of the I/O

events provides a clearer picture of the overall perfor-

mance, as shown in Figure 1(c). This is a histogram

of the distribution of completion times for individual

I/O events shown in Figure 1(a), which is from the

scratch file system on Franklin. Figure 1(c) also

shows the distribution from scratch2. We note that

the statistical representations are almost identical, but

the second run of the same experiment on the different

file system produces a trace very different it its specific

details, albeit with a similar overall run time.

Observe that each histogram has three prominent

peaks corresponding to three distinct modes of behav-

ior. The aggregate available data rate from either of the

two file systems is limited to about 18 GB/s by the

network infrastructure, and observed peak performance

is somewhat short of that. Suppose each of the 1024

tasks got a fair share of this aggregate data rate. For a

task to move 512 MB in 30 to 32 seconds, as the peak

labeled “R” indicates, means that task saw about 16 or

17 MB/s — close to the fair share of the peak available

data rate. Note that the other two strong peaks are at the
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(a) two 256 MB transfers
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(b) four 128 MB buffers
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(c) eight 64 MB transfers

Figure 2: IOR 512 MB transfer using 1024 processors where: a) 512 MB written via two 256MB write()

calls. b) Four calls (128MB). c) Eight calls (64MB). Note that the distributions become progressively narrower

and more Gaussian.

second and fourth harmonic for this rate, which implies

that one task on the node (or two) took all the available

I/O resources until it was done, with the other tasks

waiting until it was complete. This implies a particular

order to the processing in the Lustre parallel file system.

Note further that these three peaks do not correspond

to the three plateaus from Figure 1(b). Those modes

reflect filling local system buffers and then having the

off-node communication throttle back the data rate.

Overall, the modes in Figure 1(c) give a much more

precise characterization of the I/O behavior, thus in-

creasing the potential for appropriate diagnosis and re-

mediation (where appropriate). We conclude that while

the performance characteristics of individual I/O events

can behave erratically, the modes by which they occur

are stable. It is this insight that will allow us to see

past the seemingly random individual I/O performance

measurements to address potential bottlenecks. This

transition from mechanistic analysis of isolated systems

of events to the analysis of ensembles resembles the

successful strategy of statistical physics whereby large

numbers of interacting systems can be described by

the properties of their ensemble distributions such as

moments, splittings and line-widths.

A. Statistical Analysis

In the upcoming discussions on the statistics of

observed I/O times we allude to two commonplace

observations about statistical ensembles. The first is

Order Statistics — in particular, the N th order statistic

for a sequence of N observations is the largest value

in the ensemble, and its distribution fN (t) is given by:

fN (t) = NF (t)N−1f(t) (1)

where f(t) is the probability density function for the

I/O time for one observation, and F (t) is the cor-

responding cumulative probability distribution. fN (t)

gives the distribution for the longest observation given

the underlying distribution.

As N increases the expression F (t)N−1 quickly con-

verges to a step function picking out a point in the right-

hand tail of the distribution f(t). The distributions in

Figure 1(c), when normalized, give an approximation to

the probability density function f(t) from Equation 1,

and the cumulative probability distribution F (t) is the

integral of f(t) (see Figure 5(a)).

The second observation concerns an application of

the Law of Large Numbers. Let Ti|i ∈ {1 . . . k} be the

time to completion for a sequence of k I/O operations

governed by independent identical distributions with

average µ, and let the completion time tk for the

sequence be the sum of the individual observed I/O

times tk =
∑k

i=1
Ti. The expected value of tk will

converge to kµ as k increases. In other words, the more

samples one takes from a distribution, the closer the

sample average will be to the average of the underlying

distribution.

Figure 2 shows three probability density functions

for a sequence of experiments comparable to that

illustrated in Figure 1. These are the distributions of

tk values measured over all the MPI tasks for three

IOR experiments in which the 512 MB is sent to the

file system in k = 2, 4, and 8 successive write()

calls (using 256, 128, 64MB respectively) — with no

barrier until all 512 MB has been written. The run time

for an experiment, and therefore the reported data rate,

is determined by the slowest I/O operation amongst all

the tasks. In each case the slowest is the N th order

statistic mentioned in Equation 1 for the corresponding

tk.

As the value of k increases the slowest running task

becomes a little faster. In the case of a single 512 MB

write, the run time is approximately 45 seconds (see

Figure 1(c)) and the reported data rates for the 512 MB



(a) MADCAP (b) GCRM

Figure 3: (a) Visualization of high resolution cosmic microwave background sky map, used by MADCAP

to compute the angular power spectrum [6] (b) A pseudocolor plot of a wind velocity variable from a GCRM

data set displayed using the VisIt visualization tool.

experiments is around 11,610 MB/s. The reported data

rate for the 256 MB experiments is 12,016 MB/s, or

about 3% faster. More and smaller transfers continue

the trend with 128 MB experiments getting 13,446

MB/s and 64 MB experiments achieving 13,486 MB/s

— a 16% speedup.

