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ABSTRACT: We present the details of a graphics processing unit
(GPU) capable exchange correlation (XC) scheme integrated into
the open source QUantum Interaction Computational Kernel
(QUICK) program. Our implementation features an octree based
numerical grid point partitioning scheme, GPU enabled grid pruning
and basis and primitive function prescreening, and fully GPU
capable XC energy and gradient algorithms. Benchmarking against
the CPU version demonstrated that the GPU implementation is
capable of delivering an impressive performance while retaining
excellent accuracy. For small to medium size protein/organic
molecular systems, the realized speedups in double precision XC
energy and gradient computation on a NVIDIA V100 GPU were
60−80-fold and 140−500-fold, respectively, as compared to the
serial CPU implementation. The acceleration gained in density functional theory calculations from a single V100 GPU significantly
exceeds that of a modern CPU with 40 cores running in parallel.

1. INTRODUCTION

Although graphics processing units (GPUs) were originally
introduced for rendering computer graphics, they have become
essential devices to enhance the performance of scientific
applications over the past decade. Examples of GPU
accelerated applications span from bioinformatics software
that help solving genetic mysteries in biology to data analysis
tools aiding gravitational wave detection in astrophysics.1,2 The
availability of powerful general purpose GPUs at a reasonable
cost, convenient computing and programming environments
such as Compute Unified Device Architecture (CUDA),3 and
especially, the fact that GPUs can perform trillions of floating
point operations per second in combination with a high
memory bandwidth, outperforming desktop central processing
units (CPUs), are the main reasons for this trend.
GPUs are also known to deliver outstanding performance in

traditional computational chemistry applications, particularly
in classical molecular dynamics (MD) simulations4−12 and ab
initio quantum chemical calculations.13−30 In the latter context,
Hartree−Fock (HF)13,14,23−28 and post-HF energy and
gradient implementations15−17,29−31 on GPUs have displayed
multifold speedups for molecular systems containing a few to
large number of atoms. Nevertheless, a majority of the
computational chemistry community is unable to enjoy such
performance benefits due to the unavailability of an open-
source, user-friendly, GPU enabled quantum chemistry
software. Toward this end, we have been developing a
quantum chemical code named the QUantum Interaction
Computational Kernel (QUICK) to fill this void.27,28 As

reported previously, QUICK is capable of efficiently
computing HF energies and gradients. For instance, the
speedup realized for moderate size molecular systems on a
Kepler type GPU was about 10−20 times in comparison to a
single CPU core while retaining an excellent accuracy. With
high angular momentum basis functions (d and f functions),
the realized speedup remained 10−18-fold. Such performance
gain was primarily due to GPU accelerated electron repulsion
integral (ERI) calculations. In our ERI engine, integrals are
calculated using vertical and horizontal recurrence relations
algorithms32,33 reported by Obara and Saika and Head-Gordon
and Pople. The integrals are calculated on the fly, and the Fock
matrix is assembled on the GPU using an efficient direct self-
consistent field (SCF) scheme. However, the accuracy of the
HF method is insufficient, if not totally unsuitable, to study
many chemical problems; but having a GPU enabled HF code
paves the way toward an efficient post-HF or density functional
theory (DFT) package. In the present work, we have
undertaken the task of implementing the latter type of
methods in QUICK. In fact, given the vast number of research
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articles published using DFT methods over the past decades,34

incorporation of such methods into our package was essential.
In the context of GPU parallelization of Gaussian based

DFT calculations, a few publications have appeared in the
literature.35−37 Among these, Yasuda’s work35 is the earliest.
His exchange correlation (XC) quadrature scheme consisted of
several special features aimed at maximizing performance on
GPU hardware. These include partitioning numerical grid
points in 3-dimensional space, basis function prescreening, and
preparation of basis function lists for grid point partitions.
Only the electron densities and their gradients and matrix
elements of the XC potential were calculated on the GPU. The
hardware available at the time limited his algorithm to single
precision calculations; but the reported accuracy of benchmark
tests was about 10−5 au. A similar algorithm has been
implemented by Martinez and co-workers in their GPU
capable Terachem software.36 In addition to grid point
partitioning, this algorithm performs prescreening at the level
of primitive functions and excludes certain partitions from the
calculation based on a sorting procedure. In both of the above
implementations, the values of the density functionals at the
grid points are calculated on the CPU. We note another DFT
package where the XC scheme is GPU enabled; however, the
ERI calculations are performed on the CPU.37

The features of the XC quadrature scheme reported in the
current work include grid point partitioning using an octree
algorithm, prescreening and grid pruning based on the value of
primitive Gaussian functions, and fully GPU enabled XC
energy and gradient calculations where not only the electron
density and its derivatives but also the XC functional values are
computed on the GPU. The next sections of this paper are
organized as follows. In section 2, we give an overview of the
underlying theory of our XC scheme, which was originally
documented by Pople and co-workers.38 The details of the
computational implementation are then presented in section 3.
Here we first discuss important aspects of data parallel GPU
programming. The GPU version of the XC scheme is then
implemented following these considerations. Information
regarding the parallel CPU implementation using the message
passing interface (MPI)39 is also presented. Section 4 is
devoted to benchmark tests and discussion. The tests include
performance comparisons between QUICK and the GAMESS
GPU version24,25,40 and accuracy and performance compar-
isons between the QUICK GPU and CPU versions. Finally, we
conclude our discussion by exploring future directions for
further improvement.

