
Parallel Implementation of a Real-Time  
High Dynamic Range Video System 
Benjamin Guthiera,*, Stephan Kopfa, Matthias Wichtlhuberb and Wolfgang Effelsberga 

aDepartment of Computer Science IV, University of Mannheim, 68131 Mannheim, Germany 
bPeer-to-Peer Systems Engineering, University of Darmstadt, 64283 Darmstadt, Germany 

Abstract. This article describes the use of the parallel processing capabilities of a graphics chip to increase the processing 
speed of a high dynamic range (HDR) video system. The basis is an existing HDR video system that produces each frame from 
a sequence of regular images taken in quick succession under varying exposure settings. The image sequence is processed in a 
pipeline consisting of: shutter speeds selection, capturing, color space conversion, image registration, HDR stitching, and tone 
mapping. This article identifies bottlenecks in the pipeline and describes modifications to the algorithms that are necessary to 
enable parallel processing. Time-critical steps are processed on a graphics processing unit (GPU). The resulting processing 
time is evaluated and compared to the original sequential code. The creation of an HDR video frame is sped up by a factor of 
15 on the average.  
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1.  Introduction 

A recurring problem in capturing video is the sce-
ne having a range of brightness values that exceed 
the capabilities of the capturing device. An example 
would be a video camera in a bright outside area, 
directed at the entrance of a building (e.g., see Figure 
1). Because of the potentially big brightness differ-
ence, it may not be possible to capture details of the 
inside of the building and the outside simultaneously 
using just one shutter speed setting. This results in 
under- and overexposed pixels in the video footage. 
The approach used in this article to overcome this 
problem is temporal exposure bracketing, i.e., using a 
set of images captured in quick sequence at different 
shutter settings. Each image then captures one facet 
of the scene’s brightness range. When fused together, 
a high dynamic range (HDR) video frame is created 
that reveals details in dark and bright regions simul-
taneously.  

The process of creating a frame in an HDR video 
can be thought of as a pipeline where the output of 
each step is the input to the subsequent one. It begins 
by capturing a set of regular images using varying 

shutter speeds. For easier processing, the images are 
converted into a different color space. Next, they are 
aligned with respect to each other to compensate for 
camera motion during capture. The aligned images 
are then stitched together to create a single HDR 
frame containing accurate brightness values of the 
entire scene. As a last step, the HDR frame is tone 
mapped in order to be displayable on a regular screen 
with a lower dynamic range.  

It is desirable to perform all necessary steps from 
capturing of the low dynamic range (LDR) images to 
displaying of the HDR frame in real-time. The result 
is a live HDR video that can be viewed instantane-
ously. Example scenarios for such a video are a sur-
veillance camera monitoring the entrance to a build-
ing or an advanced driver assistance system that 
works even in difficult lighting situations like the exit 
of a tunnel. If the goal of the real-time HDR video 
system is to achieve a rate of 25 frames per second, 
all the steps of the HDR pipeline must be completed 
within 40 ms. This requirement necessitates a high 
frame-rate camera, fast algorithms for processing of 
the frames, and a fast implementation. 

This is a preliminary version of an article published by 
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Parallel implementation of a real-time high dynamic range video system.  
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The basis for the work described in this article is 
an existing HDR video system [12]. It implements all 
steps of the HDR video pipeline. The employed algo-
rithms are optimized for reduced capturing costs and 
fast processing speed. They are implemented as 
strictly sequential code running on a CPU. This arti-
cle focuses on a parallel implementation of the steps 
of the pipeline. It makes use of the parallel pro-
cessing capabilities of a modern graphics processing 
unit (GPU). The article begins with an introduction to 
GPU programming in Section 3. A basic understand-
ing of the underlying concepts is necessary to com-
prehend the design decisions made in the later sec-
tions. Section 4 gives an overview of the HDR video 
system to be optimized, outlining the steps of the 
HDR pipeline and their major subtasks. Because im-
plementing an algorithm to run on a GPU can be dif-
ficult, it is preferable to focus on the subtasks that 
benefit from parallelization the most. Considerations 
regarding the necessity and feasibility of a parallel 
implementation are given in Section 5. It also de-
scribes the modifications to the identified subtasks 
that were necessary to process them in a parallel way. 
The performance of the parallel implementation of 
the HDR video system is evaluated in a realistic sce-
nario and compared to the existing CPU implementa-
tion in Section 6. The section also discusses the sys-
tem's run-time behavior when changing the image 
size or the number of captured LDR exposures. 

 
2. Related work  

The fast increase of the computational power of 
personal computers has made the development of 
real-time multimedia systems possible that even al-
low complex video analysis and video processing 
tasks [1]. Parallelization of processing tasks is espe-

cially useful in the case of low-level image pro-
cessing algorithms [2]. 

The goal of our system is to achieve a rate for the 
resulting HDR video of 25 frames per second. We 
defined an upper limit of eight low dynamic range 
exposures per HDR frame. This means that our sys-
tem must be capable of processing 200 LDR frames 
per second in the worst case. Such high frame rates 
necessitate the use of efficient implementations. 
Many of the necessary computations are inherently 
parallel. Oftentimes a simple arithmetic operation 
must be applied to a large number of pixels. Contrary 
to a CPU, which is optimized for executing a low 
number of complex tasks, GPUs are capable of pro-
cessing large numbers of comparably simple tasks, 
which makes them suitable for image and video pro-
cessing tasks. 

Examples of works in the area of GPU implemen-
tations are [6, 17, 18]. Using a GPU, it is even possi-
ble to run complex algorithms like graph cuts in real-
time as presented by Lattari et al. [17]. 