Since the underlying I/O activity in each of these

experiments is the same, it is reasonable to think that

dividing the I/O up into multiple write() calls would

have little on no effect on the overall performance. In

fact one might even expect a small penalty for the extra

system call processing. However, this is not the case.

The worse case behavior improves as k increases be-

cause the distributions are getting narrower. That in turn

is a consequence of the Law of Large Numbers. In other

words, the more opportunities a task has to sample, the

more likely it is to have average performance.

We now explore two scientific computations, MAD-

bench and GCRM, and show how our statistical

methodology can be used to identify bottlenecks and

increase I/O performance.

IV. MADBENCH I/O ANALYSIS

We apply the forgoing insights to the analysis of

two important HPC applications, starting with the Mi-

crowave Anisotropy Data-set Computational Analysis

Package (MADCAP). MADbench is the second gen-

eration of a HPC benchmarking tool [7], [15] that is

derived from MADCAP which is an application that

focuses on the analysis of massive cosmic microwave

background (CMB) data sets. The CMB is the earliest

possible image of the Universe, as it was only 400,000

years after the Big Bang. Extremely tiny variations in

the CMB temperature and polarization encode a wealth

of information about the nature of the universe, and

a major effort continues to determine precisely their

statistical properties. The challenge here is twofold: first

the anisotropies are extraordinarily faint, at the milli-

and micro-K level on a 3K background; and second it is

necessary to measure their power on all angular scales,

from the all-sky to the arc minute. As illustrated in

Figure 3(a), obtaining sufficient signal-to-noise at high

enough resolution requires the gathering — and then

the analysis — of extremely large data sets. Therefore

CMB analysis is often extremely I/O intensive.

MADbench is a lightweight benchmark derived from

MADCAP that abstracts the I/O, communication, and

computation characteristics to facilitate straightforward

performance tuning. It is an out-of-core solver that has

three phases of computation. During the first phase it

generates a series of matrices and writes them to disk

one by one. In the middle phase, MADbench reads each

matrix back in, multiplies it by an inverse correlation

matrix and writes the result back out. Finally, MAD-

bench reads the result matrices and calculates a trace

of their product. In the experiments reported here all

computation and communication has been effectively

turned off, so we can focus exclusively on the I/O

component.

Each transfer of a matrix to or from the file sys-

tem consists of a single large write or read, which

is about 300 MB per MPI task in the experiments

reported here. The write or read is performed using

an MPI-IO call (MPI File write and MPI File read).

Each task manages and computes values for its portion

of a sequence of such matrices — eight of them in

these experiments — and performs I/O to an exclusive

region within a shared file. All matrices for a task

are sequentially ordered in a contiguous file region

(modulo an alignment parameter, which is 1 MB in

these experiments). Overall the I/O pattern from each

MPI task looks like this: 8× (write 300MB), 8× (seek,

read 300MB, seek, write 300MB), 8× (read 300MB).

This I/O pattern is atypical in that it is sensitive to both

read and write I/O rates, most of the available memory
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Figure 4: MADbench 256-task experiment on Franklin (2200 seconds) and Jaguar (275 seconds), showing

the trace data, aggregate I/O rate, and I/O histogram for each platform. Franklin’s slow reads are seen in

the broad right shoulder of the read rate distribution in (c).

is already in use, circumventing file system caching

efficiencies, and the pattern of seek, read, seek, write in

the middle phase of the computation is not a streaming

I/O pattern.

Previous work [7] shows that MADbench exhibits

significantly different performance characteristics un-

der various choices of operating mode and hardware

platforms.

A. Trace-Based Analysis

Figure 4 depicts the I/O traces for two MADbench

single-file experiments at 256 tasks∗ on Franklin and

Jaguar XT4 systems. The I/O traces in Figures 4(a)

and 4(d) were generated via IPM-I/O as described

in Sections II-B and III. In these figures each bar

corresponds to the write (blue) or read (red) of a 300

MB matrix, and its length gives the duration of the

I/O†. White space represents a barrier wait. Since all

of the matrices are the same size, short bars represent

fast I/O and longer bars slower I/O, and the overall per-

∗Traces at other concurrencies show qualitatively similar behavior.
†The attentive reader will note that the middle phase actually

begins with two reads and ends with two writes. See [7] for details.

formance is again dominated by the slowest individual

performers.

