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Abstract—Image segmentation in the medical field is one of 

the most important phases to diseases diagnosis. The bias field 

estimation algorithm is the most interesting techniques to correct 

the in-homogeneity intensity artifact on the image. However, the 

use of such technique requires a powerful processing and quite 

expensive for big size as medical images. Hence the idea of 

parallelism becomes increasingly required. Several researchers 

have followed this path mainly in the bioinformatics field where 

they have suggested different algorithms implementations. In this 

paper, a novel Single Instruction Multiple Data (SIMD) 

architecture for bias field estimation and image segmentation 

algorithm is proposed. In order to accelerate compute-intensive 

portions of the sequential implementation, we have implemented 

this algorithm on three different graphics processing units (GPU) 

cards named GT740m, GTX760 and GTX580 respectively, using 

Compute Unified Device Architecture (CUDA) software 

programming tool. Numerical obtained results for the 

computation speed up, allowed us to conclude on the suitable 

GPU architecture for this kind of applications and closest ones. 

Keywords—Image segmentation; Bias field correction; GPU; 
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I. INTRODUCTION 

In the medical image area, segmentation of anatomical 
structures is a key step for medical applications such as 
diagnostics, planning and act operation. Medical images 
contain a lot of information, and often few of structures are of 
interest. Segmentation allows visualization of the structures of 
interest and removing unnecessary information. It also enables 
structure analysis such as calculating the volume of a tumor, 
and performing feature-based image-to-patient as well as 
image-to-image registration, which is an important part of 
image guided surgery. 

In magnetic resonance imaging, the in-homogeneities of 
intensities, called bias field, are caused by non-uniformities in 
the Radio Frequency RF field during the acquisition. The 
result is a shading effect where the pixel or voxel intensities of 
same tissue class vary slowly over the image domain. This 
shading can cause severe errors when attempting to segment 
corrupted images using intensity-based pixel classification 
methods. It has been shown that this shading is well modeled 
by the product of the original image and a smooth, very slowly 
varying multiplier field [1, 2]. 

In recent literature the authors in [3] proposed modified 
classical fuzzy c-mean algorithm to be able to get a handle on 
the intensity in-homogeneities and noisy image effectively. 
Authors in [4] have demonstrated that the combination of the 
iterative nonparametric non uniformity normalization and 
FCM correction method brightens the signal intensity of fatty 
tissues and that separates the histogram peaks between the 
fibro glandular and fatty tissues to permit an accurate 
segmentation between them. In the work of Huan Jun Ding 
and al [5] they have investigated the feasibility of volumetric 
breast density quantification with two computer assisted 
image segmentation methods on medical magnetic resonance 
imaging (MRI) scans of 40 postmortem breasts.  

However, the use of their method is expensive in terms of 
time execution. In fact, most image segmentation methods 
proposed in the literature are computationally expensive, 
especially when run on large medical datasets, and requires 
powerful hardware to meet desired speed processing.  

It also requires several techniques and algorithmic 
calculation models, which may be sequential or parallel using 
elementary processors, cellular automata, or neural networks. 
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In [6] Jaber Juntu and al have discussed two approaches to 
remedy the problem of the bias field corruption. The one can 
be used as a preprocessing step where the corrupted MRI 
image is re-established by dividing it by an estimated bias 
field signal using a surface fitting approach. The other 
approach explains how to edit the fuzzy c-means algorithm so 
that it can be used to segment an MRI image degraded by a 
bias field signal. The authors in [7] have proposed a fast 
spatially constrained kernel clustering algorithm in order to 
segment medical magnetic resonance imaging (MRI) brain 
images and correct the intensity in-homogeneities. VOVK 
Uroš and al [8] gave a review of different methods for 
correction of intensity in-homogeneity in MRI, they classified 
the methods according to the in-homogeneity correction 
strategy and different, qualitative and quantitative, evaluation 
approaches. Earlier, authors in [9] suggested a method that has 
been applied to 3T and 7T, they have achieved desirable 
results, and also their method was robust according to 
initialization. According to all this studies and developed 
algorithms for image processing, the reach of GPUs has made 
a revolution in the scientific community by using the power of 
parallel calculations that are well suited to this type of card. 

