
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

375 | P a g e

www.ijacsa.thesai.org

Parallel Implementation of Bias Field Correction

Fuzzy C-Means Algorithm for Image Segmentation

Noureddine AITALI

SSDIA Laboratory, ENSET-Mohammedia

Hassan II University

Casablanca, Morocco

Bouchaib CHERRADI

SSDIA Laboratory, ENSET-Mohammedia

Hassan II University, Casablanca, Morocco

Equipe STICE, CRMEF, El Jadida Morocco

Ahmed EL ABBASSI

PIM Laboratory, FST Errachidia

Moulay Ismail University, Morocco

Omar BOUATTANE

SSDIA Laboratory, ENSET-Mohammedia

Hassan II University

Casablanca, Morocco

Mohamed YOUSSFI

SSDIA Laboratory, ENSET-Mohammedia

Hassan II University

Casablanca, Morocco

Abstract—Image segmentation in the medical field is one of

the most important phases to diseases diagnosis. The bias field

estimation algorithm is the most interesting techniques to correct

the in-homogeneity intensity artifact on the image. However, the

use of such technique requires a powerful processing and quite

expensive for big size as medical images. Hence the idea of

parallelism becomes increasingly required. Several researchers

have followed this path mainly in the bioinformatics field where

they have suggested different algorithms implementations. In this

paper, a novel Single Instruction Multiple Data (SIMD)

architecture for bias field estimation and image segmentation

algorithm is proposed. In order to accelerate compute-intensive

portions of the sequential implementation, we have implemented

this algorithm on three different graphics processing units (GPU)

cards named GT740m, GTX760 and GTX580 respectively, using

Compute Unified Device Architecture (CUDA) software

programming tool. Numerical obtained results for the

computation speed up, allowed us to conclude on the suitable

GPU architecture for this kind of applications and closest ones.

Keywords—Image segmentation; Bias field correction; GPU;

Non homogeneity intensity; CUDA; Clustering

I. INTRODUCTION

In the medical image area, segmentation of anatomical
structures is a key step for medical applications such as
diagnostics, planning and act operation. Medical images
contain a lot of information, and often few of structures are of
interest. Segmentation allows visualization of the structures of
interest and removing unnecessary information. It also enables
structure analysis such as calculating the volume of a tumor,
and performing feature-based image-to-patient as well as
image-to-image registration, which is an important part of
image guided surgery.

In magnetic resonance imaging, the in-homogeneities of
intensities, called bias field, are caused by non-uniformities in
the Radio Frequency RF field during the acquisition. The
result is a shading effect where the pixel or voxel intensities of
same tissue class vary slowly over the image domain. This
shading can cause severe errors when attempting to segment
corrupted images using intensity-based pixel classification
methods. It has been shown that this shading is well modeled
by the product of the original image and a smooth, very slowly
varying multiplier field [1, 2].

In recent literature the authors in [3] proposed modified
classical fuzzy c-mean algorithm to be able to get a handle on
the intensity in-homogeneities and noisy image effectively.
Authors in [4] have demonstrated that the combination of the
iterative nonparametric non uniformity normalization and
FCM correction method brightens the signal intensity of fatty
tissues and that separates the histogram peaks between the
fibro glandular and fatty tissues to permit an accurate
segmentation between them. In the work of Huan Jun Ding
and al [5] they have investigated the feasibility of volumetric
breast density quantification with two computer assisted
image segmentation methods on medical magnetic resonance
imaging (MRI) scans of 40 postmortem breasts.

However, the use of their method is expensive in terms of
time execution. In fact, most image segmentation methods
proposed in the literature are computationally expensive,
especially when run on large medical datasets, and requires
powerful hardware to meet desired speed processing.

It also requires several techniques and algorithmic
calculation models, which may be sequential or parallel using
elementary processors, cellular automata, or neural networks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

376 | P a g e

www.ijacsa.thesai.org

In [6] Jaber Juntu and al have discussed two approaches to
remedy the problem of the bias field corruption. The one can
be used as a preprocessing step where the corrupted MRI
image is re-established by dividing it by an estimated bias
field signal using a surface fitting approach. The other
approach explains how to edit the fuzzy c-means algorithm so
that it can be used to segment an MRI image degraded by a
bias field signal. The authors in [7] have proposed a fast
spatially constrained kernel clustering algorithm in order to
segment medical magnetic resonance imaging (MRI) brain
images and correct the intensity in-homogeneities. VOVK
Uroš and al [8] gave a review of different methods for
correction of intensity in-homogeneity in MRI, they classified
the methods according to the in-homogeneity correction
strategy and different, qualitative and quantitative, evaluation
approaches. Earlier, authors in [9] suggested a method that has
been applied to 3T and 7T, they have achieved desirable
results, and also their method was robust according to
initialization. According to all this studies and developed
algorithms for image processing, the reach of GPUs has made
a revolution in the scientific community by using the power of
parallel calculations that are well suited to this type of card.