The I/O hardware and software infrastructure is dif-

ferent enough between the two systems that a signifi-

cant difference both in I/O pattern and aggregate time

to run the application is apparent. Jaguar, (Figure 4(d)),

shows only modest variability in I/O rate from one task

to the next, whereas Franklin (Figure 4(a)) shows a

much larger variation in I/O performance from one task

to the next. Also the reads in the sequence (seek-read-

seek-write) in the middle third of the computation on

Franklin are sometimes slow, whereas those at the end,

where the sequence is simply eight reads one after the

other, show little variability. (We note here that this is

not simply a quirk of a single run, it occurs at multiple

concurrencies and is reproducible.)

B. Data-Rate Analysis

The slow reading tasks in Franklin’s I/O trace, Fig-

ure 4(a), that cause the long delays stand out sharply,

and those diagrams give an intuitive view of the be-

havior of the application. The difference between the

performance on the two machines is also illustrated

by comparing Figures 4(b) and 4(e) which show the
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I/Os completed versus time deteriorates from read 4 to read 8, leading directly to the discovery of a subtle

system software (Lustre) bug. b) Read histogram before and after bug correction c) Trace file after update

showing removal of catastrophic delays.

instantaneous read and write rates on the two machines.

On Franklin the overall duration of each read increases

from the fourth read (read4) to the eighth read (read8)

and each of these reads has a long tail that continues

until the next write phase.

Figures 4(c) and 4(f) show the histograms for

Franklin and Jaguar respectively. In this case the his-

tograms are presented as log-log plots so that the

different modes, especially the slowest modes, stand

out. The histograms for write() calls on Franklin

and Jaguar in Figure 4 are similar and both show four

strong peaks on the left with less prominent features

trailing to right.

Note that the two write (blue) distributions in Fig-

ures 4(c) and 4(f) display similar performance char-

acteristics, while the read (red) distributions show a

markedly different pattern from each other. For the

Franklin experiment the slowest read() calls vary

from 30 to 500 seconds. It is these expensive reads

that stand out as anomalies in Figures 4(a) and 4(b).

The reads in Figure 4(c) centered around the peak at

15 seconds do not show the usual rounded-peak shape

expected for a mode with some variability. Instead, this

is either several poorly resolved peaks next to each

other, or some broad and flat mode unlike the rest.

C. Performance Resolution

The slow reads on Franklin in Figures 4(a) and 4(c)

all occur in the fourth through eighth reads, as shown

in Figure 4(b). In Figure 5(a) those reads are presented

separately. Figure 5(a) presents the cumulative proba-

bility distribution Fp|p ∈ {4, 5, 6, 7, 8} for the reads in

these phases. That is, each curve in Figure 5(a) gives the

progress of I/O during the phase versus time. Not only

are the slow reads confined to reads 4 through 8, but

they get progressively worse. These two insights lead

directly to determining the source of the bottleneck.

The MADbench I/O pattern aligns each I/O operation

to a 1 MB boundary, and that produces a small gap

between the end of each I/O region and the next. This

strided pattern is one that the Lustre parallel file system

recognizes and takes into account. In particular, the

strided I/O pattern is recognized by Lustre on its third

appearance. Subsequent reads that match the stride (the

fourth and after) get a larger read-ahead window. In the

phase where reads alternate with writes the client-side

system buffers were all full, and Lustre issues one page

(4 kB) reads due to a lack of system memory resources.

This large number of small reads lead to the expensive

delays. The later reads did not suffer this effect because

system memory was not being filled with interleaved

writes.

Due to our investigation, a patch was created for the

Lustre file system that avoids the erroneous window-

size calculation and that patch was installed onto the

Franklin system. The patch removed strided read-ahead

detection entirely and the associated expensive delays.

This improved the overall performance by more than

4.2×. In Figure 5(b) the distribution for reads after the

Lustre patch is applied is superimposed on the read

distribution from Figure 4(c). It is clear that the problem

has been resolved, as also seen in the trace file of

Figure 5(c), where the job run time has been reduced

from 2200 seconds to 520, and the trace is comparable

to that obtained from Jaguar.

V. GCRM I/O ANALYSIS

The Global Cloud Resolving Model (GCRM, Fig-

ure 3(b)), is a climate simulation developed by a
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Figure 6: GCRM using 10,240 tasks writing to a shared file, showing trace graph, aggregate I/O write

rate, and histogram distribution for baseline configuration and three progressive optimizations: (a–c) Baseline

configuration. (d–f) Data written by only 80 tasks. (f–h) Writes padded and aligned to 1MB boundaries.