Graphic processing units (GPUs) were originally created 
for rendering graphics. Recently, GPUs has emerged as co-
processing units for Central Processing Units (CPU) and has 
become popular for general-purpose high performance 
computation (GP-GPU) which is mainly attractive and used by 
many researchers [10-12], to accelerate various digital signal 
processing applications, including medical image processing 
[13-15]. GPUs are composed of hundreds of processing cores, 
highly decoupled, able to achieve immense power of parallel 
computing. To take advantage of these multi-core 
architectures, these applications must be parallelized. 

Among the images segmentation algorithms with intensity 
in-homogeneities correction on GPU architecture, authors in 
[16] proposed an extended mask-based version of the level set 
method with bias field, recently presented by Li et al. [17]. 
They develop CUDA implementations for the original full 
domain and the extended mask-based versions, and compare 
the methods in terms of speed, efficiency, and performance. 
The GPU implementation of their version allows a speed up of 
around 50−100 times for instance, for 512×512×128 slices. 

Other researchers have suggested different implementation 
categories of FCM [18] on GPU in order to accelerate the 
running time.  Anderson & al [19] suggested a GPU solution 
for the Fuzzy C-Means. They have used OpenGL and Cg to 
achieve approximately two orders of magnitude computational 
speed-up for some clustering profiles using an 
NVIDIA8800GPU card. Then they generalized the system for 
the use of non-Euclidean metrics [20]. On the other and they 
tried to provide computational intelligence researchers the 
skills necessary to exploit the low cost and high performance 
of GPUs with a minimum learning cost [21]. 

In other works authors implemented a parallel version of 
FCM on GPU using openGL and Cg language [22]. They 
reached about 2× speedup over the sequential implementation. 

Rowinska and Goclawski [23] have focused on 
accelerating the clustering of the FCM algorithm on GPU 

using CUDA. They compared their implementation with its 
C++ sequential implementation, as well as a MATLAB 
version. In their papers FCM clustering was applied to 
segment polyurethane foam images. The NVIDIA GeForce 
GTX560 card was used to perform the parallel experiments, 
while Intel Core i3 processor was used for the sequential 
implementation. As a result, they showed that their parallel 
methods have achieved about 10×speed up over the sequential 
implementation and it was 50 to100× faster than the 
MATLAB version. 

In [24] authors proposed a parallel implementation of 
brFCM which is a faster version of the standard FCM, they 
tested their algorithm on two GPU cards, Tesla M2070 and 
Tesla K20m, where the implementation provides about 2.24x 
speedup. The brFCM implementation achieves a speed up of 
23.42x compared to the traditional FCM. Lately in [25] the 
authors have introduced a modified FCM algorithm that 
improved the calculations of the membership matrix and the 
centers update. Their upgrade version was implemented using 
CUDA on GPU hardware to rise: the execution time, the 
visual, and the segmentation efficiency. The experiments used 
different images of different sizes. They used GTX260 and 
Intel Core 2 Duo to run the GPU and CPU experiments. The 
authors achieved at least 10x improvements over the 
sequential FCM version. 

Shalom et al. [26] proposed an implementation to improve 
the computational time of FCM on big data sets using GPU. 
The practical works were developed on a multidimensional 
yeast gene expression data set. The researchers stored the 
distance and membership matrices in the texture memory. The 
CPU carried out the initial step of the algorithm. 
Subsequently, the GPU held the most running time parts of the 
algorithm which are the iterative tasks such as distance 
calculations, membership calculations, and new cluster centers 
computations. They developed the experiments on two 
different GPU cards, GeForce 8500GT and GeForce 
8800GTX. The comparison between the parallel and the serial 
implementations proves an up to 140x speedup on 8800GTX 
according to the CPU implementation. Moreover, the GPU 
implementation showed an up to 73x speedup on 8500GT. 

In [27] the researchers implemented and analyzed a 
parallel dynamic functional connectivity (DFC). algorithm in 
GPU using two approaches, the first is thread-based and the 
second is block-based, moreover they have also parallelize the 
DFC using openMP on fMRI data, they have reached a 
speedup ranging from18.5x to 157x on GPU and 7.7x with 
openMP respectively. 