2. THEORY

The Kohn−Sham formulation of DFT differs from the HF
method by its treatment of the exchange and correlation
contributions to the electronic energy. The total electronic
energy (E) is given by38

E E E E ET V J xc= + + + (1)

where ET and EV stand for kinetic and electron−nuclear
interaction energies, EJ is the Coulomb self-interaction of the
electron density, and Exc is the remaining electronic exchange
and correlation energies. The electron density (ρ) is a
summation of α and β electron densities (ρα and ρβ,
respectively) that can be expressed by choosing sets of
orthonormal spin orbitals ψi

α (i = 1, ..., nα) and ψi
β (i = 1, ..., nβ)

as
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Exc, within the generalized gradient approximation (GGA),
may be given by a functional f that depends on electron
densities and their gradient invariants,

E f r( , , , , ) dxc ∫ ρ ρ γ γ γ=
α β αα αβ ββ (6)

, . ,2 2
γ ρ γ ρ ρ γ ρ= |∇ | = ∇ ∇ = |∇ |
αα α αβ α β ββ β (7)

In practical computational implementations, one expresses
molecular orbitals as a linear combination of atomic orbitals,
and ρα in eq 2 becomes,
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Here φμ (μ = 1, ..., N) are the atomic orbitals, and Pμv
α is the

density matrix. Furthermore, the gradient of ρα can be written
as

P ( )∑ρ ϕ ϕ∇ = ∇
α

μν

μν
α

μ ν

(9)

A similar expression can be written for ρβ. Substituting eqs 8
and 9 into eqs 2−7 and into the energy eq 1 and minimizing
with respect to coefficients Cμi

α and Cvi
α, one obtains a series of

algebraic equations similar to the conventional HF procedure.
The resulting Fock-type matrix (hereafter Kohn−Sham matrix)
for ρα is

F H J Fcore XC= + +μν
α

μν μν μν
α

(10)

where Hμv
core is the one electron Hamiltonian matrix. Jμv is the

Coulomb matrix, which can be written in the conventional
form as

J P P P P( ),
N

∑ μν λσ= | = +
μν

λσ

λσ λσ λσ
α

λσ
β

(11)

The XC contribution to the Kohn−Sham matrix (Fμv
XCα) is
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and a similar expression can be written for Fμv
XCβ.

The gradient with respect to the position of nucleus A is,
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where primed sums denote that μ is centered on nucleus A, Sμν
is the overlap matrix and the energy weighted density matrix,
Wμv, is given by
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μ
β
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and the matrix element Xμv is

X ( ) ( )( )t t
ϕ ϕ ϕ ϕ= ∇ ∇ + ∇ ∇μν ν μ μ μ (15)

Note that for hybrid functionals, the energy in eq 1 will also
include a contribution from the HF exchange energy and eqs
10 and 13 will be adjusted accordingly. Due to the complex
form of the XC functionals f, the analytical calculation of the
integrals required for the XC energy, XC potential, and its
gradients in eqs 6, 12, and 13 is impossible; hence, this is
usually achieved through a numerical procedure. The key steps
of such a procedure involve the formation of a numerical grid
(also called XC quadrature grid) with quadrature weights
assigned to each grid point, calculation of the electron density
and the gradients of the density at each grid point, calculation
of the value of the density functional and the derivatives of the
functional, and calculation of the XC energy and the
contribution to Kohn−Sham matrix (called matrix elements
of the XC potential hereafter). In order to compute the nuclear
gradients of the XC energy, one must compute second
derivatives of the basis functions and values of the two integral
terms in eq 13 and add them to the total gradient vector.
Finally, due to the involvement of a quadrature weighing
scheme in the numerical procedure, the derivatives of the
quadrature weights with respect to nuclear displacements must
be computed and added to the total gradient.

3. IMPLEMENTATION

3.1. Key Considerations in GPU Programming. GPUs
are ideal devices for data parallel computations, that is,
computations that can be performed on numerous data
elements simultaneously. They allow massive parallelization
in comparison to traditional CPU platforms but at the expense
of programming complexity and flexibility. Therefore, a proper
understanding of the GPU architecture and the memory
hierarchy is essential for writing an efficient code that exploits
the full power of this hardware class. GPUs perform tasks
according to a single instruction multiple data (SIMD) model,
which simply means that they execute the same instructions for

a given chunk of data and the same amount of work is expected
to be performed for each piece of data. Hence, a programmer
should organize the data and assign work to threads that are
then processed by the GPU in batches known as thread blocks.
The number of threads in a block is up to the programmer;
however, there exists a maximum limit allowed by the GPU
architecture. For instance, the NVIDIA Volta architecture
permits a maximum of 1024 threads per block. NVIDIA GPUs
execute threads on streaming multiprocessors (SMs) in warps
whose size, 32 for recent architectures, is solely determined by
the architecture. Each SM (for example, the V100 GPU has 80
SMs, each with 64 CUDA cores for a total of 5120 cores41)
executes the same set of instructions for all threads in a warp
during a given clock cycle. Therefore, it is essential to minimize
the branching in GPU codes (device kernels) to avoid
instruction divergence.
A GPU possesses its own physical memory that is distinct

from the host (CPU accessible) memory. The main memory
called global memory or dynamic random-access memory
(DRAM) is relatively large (for example, 32 GB or 16 GB for
the V100 and 12 GB for Titan V) and accessible by all threads
in streaming multiprocessors. However, global memory
transactions suffer from relatively high memory latency. A
small secondary type of GPU memory called shared memory is
also available on each SM. This type of memory transaction is
faster but local, meaning that shared memory of a given SM is
only accessible by threads within a thread block that is
currently executing on this SM. In addition to these two types
of memory, threads in a warp have access to a certain number
of registers, and this is useful to facilitate the communication
between threads of the same warp. GPUs also contain constant
and texture memories, which are read-only and capable of
delivering a higher performance than global memory in specific
applications. If threads in a warp read from the same memory
location, constant memory is useful. Texture memory is
beneficial when the threads read from physically adjacent
memory locations. To maximize the performance of device
kernels, careful handling of memory is essential. The key
considerations for engineering an efficient GPU code include
minimizing the warp divergence, minimizing frequent global
memory transactions, maintaining a coherent global memory
access pattern by adjacent threads in a block (coalesced
memory access), minimizing random memory access patterns,
or simultaneously accessing a certain memory location by
multiple threads. Furthermore, constant and texture memories
should be employed where applicable. Our existing ERI and
direct SCF scheme in QUICK was developed in adherence to
this philosophy. As detailed below, we implement our XC
scheme following the same practices.

