
Received January 31, 2020, accepted February 24, 2020, date of publication February 27, 2020, date of current version March 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976900

Parallel Implementation of K-Means
Algorithm on FPGA

LEONARDO A. DIAS 1, JOÃO C. FERREIRA 2,3, (Senior Member, IEEE),
AND MARCELO A. C. FERNANDES 1,4,5
1Laboratory of Machine Learning and Intelligent Instrumentation (LMLII), nPITI-IMD, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
2INESC TEC, University of Porto, 4200-465 Porto, Portugal
3Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
4Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
5John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Corresponding author: Marcelo A. C. Fernandes (mfernandes@dca.urn.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under Grant 001. This

work was partially financed by the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, through national funds, and

co-funded by the FEDER, where applicable.

ABSTRACT The K-means algorithm is widely used to find correlations between data in different application

domains. However, given the massive amount of data stored, known as Big Data, the need for high-speed

processing to analyze data has become even more critical, especially for real-time applications. A solution

that has been adopted to increase the processing speed is the use of parallel implementations on FPGA,

which has proved to be more efficient than sequential systems. Hence, this paper proposes a fully parallel

implementation of the K-means algorithm on FPGA to optimize the system’s processing time, thus enabling

real-time applications. This proposal, unlike most implementations proposed in the literature, even parallel

ones, do not have sequential steps, a limiting factor of processing speed. Results related to processing time

(or throughput) and FPGA area occupancy (or hardware resources) were analyzed for different parameters,

reaching performances higher than 53 millions of data points processed per second. Comparisons to the state

of the art are also presented, showing speedups of more than 15573× over a partially serial implementation.

INDEX TERMS Parallel implementation, FPGA, K-means algorithm, reconfigurable computing.

I. INTRODUCTION

In recent years, technological advances of digital devices

resulted in a significant increase in the amount of digital

data processed and stored, which in turn are generated in a

variety of fields, including health, traffic, climatology, mobile

devices, and social networks [1], [2]. Analyzing this mas-

sive amount of data and extracting relevant information has

become an essential process in decision making for vari-

ous organizations in several areas such as finance, banking,

healthcare, and communication [3]. Therefore, organizations

have been facing a challenging scenario when processing

such massive amounts of data due to increased demand for

results in shorter time frames. Consequently, the development

of computational solutions for systems operating in real-time

has become a difficult task [4].

A solution that has been widely adopted to meet the

demand for high-speed processing (or high-throughput) is to

devise parallel implementations of the relevant algorithms.

The associate editor coordinating the review of this manuscript and
approving it for publication was Akansha Singh.

Parallel execution allows different sections to operate with

different sets of data concurrently [5], [6]. In addition,

the reconfigurable computing implementations using field-

programmable gate arrays (FPGAs) combined with paral-

lelization techniques proposed in the literature have shown

satisfactory results when compared to systems based on

sequential solutions [5], [7]. FPGAs are widely used to imple-

ment these algorithms in parallel, as processing time and

cost are significantly reduced [8]. The FPGA is an array

of reconfigurable logic blocks that allows the implementa-

tion of several logic circuits that can operate independently,

enabling parallel processing of different data simultane-

ously [9]. Therefore, it answers the demand for reduced

processing time by allowing the parallel implementation of

algorithms used to analyze massive datasets.

This paper presents and evaluates a fully parallel imple-

mentation of the K-means algorithm on an FPGA with

focus on high performance to extract data patterns from

massive datasets in a short time. The K-means algorithm

is widely used in the process of data clustering because it

allows finding patterns and correlations in data by similarity,

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 41071

https://orcid.org/0000-0002-8442-3291
https://orcid.org/0000-0001-7471-3888
https://orcid.org/0000-0001-7536-2506

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

in an unsupervised way; in addition it is a relatively simple

technique [10], [11].

The most commonly found implementations of the

K-means algorithm in the literature, including parallel ones,

generally have sequential sections, thus limiting the pro-

cessing speed compared to fully parallel implementations.