In this paper, our contribution is mainly intended to 
parallelize the BCFCM algorithm [28] on massively parallel 
architecture. Our algorithm leads to a better accuracy on 
segmentation than FCM. But, it is more time consuming. In 
order to remedy this issue we have exploited the performance 
of NVIDIA graphic card (GPU) to implement a version that 
accelerates successfully the BCFCM. We will try later, to 
detail our method that gives more promising results. 

The rest of this paper is organized as follows. In Section II, 
we summarized the fine-grained parallel model used (GPU of 
NVidia) and its software development environment (CUDA). 
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Section III presents a review of the sequential version of the 
clustering algorithm BCFCM proposed in [28]. Section IV, 
deals with our parallel implementation for the original and 
extended algorithms as well as the details of the parallelization. 
In Section V, we present our findings, compare the results and 
performance speed-ups. Section VI, concludes the paper and 
gives some perspectives for this work. 

II. PARALLEL ARCHITECTURE MODEL 

In this section we will give a summary presentation of the 
computational model and the software development 
environment choosing for the implementation of the 
algorithm. It is related to GPU massively parallel architecture 
and it’s SDK CUDA. 

A. NVidia GPU Architecture 

Modern GPUs are massively parallel processors that 
support a large number of elementary processors. They are 
particularly well suited for exploring the calculations on many 
data types that have high arithmetic intensity. Currently, GPU 
architecture is composed of an evolving set of processing units 
flows (SM, SMX Streaming Multiprocessor or: next-
generation Streaming Multiprocessor). Such a multiprocessor 
contains a number of cores (scalar processor), a multithreaded 
instruction unit, number of registers, local memory and shared 
memory (Fig.1). The number of processor cores and 
multiprocessor depends on the architecture and model of the 
GPU. 

 
Fig. 1. NVIDIA GPU Grid, Block and Thread hierarchy in CUDA 

The fundamental characteristic of the architecture of the 
GPU is that it has a massively parallel architecture that 
supports a large number of threads destined to end fine-
grained calculation. Each parallelization scheme exploits the 
ability of mass GPU computing and provides a good load 
balancing, because each thread executes the same amount of 
computation. 

B. CUDA: Compute Unified Device Achitecture 

CUDA is a software development environment based on 
the C language for GPUs from NVIDIA unveiled in 2007 
[29]. It’s constituted by a parallel programming model and a 
set of dedicated instruction. The CUDA codes are compiled 

using the NVCC compiler [30]. It allows the programmer to 
define C functions, called kernels, which are executed in 
parallel by multiple CUDA threads (instantiation of a kernel). 
The programmer organizes these threads into a hierarchy of 
grids of thread blocks (Fig.1). A block of threads is a set of 
concurrent threads that can cooperate with each other through 
barrier synchronization and shared access. During execution, 
the threads can access data at different levels of hierarchy: 
registers, shared memory and global memory. The global 
memory is accessible by all threads, but its access time is 
about 500 times slower than the access time to the shared 
memory and registers. 

The treatment of elementary processes (threads) on the 
GPU is not independent. Indeed, the threads are executed in 
groups called Warps, where in a warp given (32 threads), all 
threads execute the same instruction (SIMD). 

III. BACKGROUND: A BIAS FIELD CORRECTION (BC) FUZZY 

C-MEANS (FCM) ALGORITHM (BCFCM) 

The standard FCM [18] objective function for partitioning 

an MRI image containing  N

kkx
1

pixels into C clusters is 

given by: 
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jiu , :  The degree of membership of data jx in the cluster 

vi, 

vi: The prototypes (or center) of the cluster i, 

N: The total number of pixels in the MRI image 

p: A weighting exponent parameter on each fuzzy 
membership value, it determines the amount of fuzziness of 
the resulting classification according to : 
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The observed MRI signal is modeled as a product of the 
true signal generated by the underlying anatomy, and a 
spatially varying factor called the gain field. 

kkk GXY   (3) 

Where Xk and Yk are the true and observed intensities at the 
k

th
 pixel, respectively, Gk is the gain field at the k

th
 voxel. The 

application of a logarithmic transformation to the intensities 
allows the artifact to be modeled as an additive bias field; 

kkk xy   (4) 

Where xk and yk are the true and observed log-transformed 

intensities at the k
th

 pixel, respectively, and k is the bias field 

at the k
th

 pixel. 
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Ahmed et al [28] proposed a modification to (1) by 
introducing a term that allow the labeling of a pixel (Voxel) to 
be influenced by the labels in its immediate neighborhood. 
The modified objective function is given by: 














 

   kr Ny

irr

C

i

N

k

p

ik

r

ikk

C

i

N

k

p

ikm vyu
N

vyuJ
2

1 1

2

1 1




  (5) 

Where: 

Nk: Set of neighbour’s pixels that exist in a window around 
xk. 