3.2. Grid Generation and Pruning. The selected grid
system for our work is the Standard Grid-1 (SG-1) reported by
Pople and co-workers.42 This grid consists of 50 radial grid
points and 194 angular grid points for each atom of a molecule.
The radial grid point generation is performed using the Euler−
Maclaurin scheme, and for the angular grid points, Lebedev
grids are used. Following the grid generation, we compute
weights for each grid point based on the scheme reported by
Frisch et al.43 We then perform grid pruning in two stages.
First, all points with weight less than a threshold (usually
10−10) are eliminated. The remaining points are pruned at a
second stage based on the value of atom centered basis and
primitive functions at each grid point. As described in section
3.3, we make use of an octree algorithm for this purpose.
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3.3. Octree Based Grid Pruning, Preparation of Basis
and Contracted Function Lists. In our octree algorithm, the
grid points in space are partitioned as follows. First, the lower
and upper bounds of the grid are determined, and a single cell
(node) containing all grid points is formed in 3-dimensional
space (see Figure 1A). This node is then divided into eight
child nodes. The child nodes whose grid point count is greater
than a user specified threshold are recursively subdivided into
octets until the point count of each child node falls below the
threshold. The nodes that are not further divisible (leaf nodes,
also termed bins below) are considered to be fully partitioned.
We then go through each grid point of the leaf nodes and
compute the values of the basis and primitive functions at their
positions. If a basis or primitive function satisfies the condition

( )ij ijζ ζ τ| + ∇ | > (16)

for a given grid point, it is considered to be significant for that
particular point. We use τ = 10−10 as default threshold, which
leads to numerical results that are indistinguishable from the
reference without pruning. For basis function based prescreen-
ing, j in eq 16 becomes μ and ζij stands for the value of basis
function φμ at grid point gi. Similarly, for primitive function
based prescreening, ζij represents the value of cμpχp at grid point

gi, where χp is the pth primitive function of φμ and cμp is the

corresponding contraction coefficient. Once the basis function
values at each grid point are computed, the points that do not
have at least one significant basis function are omitted from the

corresponding bin (see Figure 1B). Furthermore, bins without
any grid points are also discarded. At this stage, lists of
significant basis and primitive function IDs are prepared for
each remaining bin of grid points, significantly reducing the
number of basis function values and derivatives that have to be
evaluated at each grid point during the SCF and gradient
computations. Using this algorithm, the number of primitive
Gaussian basis function evaluations is reduced from 117400 to
6484 for H2O with a cc-pVDZ basis set (Figure 1B).

3.4. Grid Point Packing and Kernel Launch. Following
the two-stage grid pruning and the preparation of basis and
primitive function ID lists, the grid points are prepared
(hereafter grid point packing) to be uploaded to the GPU.
Here we add dummy points into each bin and set the total grid
point count in each bin to a threshold value used in the octree
run. It is worth noting that the threshold we choose is a
multiple of the warp size 32, usually 256. By doing so, we are
able to pack true grid points into one corner of a block of an
array (see Figure S1A) and this helps us to minimize the warp
divergence when we launch GPU threads using the same value
for the block size. More specifically, for subsequent calculations
(i.e., density, XC energy, and XC gradients), we will launch a
total of 256nbin threads (where nbin = number of significant
bins) where each thread block contains at least one true grid
point and a set of dummy points. The threads launched for
dummy points should not perform any computation, and these
are differentiated from true points by an assigned integer flag.
As mentioned previously, the launched thread blocks are

Figure 1. Partitioning of numerical grid points of a water molecule using the octree algorithm. (A) A cell containing all grid points (level 0) is
recursively subdivided into octets (levels 1 and 2). (B) Fully partitioned bins or leaf nodes of the same example containing all grid points from
pruning in stage 1 (middle) undergoes primitive function based grid pruning. The resulting bins or leaf nodes and grid points are shown at the
bottom right.
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submitted to streaming multiprocessors as warps of 32 by the
warp scheduler during runtime. This ensures that at most one
warp per thread block suffers from warp divergence and
threads of the remaining warps would perform the same task.
Once the grid points are packed and basis and primitive
function lists have been prepared, these are uploaded to the
global memory of the GPU. The corresponding array pointers
are stored in constant memory, and these are used in launching
the kernel and the execution of device kernels during density,
SCF, and gradient calculations.
3.5. Computing Electron Densities on the GPU. As

apparent from eqs 8 and 9, the calculation of electron densities
and their gradients require looping over basis and primitive
functions at each grid point. This task is performed on the
GPU, and each thread working on a single grid point only
loops through basis and primitive function lists assigned to the
corresponding thread block. The retrieval of correct lists from
global memory is achieved by using two locator arrays (see
Figure S1B). Note that we use the term “ID” when referring to
basis and primitive functions and “array index” for array
locations. The first, called basis function locator array, holds
the array index ranges of the basis function ID array. Each
thread accesses the former based on their block index, obtains
the corresponding array index range of the latter, and picks the
basis function IDs. Second, the primitive function locator array
holds the array index ranges for accessing the primitive
function ID array. Each thread picks elements from the
primitive function locator array using basis function array
indices, obtains the relevant array index range of the latter, and
takes the primitive function IDs. This retrieval strategy allows
us to maintain a coalesced memory access pattern.