Riego et al. [20] have developed a virtual 3D inter-
face which computes the motion analysis on a GPU. 
They use a parallelized hierarchical Lucas-Kanade 
(HLK) algorithm to calculate the optical flow. In 
contrast to our approach, the authors only consider 
one computation step (the estimation of the optical 
flow) without considering the other steps in detail. 
This approach is applicable, because their required 
30 frames per second are significantly lower com-
pared to the requirements of our system. 

Van den Braak et al. [5] demonstrate how GPUs 
can be used to speed up voting algorithms like the 
computation of histograms or the Hough transform. 
These algorithms are difficult to parallelize due to 
their memory access pattern. Our implementation of 
the histogram computation is very similar to their 
work. 

 

Fig. 1. The inside of the building is much darker than the outside. There is no shutter speed setting that exposes both correctly at the same time. 
A shorter shutter underexposes the inside of the building (left) while a longer shutter overexposes the outside (center). A solution to this prob-
lem is merging the two frames into one HDR frame (right).  



An efficient implementation of Bayer demosaic 
filtering on GPUs was published in [18]. The pre-
sented OpenGL implementation of the Malvar-He-
Cutler filter is two to three times faster than a 
straightforward GPU implementation. 

Some recent work has been published in the area 
of HDR video. Creating HDR videos typically con-
sist of four steps: capturing [7, 13, 21], LDR image 
registration [8, 15], merging LDR frames into an 
HDR frame [23], and tone mapping [3, 4, 9, 16, 19].  

A popular technique to create HDR images is us-
ing a set of LDR images captured in quick sequence 
at different exposure settings. The most challenging 
problem is the estimation of the inverse camera re-
sponse function to map pixel values onto scene radi-
ance [7, 21]. 

Image registration may be avoided if specific 
hardware is used as presented in [23]. The authors 
have developed a system for capturing HDR video in 
cinema quality. They focus on an optical sensor that 
allows the capturing of three LDR frames with dif-
ferent exposure settings simultaneously. Major limi-
tations of their approach are the fixed number of ex-
posures and the high hardware cost for the special-
ized sensors. 

Several techniques have been proposed to deter-
mine suitable exposure settings. Hasinoff et al. pre-
sent an approach to determine noise-optimal expo-
sure settings by using varying gain levels [13]. For a 
given sum of exposure times, increasing gain also 
increases the SNR. The proposed computation of the 
exposure settings is too expensive to be used in a 
real-time scenario. 

Only few image registration techniques are able to 
handle the lighting differences of LDR frames with 
different exposure settings. Kang et al. propose a 
method for estimating camera and scene motion, but 
its computational cost is too high to be used in real-
time [15]. In previous work, we have proposed a fast 
registration algorithm based on threshold images [8]. 

The tone mapping step converts radiance values 
back to suitable 8-bit pixel values for display or stor-
age. Benoit et al. [3] propose a model based on prop-
erties of the human retina. HDR video content is en-
hanced by a non-separable spatio-temporal filter with 
added temporal constancy. A general model for tem-
poral luminance adaptation was proposed by Kraw-
czyk et al. [16]. In accordance with the human visual 
system that reacts to temporal changes in luminance 
conditions, a time constant for the speed of the adap-
tation is introduced. Guthier et al. have developed a 
tone mapping technique for videos which removes 

flicker in a post processing step and is applicable to 
all tone mapping operators [9]. 

To the best of our knowledge, there is no low cost 
system available that allows the creation of HDR 
video in real-time.  
 
3. Considerations for a GPU implementation 

To allow the creation of high dynamic range video 
in real-time, time-critical parts of the HDR pipeline 
are processed on a graphics processing unit. As op-
posed to a CPU with a small number of high-
performance processor cores, optimized for sequen-
tial programs, a GPU has many simple cores that 
complete a large number of simple tasks in parallel. 
Implementing algorithms for a GPU requires a higher 
degree of understanding of the underlying platform 
than a serial CPU implementation. This article thus 
begins by giving an introduction to Nvidia’s Com-
pute Unified Device Architecture (CUDA) which is 
used in the described work. Details can be found in 
Nvidia’s CUDA C Programming Guide1 or in [22], 
which discusses processor and memory organization 
and generally applicable optimization strategies. 

When designing a parallel algorithm for a GPU 
implementation, the specific properties of the hard-
ware must be understood. CUDA classifies GPUs 
into categories with similar compute capabilities, 
allowing independence from hardware details. Be-
tween the GPU classes, the differences are often just 
a matter of parameter adjustment, and all code is 
backward compatible so far. This section introduces 
the architecture common to all CUDA devices, giv-
ing numbers that are specific to the graphics card 
used where applicable. 

The CUDA programming model is a C99 dialect 
with a minimum set of language extensions. At its 
core there are three key abstractions: a hierarchy of 
thread groups, shared memories, and barrier syn-
chronization. This model requires partitioning of the 
problem into many small sub problems that can be 
solved independently or by cooperation of the threads 
within a block. More precisely, for a problem to be 
shifted to the GPU, it must be expressible as a data-
parallel algorithm. Data parallelism describes a pro-
gramming paradigm that suggests the subdivision of 
a problem into smaller sub problems such that the 
same program (kernel) can be executed by a large 
number of threads working on many data elements in 
parallel. 

                                                           
1 http://developer.nvidia.com/cuda/nvidia-gpu-computing-

documentation 



The sum of all threads launched by a GPU within 
one kernel call is called a grid. A grid consists of 
several blocks of threads in a two dimensional struc-
ture. The elements contained in the blocks are light-
weight threads executed by the GPU. In image pro-
cessing, there is often a one-to-one correspondence 
between image blocks (e.g., 32 × 32 pixels) and 
blocks of threads. This means that the image is divid-
ed into pixel blocks which are then each processed by 
one thread block. 