Nr: Cardinal of Nk 

 : Neighbours effect 

The new membership function is then given by: 
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Where: 
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The cluster prototype (centroid) updating is done by the 
expression: 
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The estimated bias field is given by the expression: 
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Algorithm 1 explains the main steps of this algorithm. 

Algorithm 1: Bias field Correction fuzzy C-Means Algorithm 

(BCFCM) 

1: Set the parameters C, p, Nr and . 

2. Choose the stop criteria: Error, 

3: Initialize the centroïds vector V and estimated bias field  . 

4: repeat 

5: Update the membership value U using Eq. (6) 

6: Update the cluster center vector V using Eq. (9) 

7: Update the bias field estimated matrix  using Eq. (10) 

8: until ErrorVV oldnew  . 

 

IV. PARALLEL FUZZY C-MEANS ALGORITHM FOR BIAS 

FIELD ESTIMATION AND SEGMENTATION (PBCFCM) 

The main objective of the algorithm is to obtain 
simultaneously a bias field correction and image 
segmentation. However the expensive computation of this 
algorithm in its sequential version leads us to exploit the 
(SIMD) GPU architecture which is the adequate model for this 
kind of algorithms.Fig.2, illustrates the strategy used to 
distribute the data, at coarse-grained (Blocks) and fine-grained 
(threads) levels. 

The main idea is to split the image over the GPU so that 
each pixel presented by one thread can execute its own 
instructions independently. 

 

Fig. 2. Data distribution strategy for PBCFCM on GPU 

For this algorithm we start with initializing the centroids 
vector and the variables, then allocate and transfer data from 
CPU to GPU before the loop iteration. Note that we have used 
two main kernels, one to compute the membership function 
and the second to compute the estimated bias field. 

Once in the loop, we called the first kernel that computes 
both operations, the membership function and the expressions 
for updating centroids. Next step we update the cluster centers 
vector in CPU, then we transfer the new computed vector to 
the GPU in order to compute the new estimated bias field, and 
finally verify the criteria termination based on cluster 
variation. 

The major problem of execution time in our case, is the 
large data transfer time that eat up the memory. While for 
small image size, data transfer between CPU and GPU is 
negligible and can even sometimes be preferable. 

In this paper, we present a bias field correction fuzzy c-
means implementation which exploits the shared memory for 
data and constant memory for centroids in addition of 
registers. While, the part assigned to be executed in CPU is 
the division operation for the results updating of cluster and 
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the criteria termination test. Those two operations are assigned 
to CPU since they do not require processing power. The data 
transfer cost of cluster centers to constant memory may nearly 
be ignored compared to the iteration cost. Note that the 
allocation on device and data transfer are done only one time 
before starting the loop iteration, to avoid the latency caused 
by transferring data back and forth from the CPU and GPU. 

The Parallel bias field Fuzzy c-means classification 
algorithm is achieved using the following stages: 

Algorithm 2: Parallel bias field correction Fuzzy C-Means 

algorithm (PBCFCM). 

Stage 1:  

- Initialize the class centers Vi, (i = 1,...,C). This is carried out 

by selecting C points in the gray level scale [0,…,255].  

- Read the input data file.  

- Initialize the main variables of the algorithm in the CPU. 

Stage 2: Copy the pixels data, the initial clusters and the 

estimated bias field to the GPU. 

Stage 3: Allocate the memory of the membership matrix on 

the GPU. 

Stage 4: Compute the membership values based on cluster 

center for each data member. 

Stage 5: Compute expression needed for updating clusters on 

GPU. 

Stage 6: Update the clusters centers on the CPU. 

Stage 7: Transfer the new cluster centers to the GPU. 

Stage 8: Compute the new estimated bias field according to 

the new clusters on GPU. 