Graphic processing units (GPUs) were originally created
for rendering graphics. Recently, GPUs has emerged as co-
processing units for Central Processing Units (CPU) and has
become popular for general-purpose high performance
computation (GP-GPU) which is mainly attractive and used by
many researchers [10-12], to accelerate various digital signal
processing applications, including medical image processing
[13-15]. GPUs are composed of hundreds of processing cores,
highly decoupled, able to achieve immense power of parallel
computing. To take advantage of these multi-core
architectures, these applications must be parallelized.

Among the images segmentation algorithms with intensity
in-homogeneities correction on GPU architecture, authors in
[16] proposed an extended mask-based version of the level set
method with bias field, recently presented by Li et al. [17].
They develop CUDA implementations for the original full
domain and the extended mask-based versions, and compare
the methods in terms of speed, efficiency, and performance.
The GPU implementation of their version allows a speed up of
around 50−100 times for instance, for 512×512×128 slices.

Other researchers have suggested different implementation
categories of FCM [18] on GPU in order to accelerate the
running time. Anderson & al [19] suggested a GPU solution
for the Fuzzy C-Means. They have used OpenGL and Cg to
achieve approximately two orders of magnitude computational
speed-up for some clustering profiles using an
NVIDIA8800GPU card. Then they generalized the system for
the use of non-Euclidean metrics [20]. On the other and they
tried to provide computational intelligence researchers the
skills necessary to exploit the low cost and high performance
of GPUs with a minimum learning cost [21].

In other works authors implemented a parallel version of
FCM on GPU using openGL and Cg language [22]. They
reached about 2× speedup over the sequential implementation.

Rowinska and Goclawski [23] have focused on
accelerating the clustering of the FCM algorithm on GPU

using CUDA. They compared their implementation with its
C++ sequential implementation, as well as a MATLAB
version. In their papers FCM clustering was applied to
segment polyurethane foam images. The NVIDIA GeForce
GTX560 card was used to perform the parallel experiments,
while Intel Core i3 processor was used for the sequential
implementation. As a result, they showed that their parallel
methods have achieved about 10×speed up over the sequential
implementation and it was 50 to100× faster than the
MATLAB version.

In [24] authors proposed a parallel implementation of
brFCM which is a faster version of the standard FCM, they
tested their algorithm on two GPU cards, Tesla M2070 and
Tesla K20m, where the implementation provides about 2.24x
speedup. The brFCM implementation achieves a speed up of
23.42x compared to the traditional FCM. Lately in [25] the
authors have introduced a modified FCM algorithm that
improved the calculations of the membership matrix and the
centers update. Their upgrade version was implemented using
CUDA on GPU hardware to rise: the execution time, the
visual, and the segmentation efficiency. The experiments used
different images of different sizes. They used GTX260 and
Intel Core 2 Duo to run the GPU and CPU experiments. The
authors achieved at least 10x improvements over the
sequential FCM version.

Shalom et al. [26] proposed an implementation to improve
the computational time of FCM on big data sets using GPU.
The practical works were developed on a multidimensional
yeast gene expression data set. The researchers stored the
distance and membership matrices in the texture memory. The
CPU carried out the initial step of the algorithm.
Subsequently, the GPU held the most running time parts of the
algorithm which are the iterative tasks such as distance
calculations, membership calculations, and new cluster centers
computations. They developed the experiments on two
different GPU cards, GeForce 8500GT and GeForce
8800GTX. The comparison between the parallel and the serial
implementations proves an up to 140x speedup on 8800GTX
according to the CPU implementation. Moreover, the GPU
implementation showed an up to 73x speedup on 8500GT.

In [27] the researchers implemented and analyzed a
parallel dynamic functional connectivity (DFC). algorithm in
GPU using two approaches, the first is thread-based and the
second is block-based, moreover they have also parallelize the
DFC using openMP on fMRI data, they have reached a
speedup ranging from18.5x to 157x on GPU and 7.7x with
openMP respectively.

In this paper, our contribution is mainly intended to
parallelize the BCFCM algorithm [28] on massively parallel
architecture. Our algorithm leads to a better accuracy on
segmentation than FCM. But, it is more time consuming. In
order to remedy this issue we have exploited the performance
of NVIDIA graphic card (GPU) to implement a version that
accelerates successfully the BCFCM. We will try later, to
detail our method that gives more promising results.

The rest of this paper is organized as follows. In Section II,
we summarized the fine-grained parallel model used (GPU of
NVidia) and its software development environment (CUDA).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

377 | P a g e

www.ijacsa.thesai.org

Section III presents a review of the sequential version of the
clustering algorithm BCFCM proposed in [28]. Section IV,
deals with our parallel implementation for the original and
extended algorithms as well as the details of the parallelization.
In Section V, we present our findings, compare the results and
performance speed-ups. Section VI, concludes the paper and
gives some perspectives for this work.