The conceptual structure of grids, blocks, and 
threads is called thread hierarchy. Thread blocks are 
required to be executable independently, in any se-
quential order or in parallel. This requirement allows 
threads to be scheduled in arbitrary order to a flexible 
number of cores, as one block is always executed by 
one core. The graphics card used for this work con-
tains 15 multiprocessors of which each can process 
32 threads at once. 

The data to be processed (e.g., the images) must be 
copied from the host computer’s memory to the 
memory of the graphics card. The GPU distinguishes 
between global, local, and shared memory. They dif-
fer in visibility, size, and access time. Global memory 
is accessible by all threads running on all multipro-
cessors. It is typically several gigabytes in size, but 
accessing it can take up to 800 clock cycles. If data is 
read only and the access pattern exhibits locality, this 
is sped up by level-1 and level-2 caches. The access 
to local memory is restricted to a single thread and is 
very fast. It is comparable to the access to CPU regis-
ters. Shared memory is a user-managed cache that is 
shared among the threads of one block and invisible 
to all other blocks. Its size is 48 kilobytes on the 
GPU in this work, and it can be read or written with-
out latency, similar to a low-level cache or registers. 
Its main purposes are fast temporary data storage and 
communication between the threads of a block. For 
the sake of performance, it should be avoided to use 
the slow global memory wherever possible by keep-
ing intermediate results in local or shared memory. 

Special care must be taken to prevent race condi-
tions when multiple threads write to the same address 
of the shared memory concurrently. The entire 
memory range is split up into 32 interleaved memory 
banks such that successive 32-bit words are assigned 
to successive banks. This means that the 32 threads 
of a block that are processed concurrently can all 
access the shared memory in parallel as long as the 
requested words lie in 32 different memory banks. 
When two concurrent threads access different words 
in the same memory bank at the same time, they can 
only be read sequentially, and the performance gain 

of parallel processing is lost. This must be considered 
when designing algorithms for CUDA. 

There exist two additional read-only caches called 
constant memory and texture memory. Constant 
memory is used for broadcasting read-only values 
quickly to requesting threads. Texture memory is 
interesting in the given scenario as it is an optimized 
cache for 2D access. When a thread accesses the tex-
ture cache, the hardware prefetches values from 
global memory that are close to the fetched value in 
2D (e.g., neighboring pixels). This decreases cache 
misses in image processing applications, leading to a 
large performance gain. Additionally, the texture 
cache offers addressing modes like linear interpola-
tion of values in hardware. Consequently, these oper-
ations are very fast: fetching a linear interpolated 
value does not take any longer than fetching a non-
interpolated one. 

Multiprocessors schedule and execute threads in 
groups of 32 parallel threads called warps. Warps 
each have their own instruction counter and registers. 
They always execute one common instruction at a 
time. If threads diverge due to data-dependent 
branching, the warp serializes which means that 
threads following the branch are executed together 
while all other threads are idle. When all threads are 
on the same path again, execution is merged for the 
whole warp. Such divergent branching thus slows 
down execution speed and is to be avoided in the 
code. 

 
4. Overview over the HDR pipeline 

4.1. Calculation of optimal shutters 

Each frame in the HDR video is created from a se-
quence of differently exposed LDR images. Before 
capturing such an image sequence, suitable shutter 
speeds must be determined. The algorithm for find-
ing an optimal shutter speed sequence is described in 
detail in [10]. It makes use of the existing radiance 
histogram which is a by-product of tone mapping the 
previous HDR frame. Shutter speeds are chosen in a 
way such that radiance values that occur frequently 
in the scene are well-exposed in at least one of the 
captured images. 

The "well-exposedness" of a certain range of radi-
ance values is expressed by a so-called contribution 
function. It is derived from pixel weighting functions 
that are often found in the literature as parts of HDR 
creation techniques [7]. They judge a pixel's useful-
ness for estimating an accurate radiance value from it 



and are generally used during the stitching of images 
into an HDR frame. In the context of shutter speed 
calculation, weighting functions are used to construct 
a combined contribution function for any given se-
quence of shutter values. It indicates how well each 
radiance value can be reconstructed from an exposure 
sequence captured using the given shutter speed se-
quence. In other words, the combined contribution 
function judges the well-exposedness of a certain 
scene brightness range in a sequence of differently 
exposed images. 

The cross correlation between the radiance histo-
gram and the combined contribution function can 
now be calculated, resulting in a total coverage value. 
The coverage value is high when peaks in the histo-
gram correspond well with peaks in the combined 
contribution function. This is equivalent to saying 
that frequently occurring radiance values (peaks in 
the histogram) are well-exposed by a certain shutter 
speed sequence (peaks in the contribution function). 
The algorithm uses this metric to decide which shut-
ter speeds to add to the sequence next. Once an opti-
mal shutter speed sequence is determined, it is trans-
mitted to the camera which then starts capturing. 

It should be noted that the number of shutter 
speeds required to cover a given scene is not known 
in advance. The algorithm stops once the desired 
total coverage is achieved. Furthermore, the com-
bined contribution function changes with each shutter 
speed that is added to the sequence. This must be 
kept in mind for the GPU implementation described 
later. 