3.6. Computing the XC Energy and the Matrix
Elements of the XC Potential. As reported elsewhere,27,28

our existing SCF implementation assembles the Fock matrix
and computes the energy on the GPU. Therefore, our goal is to
calculate the XC energy and associated derivatives on the
GPU, which highlights the necessity to have density func-
tionals implemented as device kernels. Needless to say, coding
the numerous available functionals is a cumbersome process,
and the best solution is to make use of an existing density
functional library. Nevertheless, to the best our knowledge,
such an appropriate GPU capable library is still not available,
but a few stable CPU based density functional libraries have
been reported and used in many DFT packages.44−46 As
discussed below, we selected one of these libraries and
modified the source code for execution on GPUs via CUDA to
achieve our goal.
The chosen density functional library, named LIBXC,46 is

open source and provides about 400 functionals that are based
on the local density approximation (LDA), the generalized
gradient approximation (GGA), and the meta-generalized
gradient approximation (MGGA). This library is well organ-
ized and has a user-friendly interface, and above all, the source
code is written in the C language. Such factors make LIBXC
easily re-engineerable as a GPU capable library with relatively
modest coding effort. In LIBXC, the functionals are organized
in separate source files and are handled by several workers
(each assigned to LDA, GGA exchange, GGA correlation,
MGGA exchange, and MGGA correlation functional types)
with the aid of a series of intermediate files. When the user
provides the necessary input with a desired functional name, an
assigned functional ID is selected, and if necessary, parameters

Figure 2. Flowchart depicting the workflow of a DFT geometry optimization calculation. Magenta, blue, and mixed color boxes indicate steps
performed on CPU, GPU, and mixed CPU/GPU, respectively. Round arrows represent cyclic procedures. A double headed arrow indicates that a
step performs suboperations enclosed by dashed boxes. Callout boxes with blue dashed borders indicate that enclosed operations are optional and
can be chosen at users will. OPT stands for geometry optimization. The CPU remains idle during the GPU computations.
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required by the workers to call or send to functionals are
obtained from the intermediate files. The functionals are then
called from the workers. To make use of LIBXC in our GPU
code, we initiate LIBXC and obtain functional ID and
necessary intermediate parameters through a dry run
immediately after grid point packing but before starting the
SCF procedure. In order to do so, we made several minor
modifications to the interface and intermediate files. The
obtained information is then uploaded to the GPU. We also
implemented device kernels for LDA and GGA workers to call
functionals during device kernel execution. The corresponding
functional source files were also modified with compiler
preprocessor directives, and during the compilation time, these
are included in the CUDA source files and compiled as device
kernels. As reported previously, use of compiler directives for
porting complex scientific applications to GPUs is rewarding in
terms of application performance and implementation effort.47

Note that our current XC implementation is not capable of
computing kinetic energy densities, and for this reason, we
have not made any changes to the MGGA workers and related
source files in LIBXC.
During the SCF procedure, the device kernel versions of

LIBXC workers are called with prestored functional IDs and
other parameters. The worker then calls the appropriate
functional kernel. Here we have used C function pointers
rather than conditional statements due to potential perform-
ance penalties introduced by the latter. Following the
computation of XC energy density on grid points, we compute
the matrix elements of the potential and update the Kohn−
Sham matrix using the CUDA atomic add function. In the past,
we employed atomic add in our direct SCF scheme and noted
that it is not a critical performance bottleneck.27,28

3.7. Computing XC Energy Nuclear Gradients. Most of
the implementation strategy described above for XC energy
and potential holds for our gradient algorithm. More
specifically, this is a two-step process consisting of calculating
the XC energy gradients and grid weight gradients. While
computing the former involves a majority of steps discussed for
the energy calculation (i.e., computing values of the basis
functions and derivatives and functional values and associated
derivatives), additionally, we compute second derivatives of
basis functions. The device kernel performing this task is
similar to the one that calculates basis function values and their
gradients at a given grid point in the sense of accessing basis
and primitive function IDs. The grid weight gradient
calculation is only required for grid points whose weight is

not equal to unity. Therefore, we prune our grid for the third
time removing all points that do not meet this criterion. The
resulting grid points are packed without dummy points and
uploaded to the GPU, and the appropriate device kernel is
called to compute the gradients. The calculated gradient
contribution from each thread is added to the total gradient
vector using the CUDA atomic add function, consistent with
our existing ERI gradient scheme.

3.8. CPU Analog of the GPU Implementation. In order
to perform a fair comparison with our GPU capable DFT
implementation, we implemented a parallel CPU version using
MPI. In this version, we make use of the standard LIBXC code
base and omit the LIBXC dry run from our workflow (step 2 in
Figure 2). Furthermore, the grid generation and octree run are
performed in serial, but the weight computation, prescreening,
and preparation of basis and primitive functions lists are all
performed in parallel. Moreover, the packing of grid points
(step 3g in Figure 2) is omitted. Computation of electron
densities, XC energy, potential, and gradients (steps 4−6 in
Figure 2) are performed in parallel. More specifically, once the
grid operations are completed, partitioned bins are distributed
among slave CPU tasks. The corresponding grid weights and
basis and primitive function lists are also broadcast. All CPU
tasks retrieve basis and primitive function IDs using locators as
discussed in section 3.5, but with the block index now replaced
by the bin index. When computing the XC energy and matrix
elements of the potential, each CPU task initializes LIBXC
through a standard Fortran 90 interface and computes the
required functional values. The slave CPU tasks then send the
computed energy and Kohn−Sham matrix contributions to the
master CPU task. The implementation of the XC gradient
scheme is very similar to the above.