II. PARALLEL ARCHITECTURE MODEL

In this section we will give a summary presentation of the
computational model and the software development
environment choosing for the implementation of the
algorithm. It is related to GPU massively parallel architecture
and it’s SDK CUDA.

A. NVidia GPU Architecture

Modern GPUs are massively parallel processors that
support a large number of elementary processors. They are
particularly well suited for exploring the calculations on many
data types that have high arithmetic intensity. Currently, GPU
architecture is composed of an evolving set of processing units
flows (SM, SMX Streaming Multiprocessor or: next-
generation Streaming Multiprocessor). Such a multiprocessor
contains a number of cores (scalar processor), a multithreaded
instruction unit, number of registers, local memory and shared
memory (Fig.1). The number of processor cores and
multiprocessor depends on the architecture and model of the
GPU.

Fig. 1. NVIDIA GPU Grid, Block and Thread hierarchy in CUDA

The fundamental characteristic of the architecture of the
GPU is that it has a massively parallel architecture that
supports a large number of threads destined to end fine-
grained calculation. Each parallelization scheme exploits the
ability of mass GPU computing and provides a good load
balancing, because each thread executes the same amount of
computation.

B. CUDA: Compute Unified Device Achitecture

CUDA is a software development environment based on
the C language for GPUs from NVIDIA unveiled in 2007
[29]. It’s constituted by a parallel programming model and a
set of dedicated instruction. The CUDA codes are compiled

using the NVCC compiler [30]. It allows the programmer to
define C functions, called kernels, which are executed in
parallel by multiple CUDA threads (instantiation of a kernel).
The programmer organizes these threads into a hierarchy of
grids of thread blocks (Fig.1). A block of threads is a set of
concurrent threads that can cooperate with each other through
barrier synchronization and shared access. During execution,
the threads can access data at different levels of hierarchy:
registers, shared memory and global memory. The global
memory is accessible by all threads, but its access time is
about 500 times slower than the access time to the shared
memory and registers.

The treatment of elementary processes (threads) on the
GPU is not independent. Indeed, the threads are executed in
groups called Warps, where in a warp given (32 threads), all
threads execute the same instruction (SIMD).

III. BACKGROUND: A BIAS FIELD CORRECTION (BC) FUZZY

C-MEANS (FCM) ALGORITHM (BCFCM)

The standard FCM [18] objective function for partitioning

an MRI image containing N

kkx
1

pixels into C clusters is

given by:

2

1 1

ik

C

i

N

k

p

ik vxuJ

 (1)

jiu , : The degree of membership of data jx in the cluster

vi,

vi: The prototypes (or center) of the cluster i,

N: The total number of pixels in the MRI image

p: A weighting exponent parameter on each fuzzy
membership value, it determines the amount of fuzziness of
the resulting classification according to :

C

i

N

k

ikikik iNukuuU
1 1

,0,1,1,0 (2)

The observed MRI signal is modeled as a product of the
true signal generated by the underlying anatomy, and a
spatially varying factor called the gain field.

kkk GXY (3)

Where Xk and Yk are the true and observed intensities at the
k

th
 pixel, respectively, Gk is the gain field at the k

th
 voxel. The

application of a logarithmic transformation to the intensities
allows the artifact to be modeled as an additive bias field;

kkk xy (4)

Where xk and yk are the true and observed log-transformed

intensities at the k
th

 pixel, respectively, and k is the bias field

at the k
th

 pixel.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

378 | P a g e

www.ijacsa.thesai.org

Ahmed et al [28] proposed a modification to (1) by
introducing a term that allow the labeling of a pixel (Voxel) to
be influenced by the labels in its immediate neighborhood.
The modified objective function is given by:

 kr Ny

irr

C

i

N

k

p

ik

r

ikk

C

i

N

k

p

ikm vyu
N

vyuJ
2

1 1

2

1 1

 (5)

Where:

Nk: Set of neighbour’s pixels that exist in a window around
xk.

Nr: Cardinal of Nk

 : Neighbours effect

The new membership function is then given by:

C

j

p

j

r

jk

i

r

ik

ik

N
D

N
D

u

1

1
1

1

 (6)
Where:

 kr Ny

irri vy
2

 (7)

And

2

ikkik vyD (8)

The cluster prototype (centroid) updating is done by the
expression:

N

k

p

ik

N

k Ny

rr

r

kk

p

ik

i

u

y
N

yu

V
kr

1

1

1

 (9)

The estimated bias field is given by the expression:

C

i

p

ik

C

i

i

p

ik

kk

u

vu

y

1

1 (10)

Algorithm 1 explains the main steps of this algorithm.

Algorithm 1: Bias field Correction fuzzy C-Means Algorithm

(BCFCM)

1: Set the parameters C, p, Nr and .