Therefore, this paper’s main contributions are:

• A complete, fully parallel hardware implementation

without additional embedded processors or software;

• A detailed description of the modules implemented in

hardware enabling the replication of the work;

• A thorough speed and area occupation analysis based on

the post-synthesis results for reconfigurable hardware;

• FPGA synthesis and analysis of the architecture for

three different distance metrics and fixed-point sizes for

assisting future implementations in the selection of the

best metrics for a specific application;

• FPGA synthesis and analysis of the implementation

of the square root function for the Euclidean distance

metric.

The results show that the implementation proposed here

has general applicability to situations where large data

amounts must be processed under strict time restrictions,

therefore enabling its adoption in real-time applications.

The next subsection presents an overview of the most

relevant related works.

A. RELATED WORKS

In the last years, applications of K-means algorithm involving

parallel and distributed, hardware only and hybrid (software

and hardware) implementations have been reported in the

literature.

In [5], a parameterized K-means algorithm was fully

implemented on FPGA, in a General Purpose Proces-

sor (GPP) and also in a Graphics Processing Unit (GPU),

in order to compare the speedup between each implementa-

tion. In the case of FPGAs, the data points and the centroids

are stored in memories, which can be internal or external.

Focusing on a reduction of the area the input data (present in

the dataset) and the centroids updating are implemented seri-

ally, and the distance metric of the data point and all clusters

are obtained simultaneously, on a parallel scheme. A speedup

of about 6.7× was achieved by the FPGA implementation

in comparison to a GPU-based one; the speedup over a

GPP-based implementation was 54×. However, in addition to

sequential steps, the constant accesses to memory for writing

and reading data points and centroids reduce the processing

time performance of the implementation.

In [7], the K-means algorithm has been implemented in dif-

ferent FPGAs using MapReduce model to compare the per-

formance regarding speedup. The similarity distance metric

adopted is based on Euclidean distance and the cluser process

is performed by the map function. Therefore a key-value pair

list containing the data point and its nearest cluster centroid

is generated. This list is then sorted based on centroid values

by a shuffling function, allowing to group the data according

to their clusters. Afterwards the reduce function is performed

in a parallel scheme, updating all centroids simultaneously.

This proposal was implemented in two FPGAs dedicated

to the map function (called mappers) and one dedicated to

reducing function (called reducer). The FPGAs are Xilinx

Kintex-7 XC7k325T devices, and the tests presented were

performed for 32 mappers and 12 reducer functions. The

proposed design has a speedup of about 20.6× compared

to the same implementation in software, despite the bottle-

neck caused by the communication between the FPGAs. The

resource usage for both mappers is 36% of the registers,

69% of the look-up-tables (LUTs), 49% of the DSP and

33% of block RAM memory, and for the reducer 44% of

the registers, 71% of LUTs, 34% of the DSP and 24% of

block RAM memory. However, the communication between

different FPGAs and the access to memory blocks limits the

processing time. In addition, the clustering step based on the

map function includes sequential processes.

A hybrid implementation is proposed in [12] to com-

pare the speedup regarding an ARM processor. A hybrid

implementation executes only part of the algorithm steps

on hardware and the rest on software. This hybrid proposal

aims to reduce FPGA area overhead and improve process-

ing speed. The FPGA contains the circuits to calculate the

similarity distance metric, which is based on the Manhat-

tan distance, and the circuits to group data points with the

nearest centroid. The software is responsible for updating the

centroid values, to avoid creating division circuits, needed

for this step, on the FPGA, thus reducing the area overhead.

A 32-bit floating-point representation for data points is also

used to provide a high resolution. The resulting area overhead

for the FPGA is 11560 LUTs, 11171 registers, 10 RAM

blocks (BRAM) and 28 DSPs. A speedup of about 10×

over the software version running on the ARM processor is

achieved. However, the area overhead is relatively high con-

sidering that only part of the K-means algorithm is running

on the FPGA. In addition, a bottleneck caused by the com-

munication between FPGA and the ARM processor limits the

processing time.

In the work presented in [4], the K-means algorithm is

completely developed on FPGA and alsoGPP. External mem-

ories are used to store the data set and initial centroid values,

and internal block memories are used to store each data point

and centroid for processing. This implementation allows sev-

eral data points to be processed in parallel, but the similarity

distance metric to each centroid is obtained sequentially.