Stage 9: Check the difference between the current clusters 

value and its previous one. Test (If the stopping 

condition is reached) then exit; else return to Stage 4. 

Stage 10: Output the final results. 

V. RESULTS AND DISCUSSION 

A. Experiment setup 

Algorithms on host (serial and parallel) were implemented 
using Microsoft VC++ program and CUDA 7.5 libraries. 
Sequential BCFCM algorithm is computed to obtain reference 
runtimes in C and compiled within Microsoft Visual Studio 
2013 (Debug mode). Speed-up results were carried out on 
many devices: Intel(R) Core(TM) i7-4770 8 cores, 3.5GHz 
(CPU1), Intel(R) Core(TM) i7-4770 8 cores, 2.4 GHz (CPU2), 
GeForce GT740m, GTX760 and GTX580 GPUs. An example 
of specifications for tested processor and GPU equipment are 
summarized in Table 1 and the operating system was 64-bits 
Windows 7. 

B. Implementation and Validation 

To highlight the effectiveness of the proposed method, we 
extensively experiment both versions, sequential and parallel, 
of the clustering algorithm on different clinical brain images 
from online training database BRATS2012 [31] that offer a set 
of pathological cerebral MRI data. Before this implementation 
and in order to measure the performance of the proposed 
implementation in term of time execution, we have used the 
well-known Lena sample image and segment it into its 
optimal number of clusters which equals to 7 [32] on CPU and 

on GPU for different sizes that varies from 1024 to 6553600 
pixels. This first assessment stage is done to identify perfectly 
the behavior of our implantation program on different 
computational GPU cards. In this section, the parameters set 
to validate and test the performances of our implementation 
for Lena image are as follow: 

C=7, p=2, Nr=8 and α =0.85 (α represents the neighbors 
effect as mentioned in [28] for low-SNR images). 

To evaluate our implementation, we compared its 
performance to a sequential equivalent. For this purpose, 
runtime for serial execution was measured on the host 
processor that was obtained from single-core execution and 
referenced (TABLE.I). The GPU based computing duration 
for the same experiment parameters is compared with single-
core timing. In GPU performance evaluation, the allocation on 
device and data transfer is done only one time before the loop 
iteration to avoid the latency caused by transferring data back 
and forth from the CPU and GPU. We calculate the time of 
the application after the file I/O, in order to show the speedup 
effect more clearly. The speedup results are normalized to the 
baseline which is the serial implementation. 

TABLE I.  HARDWARE SPECIFICATION OF A CPU AND ONE OF THE THREE 

GPUS (CORE I7, GT 740M) USED IN EXPERIMENTS 

Device Feature Value 

CPU1 

Name i7 4770M 

Frequency 3.5 GHz 

Number of cores 8 

Installed memory 16 GO 

GPU1 

Name GT 740 

Multiprocessor count 2 

CUDA cores 384 

Memory bus width 64 bits 

Warp Size 32 

Total global memory 2048MB 

Shared Memory per block 49152 octets 

Max threads per block 1024 

Max threads per multiprocessor 1024 

Memory clock rate 900Mhz 

Speed up of the proposed parallel algorithm (PBCFCM) is 
related to the image size.  The larger the size is, the more we 
get a better speed-up. This rule is not obvious because 
sometimes a low acceleration can be obtained. Furthermore 
and according to Fig.3, GPU cards do not have a linear 
acceleration, we can see that there is almost saturation, but 
there is always a slight speedup increase as shown in the 
following Fig.3. 

 

Fig. 3. Evolution of speed-up versus image size on different GPU devices 

for 32 bit configuration 
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Experimental results shown above illustrate two behaviors 
for the three types of GPU cards: GT 740M, GTX 760 and 
GTX 580, respectively. 

Indeed: 

- From 1024 pixels to 50526 pixels, the behavior is linear 
for the three devices, 

- From 50526 up to 2359296 pixels the behavior is almost 
parabolic for GT 740m and GTX 760 while for the GTX 580, 
the parabolic behavior ends only at the value 3686400 pixels. 

Beyond these experimental critical values, we note that, 
the speed-up tends slowly to the saturation state. 

Also note that the maximum speed-up is achieved for the 
GTX 580 that is almost 5x faster than GT 740M and 2.5x 
faster than GTX 760. 