4.2. Color conversion 

Digital cameras usually use a Bayer color filter ar-
ray to capture color images. Each sensor pixel then 
only records a specific range of the color spectrum – 
either red, green, or blue. In order to obtain an RGB 
value for each pixel, the two missing components 
must be interpolated from the neighboring pixels. See 
Figure 4 for an exemplary arrangement of red, green, 
and blue pixels. In the example, a red pixel interpo-
lates its blue component from its diagonal neighbors. 
Depending on the position in the array, four cases of 
interpolation exist: red, blue, and two cases of green 
pixels.  

Most processes in the HDR pipeline only operate 
on the brightness of an image and leave color un-
changed. It is thus desirable to separate the brightness 
from the color information. This is done by convert-
ing the image from RGB into the Yxy color space. A 

pixel is then represented by the brightness component 
Y and two color components x and y. The first step 
of the conversion is a matrix multiplication that con-
verts the RGB vector to XYZ. Conversion matrices 
for this step can be found in the literature [14]. The Y 
component is then used directly while the color com-
ponents x and y are derived from the XYZ vector in 
an operation similar to normalization. 

At the end of the HDR pipeline, the created HDR 
frame must be converted back to RGB for display. 
This is done analogously. 

4.3. Histogram-based image registration 

The set of low dynamic range (LDR) exposures 
was captured with camera motion in between. Before 
merging the images into an HDR frame, the horizon-
tal and vertical shift between each pair of exposures 
must be estimated and compensated. Details can be 
found in [8] and [11]. 

First, a so-called Mean Threshold Bitmap (MTB) 
is calculated for each exposure [25]. It is a black and 
white version of the original image with a threshold 
chosen such that 50% of the pixels are black and 
50% white. The threshold is set by first creating a 
brightness histogram and finding its median. The 
advantage of MTBs is that they are – to a certain de-
gree – invariant to exposure change. This is a desira-
ble property for the registration of exposure sequenc-
es. 

Once an MTB is created, its pixels are summed up 
horizontally and vertically to establish row and col-

 

Fig. 2. A mean threshold bitmap. The row and column histograms 
to the left and below respectively count the number of black pixels 
in the corresponding line.  



umn histograms. It is necessary to calculate separate 
histograms counting black and white pixels, because 
pixels near the threshold are ignored. This leads to a 
total of four histograms per exposure and eight histo-
grams for the registration of an exposure pair. See 
Figure 2 for an example. 

Next, the Normalized Cross Correlation (NCC) 
between corresponding histograms of the two expo-
sures is calculated to estimate the intermediate shift. 
In the example of horizontal shifts, the NCC between 
the column histograms of both images is calculated 
for each possible shift value within a predefined 
search range. The shift value leading to the best cor-
relation value is assumed to be the correct one. 

As a last step, all resulting shift vectors are vali-
dated using a Kalman filter to incorporate knowledge 
of the motion in previous frames into the estimation. 
Based on a certainty criterion, the shift vector is used 
directly or interpolated from values obtained in pre-
ceding frames. 

4.4. HDR stitching 

The registered image sequence is merged into an 
HDR frame in a process called HDR stitching. A 
detailed explanation of it can be found in [7]. 

During image capture, the radiance emitted from a 
point in the scene is measured and recorded as a de-
vice-specific pixel value. The goal of HDR imaging 
is to recover the physical radiance again that gave 
rise to a pixel value. A pixel in an HDR frame repre-
sents the radiance at one point in the scene. HDR 
stitching is thus the inverse of the capturing process: 
Estimating radiance from pixel values. This is done 
by applying the inverse camera response function to 
all pixels of all LDR exposures and dividing them by 
their respective shutter speed. Like this, one approx-
imation of the radiance map is obtained from each of 
the exposures. A weighted average over the estimat-
ed radiance maps then yields the real radiance. The 
weighting function used here is identical to the one 
used to determine optimal shutter values. 

4.5. Tone mapping with flicker reduction 

In order to be displayable on a regular screen, the 
large radiance ranges of an HDR frame need to be 
compressed to 8-bit values. Preferably, the compres-
sion is done in a way that maintains as much of the 
gained HDR information as possible. This process is 
called tone mapping. The tone mapper used in this 

work is described in [24]. It is augmented by flicker 
reduction as detailed in [9]. 

The tone mapper in use is a global operator that 
applies the same tone reproduction function to all 
pixels in the HDR frame. This function is derived 
from the cumulative histogram over log radiance 
values in the scene. After normalization and clipping 
of the histogram bins, the cumulative histogram is 
used directly as the mapping function. This is similar 
to histogram equalization. 

For tone mapping, the following steps are neces-
sary. The highest and lowest radiance values in the 
HDR frame must be determined first to set the range 
of histogram bins. A log radiance histogram can then 
be calculated. It is used later to determine the shutter 
speeds for the next frame. Summing up the bins re-
sults in a cumulative histogram. The tone mapping 
function derived from it is then applied to each pixel 
in the HDR frame. 

The described operator was designed with still im-
ages in mind. It is used on each frame of the HDR 
video individually. When doing so, temporal changes 
of the minimum or maximum scene radiance lead to 
rapid changes of the mapping function from one 
frame to the next. This shows up as flicker in the tone 
mapped video. Flicker is thus detected and removed 
in a post-processing step. The average image bright-
ness of each tone mapped frame is calculated. Large 
variations of the average over a short amount of time 
indicate flicker. When flicker is detected, the average 
brightness is adjusted to remove the flicker effect. 
Adjusting the image brightness is done by multiply-
ing the pixels by a certain factor. 
 