2. Choose the stop criteria: Error,

3: Initialize the centroïds vector V and estimated bias field .

4: repeat

5: Update the membership value U using Eq. (6)

6: Update the cluster center vector V using Eq. (9)

7: Update the bias field estimated matrix using Eq. (10)

8: until ErrorVV oldnew .

IV. PARALLEL FUZZY C-MEANS ALGORITHM FOR BIAS

FIELD ESTIMATION AND SEGMENTATION (PBCFCM)

The main objective of the algorithm is to obtain
simultaneously a bias field correction and image
segmentation. However the expensive computation of this
algorithm in its sequential version leads us to exploit the
(SIMD) GPU architecture which is the adequate model for this
kind of algorithms.Fig.2, illustrates the strategy used to
distribute the data, at coarse-grained (Blocks) and fine-grained
(threads) levels.

The main idea is to split the image over the GPU so that
each pixel presented by one thread can execute its own
instructions independently.

Fig. 2. Data distribution strategy for PBCFCM on GPU

For this algorithm we start with initializing the centroids
vector and the variables, then allocate and transfer data from
CPU to GPU before the loop iteration. Note that we have used
two main kernels, one to compute the membership function
and the second to compute the estimated bias field.

Once in the loop, we called the first kernel that computes
both operations, the membership function and the expressions
for updating centroids. Next step we update the cluster centers
vector in CPU, then we transfer the new computed vector to
the GPU in order to compute the new estimated bias field, and
finally verify the criteria termination based on cluster
variation.

The major problem of execution time in our case, is the
large data transfer time that eat up the memory. While for
small image size, data transfer between CPU and GPU is
negligible and can even sometimes be preferable.

In this paper, we present a bias field correction fuzzy c-
means implementation which exploits the shared memory for
data and constant memory for centroids in addition of
registers. While, the part assigned to be executed in CPU is
the division operation for the results updating of cluster and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

379 | P a g e

www.ijacsa.thesai.org

the criteria termination test. Those two operations are assigned
to CPU since they do not require processing power. The data
transfer cost of cluster centers to constant memory may nearly
be ignored compared to the iteration cost. Note that the
allocation on device and data transfer are done only one time
before starting the loop iteration, to avoid the latency caused
by transferring data back and forth from the CPU and GPU.

The Parallel bias field Fuzzy c-means classification
algorithm is achieved using the following stages:

Algorithm 2: Parallel bias field correction Fuzzy C-Means

algorithm (PBCFCM).

Stage 1:

- Initialize the class centers Vi, (i = 1,...,C). This is carried out

by selecting C points in the gray level scale [0,…,255].

- Read the input data file.

- Initialize the main variables of the algorithm in the CPU.

Stage 2: Copy the pixels data, the initial clusters and the

estimated bias field to the GPU.

Stage 3: Allocate the memory of the membership matrix on

the GPU.

Stage 4: Compute the membership values based on cluster

center for each data member.

Stage 5: Compute expression needed for updating clusters on

GPU.

Stage 6: Update the clusters centers on the CPU.

Stage 7: Transfer the new cluster centers to the GPU.

Stage 8: Compute the new estimated bias field according to

the new clusters on GPU.

Stage 9: Check the difference between the current clusters

value and its previous one. Test (If the stopping

condition is reached) then exit; else return to Stage 4.

Stage 10: Output the final results.

V. RESULTS AND DISCUSSION

A. Experiment setup

Algorithms on host (serial and parallel) were implemented
using Microsoft VC++ program and CUDA 7.5 libraries.
Sequential BCFCM algorithm is computed to obtain reference
runtimes in C and compiled within Microsoft Visual Studio
2013 (Debug mode). Speed-up results were carried out on
many devices: Intel(R) Core(TM) i7-4770 8 cores, 3.5GHz
(CPU1), Intel(R) Core(TM) i7-4770 8 cores, 2.4 GHz (CPU2),
GeForce GT740m, GTX760 and GTX580 GPUs. An example
of specifications for tested processor and GPU equipment are
summarized in Table 1 and the operating system was 64-bits
Windows 7.

B. Implementation and Validation

To highlight the effectiveness of the proposed method, we
extensively experiment both versions, sequential and parallel,
of the clustering algorithm on different clinical brain images
from online training database BRATS2012 [31] that offer a set
of pathological cerebral MRI data. Before this implementation
and in order to measure the performance of the proposed
implementation in term of time execution, we have used the
well-known Lena sample image and segment it into its
optimal number of clusters which equals to 7 [32] on CPU and

on GPU for different sizes that varies from 1024 to 6553600
pixels. This first assessment stage is done to identify perfectly
the behavior of our implantation program on different
computational GPU cards. In this section, the parameters set
to validate and test the performances of our implementation
for Lena image are as follow:

C=7, p=2, Nr=8 and α =0.85 (α represents the neighbors
effect as mentioned in [28] for low-SNR images).