The speed-ups reached for this figure are 52x, 20x and 13x 
for GTX 580, GTX 760 and GT 740 respectively for image 
size up to about to 7 Mega pixels. 

According to our study, it seems clear that the performance 
speed-up depends on the strength of the GPU and the CPU 
configuration. Fig. 4 confirms the influence of the x64 
configuration. Indeed treatment on images to this resolution is 
better than on x32 configuration (Fig. 3) for the same parallel 
implementation of the algorithm and different GPU. 

Performance improvement is manifested on the three 
curves of the speed-up to an x64 configuration. The maximum 
values of speed-up obtained are of the order of 63x, 41x and 
19x for GTX 580, GTX 760 and GT 740 respectively for 
image size up to about to 7 Mega pixels. 

 
Fig. 4. Evolution of speed-up versus image size on different GPU devices 

for 64 bit configuration 

In most cases and for large image sizes the suitable card 
having more performance in CUDA language is GTX 580 
proved in this study. 

To illustrate the impact of the resolution on the same 
graph, Fig. 5 shows the implementation speed up results of the 
parallel algorithm PBCFCM over sequential algorithm 
BCFCM, executed on three GPU cards and confronted the two 
types of configurations, namely win32 and x64. 

 
Fig. 5. Speed-up comparison for win32 and win x64 behavior on three GPU 

devices 

Indeed, on the graph of Fig.6, the impact of a very high 
resolution is mainly shown on the curves where the resolution 
is x64 for the three types of GPU cards. On the other hand, for 
the same types of cards and even implementation of algorithm 
relating to x32 resolution, the speed-up is significantly lower 
than for x64 resolution. This feature is noticed on the three 
curves of the graph of figure 6 with x32 resolution. In order to 
evaluate the performance of the proposed GPU-BCFCM, we 
present in Fig.6 the variation of the execution time for 
iteration versus the picture size for the three types of the tested 
devices. 

 
Fig. 6. The variation of execution time per iteration versus image size on 

different GPU devices 

We can clearly see that the variation of execution time per 
iteration is straight line and strongly related on the 
performance of the used card. According to our 
measurements, significant slopes were notified in a decreasing 
order for: GT740M, GTX 760 and GTX 580 respectively. We 
found: 

SGT740M =2.8 10
-7

 

SGTX760 =1.5 10
-7

 

SGTX580 =6.1 10
-8 

All these slops are defined the ratio: 
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We note that the performance test of these cards 
corresponds to the lower slope. This is given for GTX 580 
(SGTX580) which has the fastest execution time. 

We conclude that GTX 580 still better choose due to its 
performances compared to GTX 760 or GT 740M related to 
the slopes of experimental straight lines we introduced in this 
meaningful study. 

The interest of the study that we conducted is clearly 
manifested for large image sizes. This is validated 
experimentally for different tests and different GPU cards. 
This study shows another aspect on performance analysis in 
terms of data storage effect on the performance of each card 
(data exchange inside memory card). 

Another aspect of GPU performance can be sorted out by 
inspecting their computation power by testing them by a large 
amount of computation for a fixed data size. To do so, we 
extend the measurement for a fixed image size of 1024x1024, 
and run the FCM algorithm for a number of clusters ranging 
from 2 to 14 as in Fig.7 that shows the variation of speed-up 
according to number of clusters for different GPU devices. 

 
Fig. 7. Speed-up variation versus clusters number for Lena image size of 

1024x1024 

The results investigated in this paper are very relevant as 
long as they validate the highest importance of GPU 
processing optimization. This means that how to find optimal 
material for a given image processing requiring a given 
amount of memory and powerful ability of computation. 

The speed varies almost linearly according to the number 
of cluster, for GT 740M, GTX 760 and GTX 580, 
respectively. 

In fact, the values minima and maxima are ranging 
between 2.07x up to 14.64x for GT 740M, and between 3.31x 
up to 29.63x and finally for GTX 580 the speedup is ranging 
from 4.01x up to 52.6x. 