5. Parallel Implementation of the subtasks 

Redesigning an algorithm for a parallel implemen-
tation takes considerable effort. It is also more diffi-
cult to assure correctness and to maintain such an 
implementation. The individual steps of the HDR 
pipeline are thus first analyzed with respect to the 
computation time they require and their suitability for 
parallelization. The former is measured easily from 
the existing sequential code. The latter is judged by 
the amount of parallelism a problem exhibits and its 
arithmetic intensity: Parallelism is the percentage of 
instructions that can be executed concurrently; 
arithmetic intensity can be defined as the ratio be-
tween mathematical operations and memory access, 
where a higher arithmetic intensity is preferable for a 
GPU realization. Both criteria are somewhat vague 
but still sufficient for assessing the suitability for a 



parallel implementation. For a more detailed discus-
sion of arithmetic throughput and global memory 
latency see [22]. 

The complete HDR video system described here 
consists of the following parts: Calculation of opti-
mal shutters, capturing images, color conversion, 
histogram-based registration, HDR stitching, histo-
gram adjustment tone mapping with flicker reduction, 
and color back conversion. These parts can be further 
divided into their computationally expensive subtasks. 

 The most expensive step of determining shutter 
sequences is repeatedly calculating the cross correla-
tion between the (existing) brightness histogram and 
the contribution vector.  

Capturing is done by the camera and cannot be 
sped up. The Bayer pattern in the captured LDR im-

ages is first interpolated to full RGB and then con-
verted into Yxy.  

For registration, a brightness histogram must be 
calculated for each LDR image and its median must 
be found. Row and column histograms are then cre-
ated from a temporary MTB and the normalized 
cross correlation (NCC) between them is calculated 
repeatedly. The resulting shift vector is Kalman fil-
tered.  

HDR stitching consists of computing each HDR 
pixel from a weighted average over the correspond-
ing LDR pixels.  

Tone mapping requires the computation of a cu-
mulative log radiance histogram, which consists of 
finding the minimum and maximum radiance, calcu-
lating a log radiance histogram and cumulating the 
bins. Each pixel is then tone mapped from radiance 
to pixel values. To reduce flicker, the average bright-
ness of the tone mapped result must be calculated, 
and the image must be normalized iteratively.  

In the end, the tone mapped image is converted 
back to RGB. 

In the following, all subtasks are analyzed with re-
spect to necessity and feasibility of a parallel imple-
mentation. The results of the analysis are summa-
rized in Table 1. Refer to Section 4 for details. For 
those subtasks that are chosen for a parallel imple-
mentation, the modifications to the algorithms that 
are necessary to run them on a GPU are described as 
well. Subtasks that are similar to each other are dis-
cussed only once.  

5.1. Normalized cross correlation 

The normalized cross correlation between all row 
or column histograms for all possible shift values can 
be calculated independently of each other. A high 
cache hit rate is expected, because the same 
row/column histogram bins are read repeatedly and 
never changed in between. This allows them to be 
bound to the texture cache. Additionally, a high 
arithmetic intensity makes cross correlation well-
suited for parallelization. On the other hand, it is a 
rather cheap operation overall. Cross correlation was 
implemented on the GPU only for image registration 
and not for shutter calculation: The row and column 
histograms were created on the GPU and thus already 
reside in the graphic card’s main memory. Further-
more, they are constant during the entire cross corre-
lation, enabling efficient caching and data independ-
ence. This is not the case when determining optimal 
shutters. The combined contribution, which is repeat-

Table 1 

Overview of the subtasks of the HDR pipeline. Shown are the relative 
computational cost, the amount of parallelism (P), and the arithmetic 
intensity (AI). “high” entries indicate factors that suggest a GPU im-
plementation. Our decision for the type of implementation is given in 
the rightmost column. 

 
Pipeline Step Operators Cost P AI GPU/ 

CPU 

Optimal  
Shutter Seq. 

Cross Correl. low med. high CPU 

Bayer Pattern  
Interpolation 

- high high med. GPU 

Color Space  
Conversion 

- high high high GPU 

 
Image  
Registration 

Brightness 
Hist. 

Median 

Row/Col. Hist. 

NCC 

Kalman Filter 

high 

low 

high 

low 

low 

med. 

med. 

high 

high 

low 

low 

low 

low 

high 

high 

GPU 

CPU 

GPU 

GPU 

CPU 

HDR Stitching Weighted Avg. high high high GPU 

 

 

Tone Mapping 

 

Min / Max 

Brightness 
Hist. 

Hist. Cumul. 

TM Operator 

Avg. Bright-
ness 

Normalization 

high 

high 

low 

high 

high 

high 

med. 

med. 

med. 

high 

med. 

high 

low 

low 

low 

high 

low 

med. 

GPU 

GPU 

CPU 

GPU 

GPU 

GPU 

Color Back  
Conversion 

- high high high GPU 

 
 



edly correlated with the brightness histogram, chang-
es after each determined shutter speed. This adds a 
sequential dependence to the calculation, making it 
less suitable for parallelization. Since it is a cheap 
operation, the existing sequential code was kept. 

To compute the NCC between two row or column 
histograms, one thread is started for each shift s in 
the search range. Each thread calculates the normal-
ized cross correlation for its shift and writes the result 
of the calculation to its corresponding position in the 
result vector. In the end, the result vector is down-
loaded into the host memory. A sequential search on 
the CPU finds the position of the highest correlation 
value. Figure 3 illustrates the process. 

5.2. Bayer pattern interpolation 

For bilinearly interpolating a pixel’s RGB value 
from its neighbors, four cases need to be differentiat-
ed based on the pixel’s location on the color filter 
array. This means that without further modification, 
this method leads to massive branching in the kernel. 
On the other hand, an interpolation kernel can benefit 
from texture caching, because the access pattern is 
highly local in 2D. It is also a highly parallel problem. 
Its arithmetic intensity varies with the pixel position 
with an average of 0.65 arithmetic operations per 
memory access. 