To evaluate our implementation, we compared its
performance to a sequential equivalent. For this purpose,
runtime for serial execution was measured on the host
processor that was obtained from single-core execution and
referenced (TABLE.I). The GPU based computing duration
for the same experiment parameters is compared with single-
core timing. In GPU performance evaluation, the allocation on
device and data transfer is done only one time before the loop
iteration to avoid the latency caused by transferring data back
and forth from the CPU and GPU. We calculate the time of
the application after the file I/O, in order to show the speedup
effect more clearly. The speedup results are normalized to the
baseline which is the serial implementation.

TABLE I. HARDWARE SPECIFICATION OF A CPU AND ONE OF THE THREE

GPUS (CORE I7, GT 740M) USED IN EXPERIMENTS

Device Feature Value

CPU1

Name i7 4770M

Frequency 3.5 GHz

Number of cores 8

Installed memory 16 GO

GPU1

Name GT 740

Multiprocessor count 2

CUDA cores 384

Memory bus width 64 bits

Warp Size 32

Total global memory 2048MB

Shared Memory per block 49152 octets

Max threads per block 1024

Max threads per multiprocessor 1024

Memory clock rate 900Mhz

Speed up of the proposed parallel algorithm (PBCFCM) is
related to the image size. The larger the size is, the more we
get a better speed-up. This rule is not obvious because
sometimes a low acceleration can be obtained. Furthermore
and according to Fig.3, GPU cards do not have a linear
acceleration, we can see that there is almost saturation, but
there is always a slight speedup increase as shown in the
following Fig.3.

Fig. 3. Evolution of speed-up versus image size on different GPU devices

for 32 bit configuration

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

380 | P a g e

www.ijacsa.thesai.org

Experimental results shown above illustrate two behaviors
for the three types of GPU cards: GT 740M, GTX 760 and
GTX 580, respectively.

Indeed:

- From 1024 pixels to 50526 pixels, the behavior is linear
for the three devices,

- From 50526 up to 2359296 pixels the behavior is almost
parabolic for GT 740m and GTX 760 while for the GTX 580,
the parabolic behavior ends only at the value 3686400 pixels.

Beyond these experimental critical values, we note that,
the speed-up tends slowly to the saturation state.

Also note that the maximum speed-up is achieved for the
GTX 580 that is almost 5x faster than GT 740M and 2.5x
faster than GTX 760.

The speed-ups reached for this figure are 52x, 20x and 13x
for GTX 580, GTX 760 and GT 740 respectively for image
size up to about to 7 Mega pixels.

According to our study, it seems clear that the performance
speed-up depends on the strength of the GPU and the CPU
configuration. Fig. 4 confirms the influence of the x64
configuration. Indeed treatment on images to this resolution is
better than on x32 configuration (Fig. 3) for the same parallel
implementation of the algorithm and different GPU.

Performance improvement is manifested on the three
curves of the speed-up to an x64 configuration. The maximum
values of speed-up obtained are of the order of 63x, 41x and
19x for GTX 580, GTX 760 and GT 740 respectively for
image size up to about to 7 Mega pixels.

Fig. 4. Evolution of speed-up versus image size on different GPU devices

for 64 bit configuration

In most cases and for large image sizes the suitable card
having more performance in CUDA language is GTX 580
proved in this study.

To illustrate the impact of the resolution on the same
graph, Fig. 5 shows the implementation speed up results of the
parallel algorithm PBCFCM over sequential algorithm
BCFCM, executed on three GPU cards and confronted the two
types of configurations, namely win32 and x64.

Fig. 5. Speed-up comparison for win32 and win x64 behavior on three GPU

devices

Indeed, on the graph of Fig.6, the impact of a very high
resolution is mainly shown on the curves where the resolution
is x64 for the three types of GPU cards. On the other hand, for
the same types of cards and even implementation of algorithm
relating to x32 resolution, the speed-up is significantly lower
than for x64 resolution. This feature is noticed on the three
curves of the graph of figure 6 with x32 resolution. In order to
evaluate the performance of the proposed GPU-BCFCM, we
present in Fig.6 the variation of the execution time for
iteration versus the picture size for the three types of the tested
devices.

Fig. 6. The variation of execution time per iteration versus image size on

different GPU devices

We can clearly see that the variation of execution time per
iteration is straight line and strongly related on the
performance of the used card. According to our
measurements, significant slopes were notified in a decreasing
order for: GT740M, GTX 760 and GTX 580 respectively. We
found:

SGT740M =2.8 10
-7

SGTX760 =1.5 10
-7

SGTX580 =6.1 10
-8

All these slops are defined the ratio:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

381 | P a g e

www.ijacsa.thesai.org

We note that the performance test of these cards
corresponds to the lower slope. This is given for GTX 580
(SGTX580) which has the fastest execution time.