Therefore, the processing speed is reduced when compared

to a fully parallel implementation. The implementation uses

33% of the Virtex-6 xc6vlx240t total resources for a speedup

of about 368× over the GPP version. In addition to the

sequential steps, there is a communication bottleneck caused

by frequent memory accesses.

In the work detailed in [13], like in [7], the K-means

algorithm is implemented with the aim of accelerating

Hadoop clusters. A hybrid architecture is also proposed.

41072 VOLUME 8, 2020

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

The similarity metric is implemented on FPGA using the

Euclidean distance and centroid updating is implemented in

software. The hybrid implementation was chosen to reduce

FPGA area overhead. A 4× speedup has been obtained com-

pared to using Apache Mahout Machine Learning Libraries,

a distributed linear algebra framework written in Scala [14].

Similar to [7], the work presented in [15] also devel-

oped a implementation based on MapReduce model. The

K-means algorithm is completely developed in a Zynq

xc7z045ffg600-2 FPGA and allows data points to be pro-

cessed in parallel. The dataset is split according to the num-

ber of mapper circuits, were each mapper is responsible

to process a dataset slice. The mappers are responsible to

obtain the distance measurement and assign data to nearest

cluster. In addition, one reduce circuit is used to update the all

the centroids. The implementation achieved a throughput of

28.74Gbps and occupied 47.61% and 81.51% of of registers

and LUTs, respectively.

Therefore, based on those papers, it is clear that the

use of FPGAs to accelerate the processing time of massive

amounts of data is feasible and effective when compared

to general-purpose implementations or sequential systems.

However, as mentioned, most implementations have sequen-

tial steps and frequent accesses to memories, which can limit

their use in real-time applications. Hence, this paper proposes

a parallel implementation of each k-means process, making

real-time applications possible and reliable.

B. PAPER ORGANIZATION

The remainder of this paper is organized as follows: Section II

explains the K-means algorithm and its operation. Section III

shows a detailed description of the architecture proposed in

this paper, while section IV presents and analyses the results

obtained from the described implementation, including a

comparison to other works. Finally, Section V presents some

concluding remarks.

II. THE K-MEANS ALGORITHM

K-means algorithm allows datasets to be partitioned and

grouped based on similarity metrics. Each group is called

a cluster and created based on similarity metrics. Therefore,

the algorithm aim is to generate K clusters, by assigning data

points of a dataset to the closest representative data, which in

turn is called centroid [11]. Thereby, K-means is often used

for recognition and to find patterns in massive datasets [16].

The cluster number, K , is an integer, and for each k-th

cluster, a centroid, ck , is assigned. The initial value of each

k-th centroid, is randomly generated by choosing random

data points in the dataset, which is the most used way as can

be seen in the following proposed papers: [17]–[20]. It can

also be generated by other algorithms [16].

The set of centroids, c[m], is defined as

c[m](n) = [c1[m](n), c2[m](n), . . . , cK [m](n)] (1)

where m represent the number of bits that describes each

centroid and n represents the n-th iteration.

Algorithm 1 K-Means Pseudocode

1: Initialise c[m] centroids randomly;

2: while c[m](n+ 1) 6= c[m](n) do

3: for j← 1 to J do

4: for k ← 1 to K do

5: Compute the distance dk (pj[m], ck [m])(n)

according to equation (3) or equation (4);

6: d(n)← dk (pj[m], ck [m])(n);

7: end for

8: for k ← 1 to K do

9: if d(k − 1) ≤ d(k) then

10: ck ← pj[m];

11: end if

12: end for

13: Update ck according to equation (6);

14: end for

15: n← n+ 1;

16: end while

In every n-th iteration of the algorithm, the similarity

between a cluster centroid and a data point, pj[m], of a dataset,

x[m], is obtained. A dataset, x[m], of J data points, can be

represented as

x[m] = [p1[m](n), p2[m](n), . . . , pJ [m](n)]. (2)

That similarity of a k-th cluster, which is represented by its

centroid, ck [m], and a j-th data point, pj[m], is defined based

on the distance between them. Therefore, this distance metric

determines to which centroid the data point is assigned. After-

ward, the centroid will be updated with the mean value of all

data points assigned to it. The process is then repeated, but the

distance is now obtained in regard to the new centroid value

(after updated) until their values do not change or a predefined

number of iterations has been performed.