4. BENCHMARK RESULTS AND DISCUSSION

4.1. Benchmarking the GPU Implementation. We now
present the benchmarking results of our DFT implementation.
First, the performance of the QUICK GPU version is
compared against the GPU version of GAMESS.24,25,40 Then
a similar comparison between the QUICK CPU and GPU
versions is performed. For the former test, we obtained a
precompiled copy of GAMESS (the 17.09-r2-libcchem
version) in a singularity image from the NVIDIA GPU cloud
webpage. In order to make a fair comparison, the QUICK code
was compiled using the comparable GNU and CUDA
compilers with optimization level 2 (-O2). Note that
performance trade-off between running a CPU/GPU applica-

Table 1. Comparison of the Average SCF Time and Time to Compute ERI and XC Gradients Using GPU Versions of the
QUICK and GAMESS Quantum Chemical Packagesa

average SCF time (s) (total
number of iterations) ERI gradient time (s) XC gradient time (s)

molecule (atom number) basis set (function number) QUICK GAMESS QUICK GAMESS QUICK GAMESS

morphine (40) 6-31G (227) 0.6 (18) 3.6 (25) 3.8 9.6 2.3 11.3

6-31G* (353) 1.4 (19) 5.7 (24) 12.9 60.7 3.8 19.6

6-31G** (410) 1.8 (22) 6.3 (24) 16.0 72.0 4.4 24.4

Gly12 (87) 6-31G (517) 1.5 (22) 12.1 (26) 8.4 23.6 1.7 112.9

6-31G* (811) 4.1 (24) 22.7 (27) 27.2 164.6 3.4 208.6

6-31G** (925) 5.4 (24) 26.7 (27) 34.9 201.4 3.6 246.9

valinomycin (168) 6-31G (882) 12.8 (29) 68.2 (27) 85.1 183.2 10.4 686.6

6-31G* (1350) 28.6 (20) 120.0 (30) 243.0 975.7 18.7 1167.3

6-31G** (1620) 40.5 (20) 151.9 (29) 317.7 1291.5 19.3 1571.9
aBLYP functional is used in all calculations. NVIDIA V100-SXM2 GPU accompanied by Intel Xeon (R) Gold 6138 CPU.
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tion native or through a container is reported to be
negligible48,49 and we assume that the container overhead
has no significant impact on our GAMESS timings. The
selected test cases include morphine, (glycine)12, and
valinomycin BLYP50−52 gradient calculations using the 6-
31G, 6-31G*, and 6-31G** basis sets. In GAMESS input files,
the SG-1 grid system and direct SCF were requested, and the
density matrix convergence threshold was set to 10−8. Default
values were used for all the other options. All tests were carried
out on a NVIDIA Volta V100-SXM2 GPU (32 GB)

accompanied by Intel Xeon (R) Gold 6138 CPU (2.10
GHz) with 190 GB memory.
The performance comparison between QUICK and

GAMESS suggests that the former is significantly faster than
the latter (see Table 1). For ERI gradients, the observed
speedup is roughly 2−5-fold suggesting that our ERI engine is
more efficient, in particular for basis sets with higher angular
momentum quantum numbers. Furthermore, QUICK displays
higher speedups (∼60- or 80-fold in some cases) for the XC
gradients; however, this result has to be interpreted carefully

Table 2. Comparison of the Accuracy and Performance of B3LYP Calculations Performed Using QUICK CPU (serial/single
core) and GPU Versionsa

second SCF iteration (s) XC (s) total energy (au)

molecule (atom number)
basis set (function

number) CPU GPU speedup CPU GPU speedup CPU DGPUb

(H2O)32 (96) 6-311G (608) 153.9 2.9 54 44.5 0.5 82 −2444.98724960 −1.09 × 10−7

6-311G** (992) 367.2 7.7 48 68.7 1.0 70 −2445.85046773 −1.12 × 10−7

cc-pVDZ (800) 428.3 5.5 78 53.9 0.8 67 −2445.00925604 −1.09 × 10−7

Taxol (110) 6-311G (940) 687.0 14.9 46 131.0 1.7 75 −2927.02879410 −6.20 × 10−8

6-311G** (1453) 2314.4 44.2 52 223.2 3.4 66 −2927.98372502 −3.10 × 10−8

cc-pVDZ (1160) 3537.4 38.4 92 198.7 3.1 63 −2927.38471110 −5.10 × 10−8

valinomycin (168) 6-311G (1284) 1451.1 36.9 39 225.9 2.9 78 −3793.79224954 −1.28 × 10−7

6-311G** (2022) 4628.3 105.6 44 364.2 5.2 69 −3795.12274932 −1.10 × 10−7

cc-pVDZ (1620) 6625.2 81.4 81 304.8 4.7 65 −3794.17889687 −9.20 × 10−8

310-helix acetyl(Ala)18NH2 (189) 6-311G (1507) 1680.8 43.7 38 211.3 2.7 77 −4660.64280944 −7.40 × 10−8

6-311G** (2356) 5914.4 134.4 44 356.1 5.2 68 −4662.21706599 −5.60 × 10−8

cc-pVDZ (1885) 8789.8 108.9 81 309.0 4.8 65 −4661.20248530 −6.80 × 10−8

α-helix acetyl(Ala)18NH2 (189) 6-311G (1507) 1881.6 52.3 36 257.2 3.3 78 −4660.97909929 −1.55 × 10−7

6-311G** (2356) 6186.0 157.4 39 408.9 5.9 69 −4662.53814845 −2.10 × 10−7

cc-pVDZ (1885) 8907.1 119.8 74 355.9 5.4 65 −4661.54162676 3.10 × 10−8

β-strand acetyl(Ala)18NH2 (189) 6-311G (1507) 921.2 24.5 38 100.3 1.3 76 −4660.89912485 −6.90 × 10−8

6-311G** (2356) 3451.9 82.1 42 187.8 2.8 67 −4662.48158890 −1.45 × 10−7

cc-pVDZ (1885) 5094.9 63.4 80 160.6 2.5 63 −4661.46843955 2.09 × 10−6

α-conotoxin MII (PDB ID 1M2C)
(220)

6-31G* (1964) 4627.1 108.3 43 373.6 4.9 77 −7142.85690266 −6.04 × 10−6

6-31G** (2276) 5601.1 138.1 41 407.1 6.2 66 −7143.06700681 −5.34 × 10−6

6-311G (1852) 3390.0 103.5 33 424.9 5.5 78 −7142.57919438 −7.30 × 10−8

olestra (453) 6-31G* (3181) 5787.1 143.7 40 258.9 4.1 63 −7540.95874486 −2.14 × 10−6

6-31G** (4015) 9881.3 277.6 36 310.1 4.5 70 −7541.35299607 −2.19 × 10−6

6-311G (3109) 5511.5 164.3 34 276.0 3.7 74 −7540.71669525 −5.85 × 10−7

aNVIDIA V100-SXM2 GPU, Intel Xeon (R) Gold 6148 CPU. bDGPU energy column shows the deviation of the energy with respect to the
corresponding CPU calculation.