We conclude that GTX 580 still better choose due to its
performances compared to GTX 760 or GT 740M related to
the slopes of experimental straight lines we introduced in this
meaningful study.

The interest of the study that we conducted is clearly
manifested for large image sizes. This is validated
experimentally for different tests and different GPU cards.
This study shows another aspect on performance analysis in
terms of data storage effect on the performance of each card
(data exchange inside memory card).

Another aspect of GPU performance can be sorted out by
inspecting their computation power by testing them by a large
amount of computation for a fixed data size. To do so, we
extend the measurement for a fixed image size of 1024x1024,
and run the FCM algorithm for a number of clusters ranging
from 2 to 14 as in Fig.7 that shows the variation of speed-up
according to number of clusters for different GPU devices.

Fig. 7. Speed-up variation versus clusters number for Lena image size of

1024x1024

The results investigated in this paper are very relevant as
long as they validate the highest importance of GPU
processing optimization. This means that how to find optimal
material for a given image processing requiring a given
amount of memory and powerful ability of computation.

The speed varies almost linearly according to the number
of cluster, for GT 740M, GTX 760 and GTX 580,
respectively.

In fact, the values minima and maxima are ranging
between 2.07x up to 14.64x for GT 740M, and between 3.31x
up to 29.63x and finally for GTX 580 the speedup is ranging
from 4.01x up to 52.6x.

The curves experimentally defined are close straight lines
with dimensionless speed-up are defined per percentage and
given as speedup ratios performance (SRP):

So, for each GPU device we have:

SRPGT740M= SC14GT740M/SC2GT740M *100 =70.7%,

SRPGTX760=SC14GTX760/SC2GTX760 *100 =89.5%,

SRPGTX580=SC14GT740m/SC2GT740m *100 =131.1%.

According to these numerical results and parameters
performance defined, we conclude that, GTX 580 is faster and
powerful than GTX 760 which is also faster than GT740M.

Referring to Fig.8 and Fig.9, the image used for this
measurement is 6.5536 million pixels of size. The figure
below represents time execution in second versus the used
devices categories.

In fact, for serial execution we got as result "62.6 s" which
is the highest value comparing to GTX 580 of value 1.2s,
GTX760 of value 3.1s and GT740M of value 5.6s respectively
(Fig.8).

Fig. 8. Comparison of execution time for serial and parallel implementation

on three devices

However, after the results expressed experimentally, it is
clear that the parallel implementation is very benefic for
images ranging from medium-sized to large. On the other
hand, Fig.9 shows the speed-up reached in our experimental
measurements, for GTX580, GTX760 and GT740M, the
values obtained are 52.16x, 20.16x and 11.19x, respectively.

Fig. 9. Speedups of the parallel implementations over the serial one for Lena

image size of.6.5536 million pixels

C. Application example

To illustrate the effectiveness of the proposed PBCFCM
algorithm we present in fig.10 an application example on T2-
weighted MRI image which contains melanoma tumor. This
image was segmented into 5 clusters (Background, LCR, GM,
WM and Tumor).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

382 | P a g e

www.ijacsa.thesai.org

Figure 8 (b) shows the estimated Bias field, this was
obtained by scaling the bias-field values from one to 255.
Figure 8 (c) represents the corrected image after removing the
bias field of figure 8(b). Figure 8 (d) shows the segmented
image.

Both the parallel and the sequential algorithms was also
applied to different MRI datasets image corrupted by bias
field artefact and demonstrated its high performance in terms
of correction and speed up according to the sequential version.

BCFCM is an algorithm that takes more time to estimate,
correct and segment MRI images compared to fuzzy c-mean
because it includes additional procedures that make
segmentation and correction of intensity in-homogeneity
based on neighborhoods. Its variants have high computational
complexities that limit their applicability. The large image
sizes processing needed by the medical applications motivates
the researchers to increase the computation of the enhanced
algorithms and take the advantages of the modern GPU of
high processing ability.

a) b)

c) d)

Fig. 10. Example of application. a) Test image, b) Bias-field estimations

using PBCFCM algorithm: this was obtained by scaling the bias-field values
from one to 255, c) Corrected image, d) 5 clusters segmented image

VI. CONCLUSION AND PERSPECTIVES

In this paper we presented a parallel implementation of
bias field algorithm PBCFCM which is an enhanced version
of fuzzy C-means that correct the in-homogeneity intensity
and segment the image simultaneously. In fact, many
parameters and performance indices are introduced according
to the realized measurements on different devices. Our results
are translated into meaningful graphs, showing the impact of

architecture on the card and the spot to which it was intended.
The speed-up depends on the strength of the GPU, on the
image size and on the number of clusters. Larger is the
processing amount, the speed-up is higher.