The Algorithm 1 presents the K-means pseudocode. This

code details all the variables and procedures that will be

used in the implementation to be presented in the following

sections. It starts by randomly generating the first set of cen-

troids, c[m], as shown in equation 1. Therefore, one centroid

of m bits for each k-th cluster, as shown in line 1.

As can be seen from line 3, at each n-th iteration, the dis-

tance of every j-th data point, pj[m], in relation to each k-th

centroid, ck [m], is calculated. This distance for each k-th

centroid is often obtained, according to [11], by Minkowski

equation, which is defined as follows

dk (pj, ck) = (

D
∑

i=1

|pj,i[m]− ck,i[m]|
r)1/r (3)

where D represent the number of data dimension/attributes,

and r defines which distance metric is used. For r = 1

manhattan distance is obtained and for r = 2 the euclidian

distance.

It is also common to adopt the squared euclidean distance

to avoid the complexity of a square root function required by

VOLUME 8, 2020 41073

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

FIGURE 1. General architecture of the proposed parallel K-means algorithm implementation.

euclidean distance (r = 2) and maintain an accurate results

compared to manhattan distance. The squared euclidean dis-

tance is derived from euclidean distance, and defined as

follow

dk (pj, ck)
2 =

D
∑

i=1

|pj,i[m]− ck,i[m]|
2. (4)

At each n-th iteration, a vector of distances, d(n), stores the

distance of a j-th data point, pj[m], in relation to each centroid,

ck [m], and it is represented as

d(n) = [d1(pj[m], c1[m])(n), . . . , dK (pj[m], cK [m])(n)] (5)

where dk is the k-th distance obtained according to

equation (3) or equation (4).

After calculating the distance, the data point, pj[m],

is assigned to the k-th cluster with the closest centroid, ck [m],

in other words, the data point is assigned to the cluster

centroid with the minimum distance present in the vector

of distances, d(n), as can be seen in lines 8 to 12 in the

Algorithm 1. According to [11] and [21], the most used

distance metric is euclidean distance, shown in equation (3)

for r = 2, because it provide more accuracy compared to

manhattan distance [22].

Lastly, each centroid, ck [m], present in the set of centroids,

c[m], is updated with the mean value of all data points

assigned to it, according to the following equation

ck [m] =
1

Z

Z
∑

w=1

pj,w[m] (6)

where Z represent the total amount of data points in that

cluster, that is, assigned to this centroid. The process is then

repeated in the next n-th iteration if the new centroid values,

c[m](n + 1) are different from the actual values, c[m](n),

as can be seen in line 2.

It is noticeable in Algorithm 1 that the larger the dataset

and the centroid number, the greater is the number of iter-

ations. Thus, when applied to massive datasets, the number

of iterations is very high, resulting in a high computational

complexity, mainly due to the calculation of the distance

metric. Hence, it is clear the need for high-speed processing.

III. IMPLEMENTATION DESCRIPTION

The entire K-means algorithm, presented in the Algorithm 1,

was developed using a parallel architecture focusing on accel-

erating the data processing speed regardless of the dataset,

taking advantage of the available FPGA hardware resources,

similarly to [23]. It is shown in the Figure 1, the general

architecture of this proposal. The figure details in block

diagram the main modules of the proposed implementation,

which in turn were encapsulated in order to make the general

visualization of the architecture less complex.

The algorithm flowpath of this implementation is orga-

nized in four different main modules, as shown in Figure 1,

where each of them represents a K-means step. Firstly,

the Centroid Register (CR) module stores every cluster cen-

troid, ck [m], of the set, c[m]. The Distance Metric (DM)

module is responsible to define the similarity by calculating

the distance between each j-th data point, pj[m], to each k-th

centroid, ck [m], while the Clustering Process (CP) module

defines to which centroid the data point is assigned. Lastly,

the Mean Centroid (MC) module update the value of each

k-th centroid in the set, c[m].