Table 3. Comparison of gradient Times between QUICK CPU (Serial/Single Core) and GPU Versionsa

ERI gradients (s) XC gradients (s)

molecule (atom number) basis set (function number) CPU GPU speedup CPU GPU speedup

(H2O)32 (96) 6-31G (647) 218.3 5.3 41 1196.7 3.7 325

6-31G** (992) 1015.1 23.7 43 1261.3 5.4 235

Taxol (110) 6-31G (647) 1676.5 38.2 44 1893.4 9.4 201

6-31G** (1160) 7479.7 149.1 50 2094.2 14.7 142

valinomycin (168) 6-31G (882) 3339.8 85.0 39 6156.7 19.4 318

6-31G** (1620) 14579.7 319.3 46 6457.1 27.0 239

310-helix acetyl(Ala)18NH2 (189) 6-31G (608) 4281.0 97.6 44 8611.6 20.6 418

6-31G** (992) 20009.4 395.9 51 8907.9 27.6 323

α-helix acetyl(Ala)18NH2 (189) 6-31G (608) 4592.9 109.7 42 8777.5 23.0 381

6-31G** (992) 20114.2 422.8 48 9073.9 32.5 279

β-strand acetyl(Ala)18NH2 (189) 6-31G (608) 2307.7 45.7 51 8398.9 16.5 509

6-31G** (992) 11247.6 187.8 60 8601.1 22.4 383

α-conotoxin MII (PDB ID 1M2C) (220) 6-31G (1268) 8371.3 232.6 36 13868.9 17.8 780

6-31G** (2276) 33798.1 813.3 42 14349.2 28.8 498
aB3LYP functional is employed in all calculations. NVIDIA V100-SXM2 GPU, Intel Xeon (R) Gold 6148 CPU.
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since the XC implementation of GAMESS appears to be not
GPU capable. Note that in larger test cases, the GAMESS XC
gradient time surpasses the ERI gradient time. Based on the
average SCF times, the QUICK SCF scheme also outperforms
GAMESS. Again, slow performance of the latter may be
partially attributed to its CPU based XC implementation. A
comparison of separate timings for ERI, XC energy, and
potential calculations during each SCF iteration was not
possible since timings for these individual tasks were not
reported by GAMESS. Nevertheless, HF single point
calculations carried out for the same systems (see Table S1)
suggest that QUICK ERI calculations are faster, consistent
with the gradient results documented above.
We now compare the accuracy and performance between

the QUICK CPU and GPU versions using a series of B3LYP53

energy calculations. As is apparent from Table 2, energies
computed by the QUICK GPU version agree with the CPU
version up to 10−6 au or better. Furthermore, the GPU version

of the XC implementation delivers at least a 60-fold speedup
over the serial CPU version (also see Table S2). In both
versions, less than 30% of the SCF step time is spent on
computing the XC energy and contribution to Kohn−Sham
matrix. This suggests that ERI calculation remains the
performance bottleneck of QUICK DFT energy calculations.
As a result, the speedup observed for the SCF iteration in most
cases is somewhat lower than the XC speedup.
In Table 3, we report a comparison of B3LYP/6-31G and

B3LYP/6-31G** gradient calculation times between the
QUICK CPU and GPU versions. The selected test cases are
a subset of the molecular systems chosen for the SCF tests.
The key observations from Table 3 include (1) the GPU
version delivers significant speedups for both ERI and XC
gradient calculations, (2) the speedup observed for ERI
gradients resembles the ones realized for energy calculation
(∼50 times), and (3) the speedup delivered for XC gradients is
in few hundreds range (∼100−800 times). Similar speedups

Table 4. Comparison of Accuracy and Performance between LIBXC CPU (Serial/Single Core) and GPU Versions for Taxol
(110 Atoms) with the 6-31G Basis Set (647 Contracted Basis Functions)a

XC (s) total energy (au)

functional number of SCF iterations CPU GPU speedup CPU GPU

BLYP-native 21 491.2 21.7 23 −2925.30524021 −3.65 × 10−7

BLYP 21 486.6 21.7 22 −2925.30524021 −3.65 × 10−7

B3LYP-native 20 398.4 21.7 18 −2926.28595424 −2.41 × 10−7

B3LYP 17 399.1 17.6 23 −2926.28595424 −2.41 × 10−7

PBE054,55 17 397.6 17.6 23 −2923.03725363 −1.50 × 10−8

B3PW9156 17 466.2 20.8 22 −2925.19518104 −1.10 × 10−8

XVWN57,58 21 498.3 21.7 23 −2902.07631292 −2.70 × 10−8

LP_A59 21 498.7 21.7 23 −2930.72703131 −2.80 × 10−8

aNVIDIA V100-SXM2 GPU, Intel Xeon (R) Gold 6148 CPU.