A naive implementation iterates through the image 
and interpolates the missing pixel values differently 
depending on the four possible locations in the Bayer 
grid. In order to avoid branching, a thread relocation 
mechanism was implemented which is illustrated in 
Figure 4. It changes the relationship between a pixel 
and the thread which does the interpolation. Normal-
ly, a thread would be responsible for interpolating the 
RGB values for a pixel matching the thread’s posi-
tion in the 2D grid. Neighboring threads would then 

be executed at the same time sharing the same in-
struction counter. In this situation, the different 
branching of the threads would lead to a serial execu-
tion and low performance. Relocating the threads so 
that those corresponding to pixels with matching lo-
cation on the color filter array are executed simulta-
neously avoids branching. For example, in the Figure, 
every thread in block 4 can now calculate its blue 
component from its left and right neighbors. 

5.3. Color conversion, tone mapping, normalization 

Color space conversion, as well as applying the 
tone mapping operator and image normalization, are 
ideally suited for a GPU implementation since they 
fully comply with the data parallelism paradigm [5]. 
No branching takes place as each element is treated 
in the same way. Each image pixel is read and writ-
ten exactly once. Additionally, all three operations 
have a high arithmetic intensity caused by the multi-
plication and addition of pixel values. 

We limit our description here to the parallel im-
plementation of color conversion. The same also ap-
plies to using a global tone mapping operator and to 
image normalization. The implementation of the ker-
nel for color conversion from RGB to XYZ is the 
translation of a color conversion matrix into code. 
Again, one thread is started per pixel. The RGB val-
ues for the conversion are read from the pixel corre-
sponding to the thread. These values are multiplied 
by the color transformation matrix. The resulting 
XYZ vector is then normalized to obtain the chroma-
ticity xy and the brightness Y. These values are writ-
ten back to the three channels of the pixel in the out-
put image. Afterwards, the result can either be passed 
on to the next kernel (e.g., image registration), or it 
can be displayed in the case of the final back conver-
sion to RGB. 

 

Fig. 3. Normalized cross correlation between two column histograms H1 and H2 to determine the horizontal shift s between two images. A 
thread is started for each value in the result vector to be calculated. The values represent the correlation for a specific shift.  



5.4. Brightness histogram 

During the creation of a brightness histogram, data 
must be written to a small set of memory addresses 
(the histogram bins) for all of the pixels. This induces 
a certain data dependence and leads to thread colli-
sions and sequential writing. Additionally, there is 
very little computational work between the memory 
accesses. Despite these difficulties, it was considered 
for a GPU implementation because it is a costly op-
eration overall. Our implementation is similar to the 
one proposed in [5]. 

The image over which the histogram is computed 
is first subdivided into rectangular areas of size 32 × 
64 pixels. To calculate a histogram, each block has to 
perform 2048 read and write operations on the histo-
gram bins in global memory. This would take many 
clock cycles, and the operations would be strictly 
serial. Instead, the paradigm of parallel reduction is 
applied. That is, histograms for small image areas are 
created first and then successively merged into one 
final histogram over the entire image. 32 threads are 
started per block. Each thread computes a separate 
histogram with 64 bins over one row of the block 
which is written to the fast shared memory. The his-
togram has only 64 bins for efficiency purposes. In-
terleaving of the histograms in shared memory such 
that a whole histogram resides on the same memory 
bank allows for conflict-free memory access by the 
threads, and true parallelism can be achieved. The 
banks of shared memory and the way the histograms 
are stored is illustrated in Figure 5. 

Next, the 32 histograms of the block are summed 
up into a single histogram for the block. Since the 
content of the shared memory expires when the 

threads terminate, the same 32 threads must be re-
used for summation. Each thread is assigned two bins 
of the total histogram. It loops through the 32 histo-
grams (vertically in Figure 5) and maintains two 
sums. It must be noted that each histogram resides on 
its own memory bank. If all threads started with the 
first histogram, the 32 read operations to the same 
bank would be serialized, leading to bad performance. 
Instead, summation loops start with a different histo-
gram for each thread (shifted by one relative to its 
predecessor thread). Like this, all summations can be 
done in parallel without bank conflicts. The final 
sums (i.e., the histogram for the block) are then writ-
ten to global memory by an atomic add function pro-
vided by CUDA. 

With this approach, the number of write operations 
to global memory is reduced from 2048 to 64 per 
block. Pixel data is read from global memory as a 
texture which allows for efficient caching. 

5.5. Median computation 

There exist parallel sorting algorithms, so the 
problem of finding the median of a histogram can be 
parallelized. However, the problem size of searching 
through a number of histogram bins is too small to 
justify the effort. 

5.6. Row and column histograms 

The creation of a mean threshold bitmap can be 
viewed as an intermediate step to the computation of 
row and column histograms. Both operations have a 
low arithmetic intensity. The creation of a threshold 

 

Fig. 5. Simplified illustration of shared memory with 8 memory 
banks and 64 addresses. Consecutive addresses lie on consecutive 
banks. The histograms are interleaved such that each lies on its 
own bank. Eight threads can write concurrently.  

 

Fig. 4. Each pixel is assigned one thread to interpolate its RGB 
values from the surrounding. The threads with the same number 
belong to the same block and are executed at the same time. This 
leads to threads with different colors in their neighborhood running 
simultaneously, and branching becomes necessary. After relocating 
the threads, each thread in the block can interpolate in the same 
way.  



bitmap has high parallelism as each pixel can be con-
verted separately. Computation of row and column 
histograms brings up a similar issue as brightness 
histogram computation: An entire row/column ac-
cesses the same histogram bin. However, in this case, 
this access is predictable and can be optimized. 