For GTX 580 the speed-up increases until 52x versus the
image size and also versus the number of clusters that is
limited in this study to C=14. The obtained curves which are
straight lines show that the speed-up is proportional to the
number of clusters. For GTX 760 the speed-up increase until
20x versus image size and 29x versus the number of clusters,
while for GT740M it reached 11x versus image size and 14x
versus the number of clusters.

We can conclude from this study that whatever the
performance of the graphic cards, it is necessary to take into
account the amount of data to be processed before elaborating
any parallel approach. The material performance test
procedure remains obvious to fit the physical parallel
architecture to the computational model algorithm and data
inquiry.

As perspective to this work, we will establish an analytical
model for the variation of the speed up versus the data size at
first. This model will be improved by introducing the number
of clusters especially for MRI classification domain. This
study will be specifically launched for the three GPU cards
used in our experiments.

REFERENCES

[1] Rajapakse, J.C., Giedd, J.N., Rapoport, J.L., 1997. Statistical approach
to segmentation of single-channel cerebral MR images. IEEE Trans. on
Med. Imag. 16, 176-186. doi:10.1109/42.563663

[2] Unser, M., 1995. Multigrid adaptive image processing. In: Proceedings
of the IEEE Conference on Image Processing, Vol. I, pp. 49-52.
doi:10.1109/ICIP.1995.529036

[3] KANNAN S R, RAMATHILAGAM S, et PANDIYARAJAN R.
Modified bias field fuzzy C-means for effective segmentation of brain
MRI. In: Transactions on computational science VIII. Springer Berlin
Heidelberg, 2010. p. 127-145.doi: 10.1007/978-3-642-16236-7_9

[4] LIN, Muqing, CHAN, Siwa, CHEN, Jeon-Hor, et al. A new bias field
correction method combining N3 and FCM for improved segmentation
of breast density on MRIa). Medical physics, 2011, vol. 38, no 1, p. 5-14.
http://dx.doi.org/10.1118/1.3519869

[5] DING, Huanjun, JOHNSON, Travis, LIN, Muqing, et al. Breast density
quantification using magnetic resonance imaging (MRI) with bias field
correction: A postmortem study. Medical physics, 2013, vol. 40, no 12,
p. 122305. http://dx.doi.org/10.1118/1.4831967

[6] JUNTU, Jaber, SIJBERS, Jan, VAN DYCK, Dirk, et al. Bias field
correction for mri images. In : Computer Recognition Systems. Springer
Berlin Heidelberg, 2005. p. 543-551.doi:10.1007/3-540-32390-2_64

[7] LIAO, Liang, LIN, Tusheng, et LI, Bi. MRI brain image segmentation
and bias field correction based on fast spatially constrained kernel
clustering approach. Pattern Recognition Letters, 2008, vol. 29, no 10, p.
1580-1588. doi:10.1016/j.patrec.2008.03.012

[8] VOVK, Uroš, PERNUŠ, Franjo, et LIKAR, Boštjan. A review of
methods for correction of intensity inhomogeneity in MRI. Medical
Imaging, IEEE Transactions on, 2007, vol. 26, no 3, p. 405-421.
doi:10.1109/TMI.2006.891486

[9] JI, Ze-Xuan, SUN, Quan-Sen, et XIA, De-Shen. A modified possibilistic
fuzzy c-means clustering algorithm for bias field estimation and
segmentation of brain MR image. Computerized Medical Imaging and
Graphics, 2011, vol. 35, no 5, p. 383-397.
doi:10.1016/j.compmedimag.2010.12.001

[10] MOHANTY, Saraju P. GPU-CPU multi-core for real-time signal
processing. In: Consumer Electronics, 2009. ICCE'09. Digest of

http://dx.doi.org/10.1109/42.563663
http://dx.doi.org/10.1109/ICIP.1995.529036
http://dx.doi.org/10.1118/1.3519869
http://dx.doi.org/10.1118/1.4831967

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

383 | P a g e

www.ijacsa.thesai.org

Technical Papers International Conference on. IEEE, 2009. p. 1-2.
doi:10.1109/ICCE.2009.5012160

[11] ZHANG, Kang et KANG, Jin U. Real-time 4D signal processing and
visualization using graphics processing unit on a regular nonlinear-k
Fourier-domain OCT system. Optics express, 2010, vol. 18, no 11, p.
11772-11784.doi: 10.1364/OE.18.011772

[12] Jararweh Y, JarrahM, Hariri S (2012) Exploiting gpus for compute-
intensive medical applications. In:Multimedia computing and systems
(ICMCS), 2012 international conference on, IEEE, pp 29–
34.doi:10.1109/ICMCS.2012.6320262

[13] Eklund, A., Dufort, P., Forsberg, D., & LaConte, S. M. (2013). Medical
image processing on the GPU–Past, present and future. Medical image
analysis, 17(8), 1073-1094.doi:10.1016/j.media.2013.05.008