Figure 3. Comparison of performance between QUICK GPU and MPI implementations using Taxol (110 atoms) gradient calculations performed
at B3LYP/6-31G** (1160 contracted basis functions) level of theory. Comparison of DFT grid operation time (A), total ERI and XC correlation
times for 17 SCF iterations (B), ERI and XC gradient times (C), and total run times (D) between GPU and MPI versions. NVIDIA V100-SXM2
GPU accompanied by 2 Intel Xeon (R) Gold 6148 CPUs.
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observed for ERI energy and gradient calculations can be
explained by the fact that their implementations are similar.
Indeed, computing the gradients of a given basis function
involves the cost of computing the value of the higher angular
momentum basis function. Understanding the details of the
observed speedups for XC energy and gradient computations
requires further investigation. As mentioned in section 3.7, we
implemented XC energy gradient and grid weight gradient
calculations in two separate kernels. Careful examination of
kernel run times suggests that the former consumes more than
90% of the gradient time and gains a better speedup on a GPU.
However, the structure of this kernel is similar to that of the
XC energy with the exception of computing second derivatives.
Therefore, the observed higher speedup must be due to the
inefficiency of computing the second derivatives on the CPU.
4.2. Performance of LIBXC Functionals. As mentioned

above, we have integrated the original and modified LIBXC
library versions into QUICK CPU and GPU codes. It is
important to document the performance of these functionals
within our XC scheme. In Table 4, we report a series of Taxol
energy calculations at the DFT/6-31G level of theory using
various functionals. The selected functionals include hand-
coded (native) BLYP and B3LYP and their LIBXC versions
and, additionally, representative LDA, GGA, and hybrid-GGA
functionals. Comparison of native BLYP and B3LYP total
energies against the corresponding LIBXC versions suggests
that the latter are as accurate as the former on both CPU and
GPU platforms. Furthermore, the reported CPU and GPU XC
times remain very similar, and the acceleration delivered by the
GPU remains substantially the same. In fact, the ca. 20-fold
speedup realized on the GPU platform is common for all LDA
and GGA functionals. Note that computing the value of
density functionals is relatively inexpensive with respect to
other operations performed in XC energy or gradient
calculations, and such a similar speedup is expected. Finally,
the fact that we maintain a similar speedup among native and
LIBXC functionals suggests that minor modifications per-
formed to density functional source code in the GPU version
has not introduced performance penalties.
4.3. Comparison of GPU versus Parallel CPU

Implementations. We now compare the performance
between GPU and parallel CPU (MPI) implementations
using Taxol gradient calculations at the B3LYP/6-31G** level
of theory. The selected platform for testing is a single
computer node equipped with a NVIDIA V100-SXM2 GPU
(32 GB) and 40 Intel Xeon (R) Gold 6148 cores (2 sockets
with 20 cores on each, 2.40 GHz clock speed) with 367 GB
memory. The QUICK MPI version was compiled using the
GNU 7.2.0 compiler and MPICH 3.2.1. The GPU version was
compiled using the same GNU compiler with CUDA version
10.0.130. As is apparent from Figure 3A, the DFT grid
operation time for the same calculation is reduced by ca. 4
times (14.8 vs 3.6 s) when going from single to 40 cores in the
MPI version. The realized speedup can be mainly attributed to
parallelized grid weight computation, grid pruning, and basis
function prescreening. The corresponding V100 GPU time for
the same task is 1.7 s with approximately 1 s spent on the CPU
based octree run. We tested the necessity of implementing the
octree algorithm on the GPU by measuring the time to
partition numerical grid points of larger molecular systems.
The results suggest that our existing CPU implementation is
sufficiently efficient to handle such systems. For example,
partitioning grid points of olestra (453 atoms, ∼4.4 million

grid points) only took 3.0 s, while computing grid weights and
prescreening consumed 12.7 and 0.6 s, respectively.
In Figure 3B, we report the total time spent by the ERI and

XC calculations during 19 SCF iterations. The maximum
speedup observed for the former and latter in the MPI version
are ca. 23- and 33-fold, respectively. The speedups from the
GPU version for the same tasks are ca. 65- and 62-fold. For
ERI gradient calculations (see Figure 3C), the speedup gained
from the MPI version is similar to that of the SCF (ca. 22-
fold), but significantly less than the corresponding GPU
speedup (ca. 50-fold). Furthermore, the MPI version delivers
about 59-fold speedup for the XC gradient calculations;
however, this is below the acceleration achieved by a V100
GPU (ca. 142-fold). Finally, as evident from Figure 3D, the
total speedup gained from the GPU is two times over using 40
cores. It is also important to comment on the linearity of our
MPI plots in Figure 3B,C. Both ERI SCF and gradient
calculations scale well with the number of cores and almost
achieve the ideal MPI speedup since we distribute atomic
shells among MPI tasks (CPU cores). However, in the XC
implementation, we distribute bins containing varying number
of grid points. Therefore, the workload is not optimally
balanced and plots of the XC MPI timings display a nonregular
speedup (not linear) unlike in the ERI case. The linear scaling
computation of XC contributions on CPU platforms has been
documented in past.60,61 Such work has also reported
nonlinear and superlinear speedups.