For the registration of an image pair, a total of 
eight row or column histograms are created. All his-
tograms are calculated separately by similarly im-
plemented method calls. On a GPU, this is more effi-
cient than running one parameterized method with 
code branching. For simplicity, only the creation of a 
column histogram counting black pixels for every 
column of an image is described here. 

The image is subdivided into blocks of 32 × 32 
pixels. This time, one thread is started for each pixel 
in the block. Each thread computes the thresholded 
value of its respective pixel, that is, the thread checks 
if its pixel is darker than the threshold and writes a 1 
into shared memory if it is. The mean threshold bit-
map is thus created in shared memory only. Care is 
taken that the set of 32 threads that are executed con-
currently on a multiprocessor write the bit to 32 sepa-
rate memory banks. Pixel data is again read from 
global memory as a texture. 32 of the threads are then 
re-used to count the black pixels of each column. 
Each thread is assigned one of the columns of the 
block. The thread loops through all rows to count the 
1s in shared memory. An entire row resides in the 
same memory bank (see Figure 5). So, in order to 
prevent bank conflicts, the threads each start count-
ing from a different row so that all 32 read operations 
can be done in parallel. The sum of black pixels in a 
column is then added to the column histogram in 
global memory using an atomic add operation. 

5.7. Kalman filtering 

Filtering only takes about 16 μs on a CPU, so its 
computational effort is negligible and thus left on the 
CPU. 

5.8. HDR stitching 

HDR stitching complies well with the data paral-
lelism paradigm. The radiance value of each HDR 
pixel can be obtained independently without a need 
for synchronization. The arithmetic intensity of this 
operator is high due to the addition and multiplica-
tion of pixel values and the evaluation of the 
weighting function. 

HDR stitching cannot use the GPU’s texture cache 
to access the LDR exposures to be stitched. This is 
because the CUDA compiler needs to know the 
number of texture cache bindings in advance before 
compilation; however, the number of LDR exposures 
is dynamically chosen. Depending on the parameters 
of the shutter speed selection algorithm [10], a large 
and unbounded number of images may need to be 
captured. Furthermore, due to the way we capture 
exposures [12], their size may vary in each frame. 

The LDR sequence can be viewed as a 3D stack of 
images with varying size. This stack of images re-
sides in the global memory of the GPU. One thread is 
started for each HDR pixel which iterates through the 
corresponding pixels in the stack of exposures and 
calculates the weighted average. During one iteration, 
the current radiance and chrominance values and the 
cumulated weight of all pixels must be held in local 
memory (registers). The radiance and the two chro-
minance values are then written to the output image 
in global memory as floating point values. Contrary 
to the CPU version, the GPU implementation does 
not precalculate the weighting function or stores it in 
memory. Experiments showed that calculating only 
the required weights on the fly is cheaper than ac-
cessing the precalculated array from all threads. 

5.9. Minimum, maximum, and average 

Calculating a cumulative log radiance histogram 
for tone mapping starts by finding the minimum and 
maximum log radiance in the HDR image. This is 
similar to calculating the average image brightness 
for flicker reduction. By employing so-called parallel 
reduction, these processing steps can be made paral-
lelizable to some extent. The arithmetic intensity is 
low, because very little computational work is done 
between the memory accesses. We implemented it 
for the GPU, because it is a costly operation overall. 

To illustrate parallel reduction, we describe the 
calculation of the maximum of a one-dimensional 
array here. This technique is applied to the calcula-
tion of the minimum, maximum and average of the 
pixels in an image. 

Parallel reduction is an iterative divide-and-
conquer approach. In the first iteration, one thread is 
started for each element in the array. Each thread 
calculates the (trivial) maximum of the element, 
which is simply the element itself, and writes it to 
shared memory. Every other thread is then discarded. 
In the next iteration, the remaining threads calculate 
the maximum of their element and its neighbor and 



again write it to shared memory. In each iteration, the 
number of threads is halved, and maxima are com-
bined with their neighbors. This is repeated until only 
one global maximum is left which can then either be 
written to global memory or copied back to the host 
system. 

5.10. Cumulative log radiance histogram 

The same considerations as for general brightness 
histograms described above apply to the computation 
of the cumulative log radiance histogram. The only 
exception is the summing up of the histogram bins. It 
has negligible computational costs and does not re-
quire a GPU implementation. 
 
6. Experimental results 

The following performance aspects of the HDR 
video system were assessed: 

 
 processing times of the subtasks of the HDR 

pipeline when changing the image size, 
 processing times when changing the number of 

exposures, 
 average capturing and processing times in a 30 

seconds HDR video under realistic conditions, 
 comparison of CPU and GPU processing times. 
 
The individual subtasks were grouped together as 

seen fit for the analysis. Displaying the processed 
video frames means copying them into the memory 
of the graphics card. Since the last step in the pipe-
line – color conversion from Yxy back to RGB – is 
performed on the GPU anyway, displaying the result 
is a free operation and thus ignored in the following. 

For all experiments, a desktop PC was used which 
is equipped with an AMD Athlon II X2 250 64-bit 
CPU with two cores running at 3 GHz and a total of 
4 GB of RAM. The installed graphics card is an 
Nvidia GeForce GTX 480 with 15 multicores run-
ning at a clock rate of 1.4 GHz and 1.5 GB of dedi-
cated memory. Each multicore can process 32 
threads at once. The used camera is an AVT Pike F-
032C FireWire camera capable of capturing 208 
frames per second in VGA resolution. It uses a Bayer 
color filter array to acquire color images. 