(j–l) Metadata writes are aggregated into a few large writes.



team of scientists at Colorado State University led by

David Randall [2]. It runs at resolutions fine enough

to accurately simulate cloud formation and dynamics

and, in particular, resolves cirrus clouds, which strongly

affect weather patterns, at finer than 4km resolutions.

Underlying the GCRM simulation is a geodesic-grid

data structure containing nearly 10 billion total grid

cells, an unprecedented scale that challenges existing

I/O strategies. Researchers at Pacific Northwest Na-

tional Lab [1] and LBNL [3] have developed a data

model, I/O library, and visualization pipeline for these

geodesic grids, as well as a GCRM I/O kernel for tuning

I/O performance.

Initially, the I/O library was able to achieve only

around 1 GB/s, a fraction of the available write rate

on Franklin. In order for I/O to consume less than

5% of the total GCRM simulation run time at 4 km

resolution, the GCRM I/O library must sustain at least

2GB/s, and preferably more to facilitate scaling to finer

resolutions. Therefore we employed the diagnostic tools

and methods discussed in earlier sections to investi-

gate and improve performance. Based on this analysis,

we worked with the Hierarchical Data Format (HDF)

Group to optimize the GCRM I/O kernel.

Our baseline configuration uses 10,240 MPI tasks,

each writing the same amount of data, representing

different GCRM variable types. This lead to an I/O

pattern with three writes of a single 1.6 MB record,

each followed by a barrier, then three writes of six 1.6

MB records, followed by another barrier. All the data

was written to a single shared file using H5Part [4], a

simple data scheme and veneer API built on top of the

HDF5 library.

Figures 6(a)–6(c) present the trace graph, write rates

and histogram for the baseline. Figure 6(a) shows the

limited value of a trace graph at this scale; resolving

in detail each of the 10,240 stacked horizontal lines

is extremely difficult. In particular, it is not apparent

that most of the graph is actually white space. HDF5

metadata operations account for the read activity seen

in red in the trace graph.

Figure 6(b) shows that the baseline achieved only a

fraction of Franklin’s available 16 GB/s aggregate write

rate. The peak rate is barely half that, and most of the

run time was spent at rates of less than 2 GB/s. Once

again, the I/O pattern is governed by the worst-case

behavior.

The statistical view is essential to understanding the

behavior of the code. In the histogram (Figure 6(c)),

we plot separate distributions for two buffer sizes, one

corresponding to GCRM records (1.6 MB, blue) and

the other to HDF5 metadata (<3 KB, red). Unlike the

experiments in the previous sections, there are multiple

transfer sizes plotted in the histograms, so we normalize

the histograms to present MB/sec along the top and

sec/MB along the bottom. Faster writes still appear on

the left and slower ones on the right. Each of the 10,240

tasks should ideally access a fair share of approximately

1.6 MB/s, given the available 16GB/s aggregate rate.

Unfortunately, the baseline exhibits a distribution of

per-task data rates with broad peaks well below 1 MB/s

and extending to around 0.5 MB/s. The sustained write

rate over the entire run time was only about 1 GB/s.

The first optimization follows directly from the in-

sight gained in the experiments of Figure 2. Because

each task is executing a small number of writes, we can

benefit from a “collective buffering” scheme (similar to

that of MPI-IO) in which the data is aggregated from

all tasks to a smaller subset of I/O tasks using MPI

communication (stage one) then written to disk using

only the I/O tasks (stage two). In previous IOR tests on

Franklin (not reported here), we observed that as few as

80 tasks can saturate the I/O subsystem. Therefore, we

tested a collective buffering scheme (stage two only) by

running the I/O kernel with 80 tasks, each with 10240

80

= 128× as many write calls. The number, size, and

alignment of the write calls remained unchanged from

the baseline, as did the total amount of data written.

Performance was improved due to the Law of Large

Numbers advantage described in the IOR experiments

in Section III.

The results of this optimization are shown in Fig-

ures 6(d)–6(f); the total run time dropped from 310

seconds to 190 seconds, a 1.6× speedup. Figure 6(e)

shows that the peak data rate did not improve, but the

overall rate is more consistent with less fall off. The

peak of the per-task rate distribution (Figure 6(f)) is 100

MB/s, which corresponds to an aggregate 8 GB/s for the

80 tasks. The worst case per-task rate has improved: the

128 records that each task transfers prior to the barrier

are more likely to average out in performance.

In addition to employing the Law of Large Numbers

advantage, this optimization also reduced the number

of tasks communicating with the 48 I/O servers from

10,240 to 80, which likely reduces contention and

improves I/O server queue depths and service times.