4.4. Performance of QUICK on Different GPU
Architectures. For all the aforementioned benchmarks, we
have used a NVIDIA V100 data center GPU. It is also
necessary to document how the current QUICK GPU
implementation performs on other available devices. In Table
5, we report the performance of several important kernels on

different workstation GPUs (V100, Titan V, and P100) and a
gaming GPU (RTX2080Ti). The selected test case for this
purpose is the Taxol gradient calculation at the B3LYP/6-31G
level of theory. As is apparent from Table 5, all kernels display
their best performance on the V100 GPU. Surprisingly, ERI
kernels show their slowest times on the P100 rather than the
gaming GPU, suggesting that their performance is not limited
by double precision (FP64) operations. Note that the P100
GPU has a higher FP64 capability in comparison to the
RTX2080Ti.62,63 A detailed examination of the two kernels
revealed that their performance is bound by high register usage
and memory bandwidth. In contrast, XC kernels displayed

Table 5. Comparison of the Performance of Different
Kernels Using Different GPU Architecturesa

total time for each task (s)

task
V100

(32 GB)
Titan V
(12 GB)

P100
(16 GB)

RTX2080Ti
(11 GB)

SCF ERIb 80.4 107.6 159.2 125.2

SCF XCb 22.7 26.1 59.8 114.3

ERI
gradients

38.0 40.7 66.9 55.1

XC
gradients

6.9 7.9 8.5 13.4

aThe selected tests case is Taxol gradient calculation at B3LYP/6-
31G** (1160 contracted basis functions) level of theory. Reported
kernel times were measured using the NVIDIA visual profiler available
in the CUDA toolkit. bReported time is the summation over 22 SCF
cycles.
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their highest timings on the RTX2080Ti GPU, and therefore,
these are bound by FP64 operations. Further examination of
the XC energy gradient kernel indicated that its performance is
also limited by atomic operations. Overall, excellent perform-
ance is achieved on both data center GPUs with Pascal and
Volta architectures and gaming GPUs with Turing architec-
ture.

5. CONCLUSIONS

We have reported the details of the MPI parallel CPU and the
GPU enabled DFT implementation of the QUICK quantum
chemical package. Our implementation consists of features
such as octree-based grid point partitioning, GPU assisted grid
pruning and basis and primitive function prescreening, and
fully GPU enabled XC energy and gradient computations. The
CPU and GPU versions mainly differ from each other as
follows. In the GPU version, device kernels are used for
computing grid weights, preparing basis and primitive function
lists and grid pruning based on primitive function values,
computing electron densities, calculation of functional values
and their derivatives, computing XC energy, and assembling
matrix elements of the XC potential into the Kohn−Sham
matrix. Computing XC energy gradients, grid pruning based on
the grid weights, and computing grid weight gradients are also
done using device kernels. In the CPU version, all these steps
are performed using host functions.
Performance comparison with the GAMESS GPU version

demonstrates that DFT calculations with QUICK are
significantly faster. The accelerations observed for the XC
energy and gradient computation in the QUICK GPU version
with respect to the serial CPU version are impressive. The
speedups realized on a V100 GPU for the former and latter are
approximately 60−80-fold and 100−800-fold, respectively.
Such speedups are out of reach with the MPI parallel CPU
version even if one uses 40 cores in parallel. The recommended
device for the latest QUICK version (v20.03) is the NVIDIA
V100 data center GPU, but the code runs very well also on
gaming GPUs.
The profiling of ERI and XC kernels has shown that there

exists room for further performance improvement. In the
former context, reimplementing large ERI kernels into smaller
kernels may be a viable strategy. This is expected to reduce the
register pressure and enhance the performance of the ERI
engine. The performance of XC kernels on gaming GPUs may
be improved by implementing a mixed precision scheme.
Additionally, strategies such as storing the gradient vector in
shared memory and latency hiding may be helpful to reduce
the computational cost associated with atomic operations in
the XC energy gradient kernel. Performance of XC kernels on
data center GPUs may be further improved by increasing the
kernel occupancy, which is currently about 9% on Volta type
GPUs.
Currently, we are integrating QUICK as a library into the

AMBER molecular dynamics package64 to enable fully GPU
enabled quantum mechanics/molecular mechanics (QM/
MM) simulations. Furthermore, the current version is
incapable of using more than one GPU and to this end, we
are developing a multi GPU version. Finally, QUICK version
20.03 can be freely downloaded from http://www.merzgroup.
org/quick.html under the Mozilla public license.
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(11) Kutzner, C.; Paĺl, S.; Fechner, M.; Esztermann, A.; De Groot, B.
L.; Grubmüller, H. Best Bang for Your Buck: GPU Nodes for
GROMACS Biomolecular Simulations. J. Comput. Chem. 2015, 36,
1990−2008.
(12) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao,
Y.; Beauchamp, K. A.; Wang, L. P.; Simmonett, A. C.; Harrigan, M. P.;
Stern, C. D.; et al. OpenMM 7: Rapid Development of High
Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol.
2017, 13, No. e1005659.
(13) Ufimtsev, I. S.; Martínez, T. J. Quantum Chemistry on
Graphical Processing Units. 1. Strategies for Two-Electron Integral
Evaluation. J. Chem. Theory Comput. 2008, 4, 222−231.
(14) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on
Graphical Processing Units. 2. Direct Self-Consistent-Field Imple-
mentation. J. Chem. Theory Comput. 2009, 5, 1004−1015.
(15) Fales, B. S.; Levine, B. G. Nanoscale Multireference Quantum
Chemistry: Full Configuration Interaction on Graphical Processing
Units. J. Chem. Theory Comput. 2015, 11, 4708−4716.
(16) Asadchev, A.; Gordon, M. S. Fast and Flexible Coupled Cluster
Implementation. J. Chem. Theory Comput. 2013, 9, 3385−3392.
(17) DePrince, A. E.; Hammond, J. R. Coupled Cluster Theory on
Graphics Processing Units I. The Coupled Cluster Doubles Method.
J. Chem. Theory Comput. 2011, 7, 1287−1295.
(18) Luehr, N.; Ufimtsev, I. S.; Martínez, T. J. Dynamic Precision for
Electron Repulsion Integral Evaluation on Graphical Processing Units
(GPUs). J. Chem. Theory Comput. 2011, 7, 949−954.
(19) Liu, F.; Sanchez, D. M.; Kulik, H. J.; Martínez, T. J. Exploiting
Graphical Processing Units to Enable Quantum Chemistry Calcu-
lation of Large Solvated Molecules with Conductor-like Polarizable
Continuum Models. Int. J. Quantum Chem. 2019, 119, No. e25760.
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