The computation time of most of the steps in the 
HDR pipeline depends on the size of the images. In 
the experiment described here, the relationship be-
tween processing time and image size is analyzed. 
Most parts of the GPU implementation are optimized 

specifically for the image width of 640 pixels. 
Changing this in the implementation would bias the 
results of this test. However, different image heights 
were considered in the implementation to accommo-
date the outputs of the employed capturing method. 
This fact is used to investigate the relationship be-
tween image size and processing time. The images in 
this experiment all had the full width of 640 pixels 
and a height varying from 100 to 480 pixels.  

For each size, a sequence of five exposures was 
captured once and processed 20 times by the entire 
HDR pipeline to obtain stable average processing 
times. The steps from Bayer pattern interpolation to 
the computation of row and column histograms were 
thus performed five times in each iteration, cross 
correlation and filtering was done four times, and 
HDR stitching needs to take five exposures into ac-
count. All the subsequent steps work on just one 
HDR image.  

The content of the images has no significant influ-
ence on the processing times. The shutter speeds 
were thus set to an arbitrary value that exposes the 
recorded indoor scene well. Most steps of the pipe-
line depend on the image size in an obvious way as it 
influences the number of pixels or blocks to process. 
Only the processing steps of shutter speed computa-
tion and Kalman filtering are completely unaffected. 
Figure 6 shows the measured processing times versus 
image height. Debayering and the initial color con-
version are grouped together. Excluding apparent 
measurement noise, the computation times of the 
pipeline steps grow linearly in the number of pixels, 
as expected. 

 

Fig. 6. Processing time versus image height for a fixed number of 5 
exposures. The two solid lines are image registration (blue) and 
color conversion (red). They both use the left scale ranging from 0 
to 6 ms. The dashed lines use the right scale. They are tone map-
ping (blue), HDR stitching (red) and color back conversion (green).  



Now, the image size is kept at its maximum of 640 
× 480 pixels and the number of LDR exposures is 
varied instead. The only steps that need to process a 
varying number of exposures are color conversion 
from RGB to Yxy, Bayer pattern interpolation, image 
registration, and HDR stitching. The initial color 
conversion and debayering are again grouped togeth-
er. In order to perform registration, at least two imag-
es must be present in the sequence. The number of 
exposures thus varies from two to ten and, again, the 
measurement was repeated 20 times on the same se-
quence for a stable average. The shutters were chosen 
to match the given scene. Figure 7 shows the meas-
ured processing times versus the number of expo-
sures. Again, the dependency is linear, as expected. 

For the final test, 30 seconds of HDR video mate-
rial was captured in a realistic scenario using the 
HDR video system. The camera was situated inside a 
room illuminated only by sunlight shining through a 
window on a sunny day. During the 30 seconds, the 
camera pans from the bright window towards the 
darker room and eventually towards a door leading to 
an even darker hallway. The video thus includes very 
bright, very dark, and mixed lighting conditions. It 
consists of 733 HDR frames. Averaged over the en-
tire video, an HDR frame was created from 3.62 
LDR exposures. On the average, 29.8 ms per frame 
were spent for capturing and 13.6 ms for processing. 
This results in a total time per frame of 43.4 ms and 
an average frame rate of 23 fps. 

The time to create an HDR frame from beginning 
to end is more closely inspected in Figure 8. The top 
left chart shows the fractions of the computation time 
of the steps of the HDR pipeline. Color conversion 
from RGB to Yxy, back to RGB and debayering is 
grouped together. The other sub-figures show how 

computation time is further divided among the sub-
tasks for color conversion, image registration, and 
tone mapping. 

For comparison, the entire video was processed 
again using a fully optimized CPU implementation. 
The computation times were now 56 ms for color 
conversion, 24 ms for image registration, 43 ms for 
HDR stitching and 80 ms for tone mapping. This 
leads to an average processing time of 203 ms per 
frame. The GPU implementation is thus faster by a 
factor of 15 on the average. 

 
7. Conclusions 

This article presented the GPU implementation of 
a high dynamic range video system. It gave an over-
view of the system and outlined the major steps from 
capturing to display of an HDR frame. Before paral-
lelizing the HDR pipeline, it was analyzed for neces-
sity and feasibility of a parallel implementation. The 
main decision criteria were computational cost, 
arithmetic intensity and the amount of data parallel-
ism of the subtasks. The HDR algorithms had to un-
dergo modifications to make them suitable for execu-
tion on a GPU. 

The performance of the GPU implementation was 
evaluated using 30 seconds of HDR video captured 
in real-time under realistic conditions. The system 
achieved a frame rate of 23 frames per second. It is 
thus fast enough for real-time HDR video. Compared 

 

Fig. 7. Processing time versus number of exposures for full images. 
Only those steps that process multiple LDR exposures are consid-
ered.  

 

Fig. 8. Percentage of the time taken to perform the steps of the 
HDR pipeline in the test video. The steps of color conversion, 
image registration, and tone mapping are further subdivided into 
their individual tasks.  



to the CPU implementation, a speedup by a factor of 
15 was achieved. 

The experiments showed that after parallelization, 
the bottleneck now lies in capturing of the exposure 
sequence. 69% of the time taken to create an HDR 
frame was spent for capturing. In order to increase 
the frame rate further, it is sensible to focus on image 
capturing next. Possible improvements could be us-
ing a bigger lens to allow for shorter shutter speeds, 
stronger decoupling of capturing and processing or 
employing different capturing hardware. 
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