However, even with the optimization, the I/O kernel

obtained a peak data rate of only 5 GB/s and a

sustained write rate of 1.8 GB/s. Thus, we continued

our investigation to identify additional opportunities for

optimization.

In previous IOR experiments on Franklin, we es-

tablished that the Lustre file system prefers aligned

offsets when writing to a shared file. The Lustre client

transfers data to the I/O servers in 1 MB stripes, yet an

examination of our trace data (not shown) revealed that

the GCRM records were not aligned with these stripes.

Using HDF5 library calls, we padded and aligned these



writes to 1MB boundaries. The results are shown in

Figures 6(g)–6(i) and show a run time of 150 seconds,

less than half that of the baseline. Figure 6(h) shows

that the peak write rate has improved and the “bulge”

in the Figure 6(f) distribution between 1MB/s and

0.1MB/s has disappeared, leaving the distribution more

closely centered around its peak. Similarly, the worst-

case per-task rate now lies at 1MB/s rather than 0.5

MB/s. Also, the metadata operations benefited some-

what from alignment with a peak now around 1 MB/s

(Figure 6(i)). From Figure 6(g), it is clear that the

total run time was dominated by the serialized metadata

operations on task 0.

Our final optimization aggregates the metadata writes

from many <3KB writes into a single 1 MB write that

is deferred until file close, rather than at the end of

each run. The results of this optimization are shown in

Figures 6(j)–6(l). The large gaps caused by serialized

writing on task 0 have disappeared and, the total run

time has decreased to 75 seconds. This is a < 4×
improvement over the baseline.

VI. CONCLUSIONS

With the exponential growth of high-fidelity sensor

(ex. MADbench) and simulated (ex. GCRM) data, the

scientific community is increasingly reliant on ultra-

scale HPC resources to handle its data analysis re-

quirements. To use such extreme computing power

effectively, the I/O components must be designed in a

balanced fashion, as any bottleneck will quickly render

the platform intolerably inefficient. However, identi-

fying the root cause of I/O performance deficiencies

is an increasingly challenging task, as the source of

degradation may be found in the application code,

middleware library, file system, underlying architec-

ture — or some combination thereof. To address this

concern, we have developed a statistical approach for

understanding I/O performance that shifts the analysis

from the examination of individual performance events

to the study of performance ensembles.

To collect trace data in a production environment,

we extended I/O functionality to the IPM profiling tool.

Results on large-scale HPC systems, demonstrated that

IPM-I/O allowed lightweight, portable, and scalable

tracing — effectively collecting I/O statistics for our

largest 10,240-way simulation.

Statistical analysis of trace data produced by IPM-

I/O shows that the modes and moments revealed by

the distribution of I/O times can contribute directly to

understanding an application’s I/O behavior and poten-

tial bottlenecks. An examination of the I/O performance

statistics for the IOR benchmark revealed an interesting

and surprising I/O boost due to taking advantage of the

Law of Large Numbers.

Next, we examined the MADbench cosmology appli-

cation, which suffered anomalous performance behav-

ior on the Franklin XT4 platform. Using IPM-I/O data

collection and our performance histogram methodology

allowed us to identify a Lustre file system bug, which

caused an erroneous read-ahead window. The ability

to isolate this subtle I/O interaction between the ap-

plication and middleware layer highlights the efficacy

of our ensemble approach — and resulted in a 4.2×
MADbench speedup once the appropriate Lustre patch

was installed.

Finally, we explored the I/O behavior of a large-scale

10,240-way GCRM climate modeling code. Through

our statistical I/O performance analysis, we discovered

a series of application-level optimizations that dramat-

ically reduced the overall run time from 310 to 75

seconds, an improvement of over 4×.

The three cases described in this paper illustrate the

power of our statistics based approach. We fully expect

that in future as the number of components in HPC sys-

tems increases such approaches will become essential,

so that performance measurements can still be tractably

recorded and analysed. In fact, the reproducible nature

of our performance ensembles suggests that in most

cases it may not even be necessary to store a majority

of the performance data, just enough to define the

distribution.

Future work will build this statistical approach di-

rectly into IPM-I/O, thus moving the data captures from

an I/O tracing paradigm to an I/O profiling paradigm.

This transition promises to improve the scalability of

our method in precisely the same way that program

counter profiling is more scalable than execution trac-

ing. With the ability to recognize modes and moments

of the performance distribution, the IPM-I/O framework

will be expanded to detect an application’s I/O patterns;

thus providing key information to the underlying file

system that can be leveraged for improving I/O behav-

ior.
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