The curves experimentally defined are close straight lines 
with dimensionless speed-up are defined per percentage and 
given as speedup ratios performance (SRP): 

    
                          

                         
     

So, for each GPU device we have:  

SRPGT740M= SC14GT740M/SC2GT740M *100 =70.7%, 

SRPGTX760=SC14GTX760/SC2GTX760 *100 =89.5%, 

SRPGTX580=SC14GT740m/SC2GT740m *100 =131.1%. 

According to these numerical results and parameters 
performance defined, we conclude that, GTX 580 is faster and 
powerful than GTX 760 which is also faster than GT740M. 

Referring to Fig.8 and Fig.9, the image used for this 
measurement is 6.5536 million pixels of size. The figure 
below represents time execution in second versus the used 
devices categories. 

In fact, for serial execution we got as result "62.6 s" which 
is the highest value comparing to GTX 580 of value 1.2s, 
GTX760 of value 3.1s and GT740M of value 5.6s respectively 
(Fig.8). 

 
Fig. 8. Comparison of execution time for serial and parallel implementation 

on three devices 

However, after the results expressed experimentally, it is 
clear that the parallel implementation is very benefic for 
images ranging from medium-sized to large. On the other 
hand, Fig.9 shows the speed-up reached in our experimental 
measurements, for GTX580, GTX760 and GT740M, the 
values obtained are 52.16x, 20.16x and 11.19x, respectively. 

 
Fig. 9. Speedups of the parallel implementations over the serial one for Lena 

image size of.6.5536 million pixels 

C. Application example 

To illustrate the effectiveness of the proposed PBCFCM 
algorithm we present in fig.10 an application example on T2-
weighted MRI image which contains melanoma tumor. This 
image was segmented into 5 clusters (Background, LCR, GM, 
WM and Tumor). 
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Figure 8 (b) shows the estimated Bias field, this was 
obtained by scaling the bias-field values from one to 255. 
Figure 8 (c) represents the corrected image after removing the 
bias field of figure 8(b).  Figure 8 (d) shows the segmented 
image. 

Both the parallel and the sequential algorithms was also 
applied to different MRI datasets image corrupted by bias 
field artefact and demonstrated its high performance in terms 
of correction and  speed up according to the sequential version. 

BCFCM is an algorithm that takes more time to estimate, 
correct and segment MRI images compared to fuzzy c-mean 
because it includes additional procedures that make 
segmentation and correction of intensity in-homogeneity 
based on neighborhoods. Its variants have high computational 
complexities that limit their applicability. The large image 
sizes processing needed by the medical applications motivates 
the researchers to increase the computation of the enhanced 
algorithms and take the advantages of the modern GPU of 
high processing ability. 

a) b) 

c) d) 

Fig. 10. Example of application.  a) Test image, b) Bias-field estimations 

using PBCFCM algorithm: this was obtained by scaling the bias-field values 
from one to 255, c) Corrected image, d) 5 clusters segmented image 

VI. CONCLUSION AND PERSPECTIVES 

In this paper we presented a parallel implementation of 
bias field algorithm PBCFCM which is an enhanced version 
of fuzzy C-means that correct the in-homogeneity intensity 
and segment the image simultaneously. In fact, many 
parameters and performance indices are introduced according 
to the realized measurements on different devices. Our results 
are translated into meaningful graphs, showing the impact of 

architecture on the card and the spot to which it was intended. 
The speed-up depends on the strength of the GPU, on the 
image size and on the number of clusters. Larger is the 
processing amount, the speed-up is higher. 

For GTX 580 the speed-up increases until 52x versus the 
image size and also versus the number of clusters that is 
limited in this study to C=14. The obtained curves which are 
straight lines show that the speed-up is proportional to the 
number of clusters. For GTX 760 the speed-up increase until 
20x versus image size and 29x versus the number of clusters, 
while for GT740M it reached 11x versus image size and 14x 
versus the number of clusters. 

We can conclude from this study that whatever the 
performance of the graphic cards, it is necessary to take into 
account the amount of data to be processed before elaborating 
any parallel approach. The material performance test 
procedure remains obvious to fit the physical parallel 
architecture to the computational model algorithm and     data 
inquiry. 

As perspective to this work, we will establish an analytical 
model for the variation of the speed up versus the data size at 
first. This model will be improved by introducing the number 
of clusters especially for MRI classification domain. This 
study will be specifically launched for the three GPU cards 
used in our experiments. 
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