To be fully implemented in parallel, the architecture

proposed here is replicated according to a parallelization

degree, called here as g. This parameter allows a total of

G data points, p
g
j [m], to be entered simultaneously, wherein

g = 1, 2, . . . ,G, as can be observed in the Figure 1. In order

to process these g data points, the DM and CP modules

are replicated G times. Therefore, the algorithm flowpath

41074 VOLUME 8, 2020

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

FIGURE 2. A g-th distance metric (DM) submodule for a j-th data point, p
g
j

[m], and K centroids, ck [m].

is executed for G different data points simultaneously. It is

important to emphasize that this implementation can be repli-

cated for several data points to be processed in parallel.

In addition, note that the implementation is scalable, in other

words, every circuit and parameter of the implementation can

be replicated, limited only by the resources of the used FPGA.

Hence, this proposal can be used to process any Big Data,

that is, any data dimensions/attributes, cluster centroids, etc.

required for a dataset.

The initial centroid values present in the set, c[m], ran-

domly chosen, according to the Algorithm 1, are generated

outside the FPGA and stored in CR module through Ethernet

Gbit, and then updated by the mean value of the data points

nearby. This update process occurs at every n-th iteration.

When the centroids values do not change, the algorithm stops

running to indicate that all data points are assigned to their

respective cluster. The runtime of the algorithm can also be

stopped by a predetermined number of iterations.

Those modules shown in Figure 1 are made up of submod-

ules, that has its specific implementations, also in parallel,

that will be detailed in the next subsections.

A. DISTANCE METRIC MODULE

ADistanceMetric (DM) module, has the purpose of calculat-

ing the distance of a j-th D-dimensional data point, p
g
j,D[m],

to each k-th centroid, ck,D[m], present in the set, c[m], at each

n-th iteration, to indicate their similarity. This is the first

K-means step realized after initializing the centroids.

It is shown in Figure 2, how each g-th DM module is built.

In order to calculate that distance metric, according to equa-

tions (3) and (4), mentioned in section II, this module is com-

posed by the following submodules: subtractors (SUBk,D),

multipliers (MULTk,D), absolute (ABSk,D), adders (SUMk,D),

square root functions (SQRTk) and multiplexers (MUXk).

As the purpose of this proposal is a completely parallel imple-

mentation, in addition to replicating this module G times,

to obtain the similarity for G data points simultaneously,

its submodules are also replicated to obtain the distance of

a j-th data point, p
g
j [m](n), to each k-th centroid, ck [m](n),

in parallel, that is, in only one iteration. Hence, these sub-

modules are replicated according to the number of centroids

and dimensions, as can be seen in Figure 2.

Firstly, for each data dimension/attribute, D, the submod-

ule SUBk,D subtract a centroid value, ck,D[m], from a data

point value, p
g
j,D[m]. The result generated is multiplied by

itself in the subsequent submodule MULTk,D, and it is also

obtained the absolute value in ABSk,D submodule. Each

MULTk,D and ABSk,D value is then summed by the submod-

ules SUMk . Lastly, the submodule MUXk is used to define

which equation should be adopted. As can be observed in

the Figure 2, according to the position of the mux data selec-

tor (CSk), the manhattan distance, defined in the equation (3)

for r = 1, the euclidean distance, defined in the equa-

tion (3) for r = 2, or the squared euclidean distance, defined

in the equation (4), is performed. The submodules ABSk,D
and SUMk are used to perform manhattan distance, while

euclidean distance is performed by SQRTk submodule path,

VOLUME 8, 2020 41075

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

and the submodules MULTk and SUMk are used for squared

euclidean distance.

The resultant vector of distances, d(n), shown in equa-

tion (5), is then obtained for each k-th cluster, in parallel,

at each n-th iteration. Hence, k distances, dK (p
g
j [m], cK [m]),

are genetared simultaneously for each data point, p
g
j [m].

In order to estimate the scalability, the total amount of each

submodule, necessary to perform this step, shown in Figure 2,

can be defined by the cluster and dimension number. Thus,

the amount of subtractors, multipliers and absolute is defined

as

totalSUB,MULT ,ABS = K ∗ D (7)

while the total amount of adders is

totalSUM = (2 ∗ (D− 1)) ∗ K (8)

The number of multiplexers and square root function sub-

module is defined according to the centroid number, so a total

of K SQRTk is created. Note that SUMk is created only if

there is more than one dimension/attribute, in other words,

this submodule is not necessary for D = 1.