[14] Pratx, G., & Xing, L. (2011). GPU computing in medical physics: A
review. Medical physics, 38(5), 2685-2697.
http://dx.doi.org/10.1118/1.3578605

[15] SMISTAD, Erik, FALCH, Thomas L., BOZORGI, Mohammadmehdi, et
al. Medical image segmentation on GPUs–A comprehensive review.
Medical image analysis, 2015, vol. 20, no 1, p. 1-18.
doi:10.1016/j.media.2014.10.012

[16] T. Ivanovska, R. Laqua, L. Wang, H. Volzke, and K. Hegenscheid. “Fast
Implementations of the Levelset Segmentation Method with Bias Field
Correction in MR Images: Full Domain and Mask-Based Versions”.
In: Pattern Recognition and Image Analysis. Springer Berlin Heidelberg,
2013. p. 674-681. doi:10.1007/978-3-642-38628-2_80

[17] Li, C., Huang, R., Ding, Z., et al.: A level set method for image
segmentation in the presence of intensity inhomogeneities with
application to MRI. IEEE Trans. on Image Processing 20, 2007–2016
(2011).doi:10.1109/TIP.2011.2146190

[18] Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means
clustering algorithm. Computers & Geosciences, 10(2), 191-203.
doi:10.1016/0098-3004(84)90020-7

[19] Anderson, D., Luke, R., Keller, J. (2007). “Speedup of Fuzzy Clustering
Through Stream Processing on Graphics Processing Units”, IEEE Trans.
on Fuzzy Systems. doi:10.1109/TFUZZ.2008.924203

[20] Anderson, D., Luke, R. H., & Keller, J. M. (2007). Incorporation of non-
euclidean distance metrics into fuzzy clustering on graphics processing
units. In Analysis and Design of Intelligent Systems using Soft
Computing Techniques (pp. 128-139). Springer Berlin Heidelberg.
doi:10.1007/978-3-540-72432-2_14

[21] Anderson, (2008) Parallelisation of Fuzzy Inference on a Graphics
Processor Unit Using the Compute Unified Device Architecture, The
2008 UK Workshop on Computational Intelligence, UKCI 2008, pp 1-6.

[22] Harris, C., & Haines, K. (2005, May). Iterative Solutions using
Programmable Graphics Processing Units. In FUZZ-IEEE (pp. 12-18).

[23] Rowińska, Z., & Gocławski, J. (2012). Cuda based fuzzy c-means
acceleration for the segmentation of images with fungus grown in foam
matrices. Image Processing & Communications, 17(4), 191-200. doi:
10.2478/v10248-012-0046-7

[24] Al-Ayyoub, M., Abu-Dalo, A. M., Jararweh, Y., Jarrah, M., & Al Sa’d,
M. (2015). A GPU-based implementations of the fuzzy C-means
algorithms for medical image segmentation. The Journal of
Supercomputing, 1-14. doi:10.1007/s11227-015-1431-y

[25] Li, H., Yang, Z., & He, H. (2014). An improved image segmentation
algorithm based on GPU parallel computing. Journal of Software, 9(8),
1985-1990. doi:10.4304/jsw.9.8.1985-1990

[26] Shalom, S. A., Dash, M., & Tue, M. (2008, November). Graphics
hardware based efficient and scalable fuzzy c-means clustering. In
Proceedings of the 7th Australasian Data Mining Conference-Volume
87 (pp. 179-186). Australian Computer Society, Inc.

[27] AKGÜN, Devrim, SAKOĞLU, Ünal, ESQUIVEL, Johnny, et al. GPU
accelerated dynamic functional connectivity analysis for functional MRI
data. Computerized Medical Imaging and Graphics, 2015, vol. 43, p. 53-
63. doi:10.1016/j.compmedimag.2015.02.009

[28] M.N. Ahmed, N.A. Mohamed, A.A. Farag, T. Moriarty, A modified
fuzzy c-means algorithm for bias field estimation and segmentation of
MRI data, IEEE Trans. Med. Imaging 21 (2002) 193–199.doi:
10.1109/42.996338

[29] http://www.nvidia.com/object/cuda_home_new.html.

[30] Nvcc: Cuda toolkit documentation. http://docs.nvidia.com/cuda/cuda-
compiler-driver-nvcc/.

[31] http://www2.imm.dtu.dk/projects/BRATS2012/.

[32] Ouadfel, S., Batouche, M., & Ahmed-Taleb, A. (2012). ACPSO: A
Novel Swarm Automatic Clustering Algorithm Based Image
Segmentation. In S. Ali, N. Abbadeni, & M. Batouche (Eds.)
Multidisciplinary Computational Intelligence Techniques: Applications
in Business, Engineering, and Medicine (pp. 226-238). Hershey, PA:
Information Science Reference. 5. Chapter 14.