This module and its submodules are implemented in

fixed-point to reduce the number of bits (m) compared to

floating-point implementations. The adders, SUMk , and abso-

lute, ABSk , increases only 1 bit in the total number of bits,

so its output size has been set to full. Meanwhile, the mul-

tipliers submodules, MULTk,D, can double the number of

bits, thus the size of its output was limited to increase the

number of bits only by 2, as the data points used are normal-

ized between 0 and 1. In case Euclidean distance is chosen,

the data is converted to floating-point to execute the operation

in SQRTk submodule in only one iteration and then con-

verted again to fixed-point. Thereby, this submodule does not

increase the number of bits. Hence, as can be observed in the

Figure 2, the bit width,m, increases only 2 bits for manhattan

distance and 3 bits for euclidean and squared euclidean.

Each k-th distance, dk , is then passed to next process,

the Clustering Process, to determine which cluster the data

point should be assigned. This DMmodule was developed for

those three different distance metrics in order to analyze the

the tradeoff between them, and also the complexity of SQRTk
submodule concerning to consumption of area and processing

speed.

B. CLUSTERING PROCESS MODULE

AClustering Process (CP) module, has the purpose of assign-

ing each j-th data point, p
g
j [m](n), to the closest k-th cluster

centroid, ck [m], at each n-th iteration, based on the distance

vector, d(n), shown in equation (5), generated in DMmodule.

As the cluster number is predefined, the condition to realize

this step is K ≥ 2, otherwise, the entire dataset will be in the

same cluster, and this module is not required.

This assignment task is realized by comparing the distance

values, dk (p
g
j [m], ck [m]), received from the previous submod-

ule. In order to realize that, this module is composed of the

FIGURE 3. A g-th clustering process (CP) submodules for K centroids.

following submodules: comparators (COMPk), logical OR

gates and multiplexers (MUX). Since this implementation

is completely parallel, CP module is replicated G times to

assign G data points, p
g
j [m](n), to their respective cluster

simultaneously, as can be seen in Figure 1. In addition, its

submodules are also replicated in order to compare every k-th

distance in the vector of distances (d(n)), in parallel, obtaining

the lowest in only one iteration.

As can be observed in the Figure 3, at each n-th iteration,

each submodule COMPk receives as input all K distances

values (dk), related to each k-th centroid, ck [m]. Then it

checks if its k-th distance, that is, the distance present in the

first input, is lower than the others by comparing them.

Each k-th COMPk has an output value represented by v
g
k ,

which in turn is a boolean value, and defined as

v
g
k (n) =

{

1, if dk ≤ dj, ∀j, 1 ≤ j ≤ K where j 6= k.

0, otherwise.

where v
g
k indicates that p

g
j [m](n) is close to its respective k-th

centroid when it assumes the bit 1 value. When p
g
j [m](n) is

not close to the k-th centroid distance of COMPk , v
g
k assumes

a bit 0 value.

Thereby, suppose a dataset that needs to be grouped

into k clusters, were c1[m] to ck [m] are their respectively

centroids. Considering the distance of a j-th data point,

p
g
j [m], regarding to first centroid being the shortest distance,

that is, d1(p
g
j [m], c1[m]) < dk (p

g
j [m], ck [m]),∀k, 1 ≤ k ≤

K and k 6= 1, the output of COMP1, v
g
1[m], is set to bit 1.

Hence, the remaing comparators outputs, v
g
k [m], is set to bit 0

through the MUXs and OR gates.

In case a data point is equally distant between two cen-

troids, the comparator output that has the lowest k-th index

will be assigned to bit 1, and a bit 0 will be assigned to the

remaining.

Therefore, at each n-th iteration, each g-th CP module

generates k boolean values, v
g
k [m], as shown in Figure 1,

in which just one of them is set to 1, while the remaining is

equal to 0. This helps the next step, Mean Centroid, recognize

which cluster the data point belongs.

41076 VOLUME 8, 2020

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

FIGURE 4. Mean Centroid (MC) submodules for K centroids.

The total number of each submodule, necessary to define

which centroid the data point is closer, as shown in the

Figure 3, can be defined based on the cluster number. There-

fore, the amount of comparators,COMPk , is equal to k , while

the amount ofMUX , is defined as

totalMUX = K − 1 (9)

and the number of logical OR gates, in its turn, is defined by

totalgates = K − 2 (10)

This module was developed using only logical submod-

ules, thus it operates with boolean values, which requires only

one bit, and also do not increase the total number of bits as

the previous module.

C. MEAN CENTROID MODULE

The Mean Centroid (MC) module, is responsible to update

every centroid present in the set of centroids, c[m], by calcu-

lating the mean value of all data points, p
g
j [m], assigned to a

determined centroid, ck [m], at each n-th iteration, as can be

seen in line 13 of Algorithm 1.

As can be observed in Figure 1, the MC module, different

from others, is not replicated. It receives as input, all G data

points, p
g
j [m], and also each k-th output of every g-th CP

module, v
g
k (n). However, its submodules are replicated in

order to update each centroid, ck [m], in parallel, as shown

in Figure 4. As can be seen, for each k-th centroid of the

set c[m], there is a update centroid submodule, UCk . Every

k-th submodule is responsible to update its k-th centroid,

ck [m], were eachUCk receives a total ofG data points, p
g
j [m],

and also G CP outputs, v
g
k (n), regarding its respective k-th

centroid.

As mentioned in section II, the mean value is obtained

according to equation (6), so the update centroid submodule,

UCk , consists of following circuits: adders (called here as

SUM − N k and SUM − Dk), accumulators (called here

as ACC − N k and ACC − Dk), a divisor (DIV k), a regis-

ter (REGk), a comparator (COMPk) andmultiplexers (MUX),

as shown in Figure 5. The suffix −N , in the adder and

accumulator, indicate that these circuits are used to generate

the divisor numerator, and the suffix −D is used to indicate

these circuits are used to generate the divisor denominator.

Hence, the divisor numerator is generated by SUM −N k and

ACC−N k circuits, respectively, and the divisor denominator

is generated by SUM −Dk and ACC−Dk . These circuits are

also replicated for each data dimension/attribute, D.

At each n-th iteration, the values of v
g
k (n) are summed

in SUM − Dk submodule and accumulated in ACC − Dk ,

generating the denominator. These values are also used as

data selector of the first MUXs, controlling the data points

being summed in SUM −N k and accumulated in ACC −N k

to form the numerator, as can be observed in Figure 5.

As mentioned in the previous subsections, when a data

point, p
g
j [m], is assigned to a centroid, ck [m], the input v

g
k (n)

assumes the bit 1 value. Therefore, if v
g
k (n) = 1, the g-th data

point at that n-th iteration, is summed in SUM − N k of this

k-th centroid. In addition to that, SUM−Dk sums theG values

of that k-th v
g
k (n), to determine the data point number present

in the cluster. The result of the adders is then accumulated

by ACC − N k and ACC − Dk , respectively. Note that for

v
g
k (n) = 0, that is, when there are no data points close to that

centroid, the value in both accumulators does not change as

both adders receive only zeros.

After each j-th data point present in the dataset has been

entered in the algorithm, a division operation is performed by

the circuit DIV k , based on the values of both accumulators,

generating the new centroid value, ck [m](n + 1). This new

centroid value is then stored in the register REGk , and also

sent to Centroid Register module, through the lastMUX .

If there aren’t any data points assigned to the centroid,

that is, when SUM − Dk = 0, the new value, ck [m](n + 1),

is defined by the REGk previously stored. This is accom-

plished through the comparator, COMPk , used as a data

selector for the lastMUX , which checks if SUM − Dk 6= 0 to

propagate the division result, otherwise, it propagates REGk ,

which in turn has the initial centroid, ck [m], randomly

generated, as its initial value.

The numerator and denominator values are internally con-

verted to floating-point in order to realize division operation

in just one iteration, and also to not increase the number of

bits.

The total amount of each circuit, necessary to perform

this step, shown in Figure 5, can be defined by the cluster

number, K , and dimensions, D. The number of SUM − N k ,

SUM−Dk , ACC−N k , ACC−Dk ,DIV k and REGk is defined

as

totalcircuits = K ∗ D (11)

while the amount ofMUX necessary can be defined as

totalMUX = G+ D (12)

and the amount of comparators is equal to cluster number.

VOLUME 8, 2020 41077

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

FIGURE 5. Circuits that constitute the k-th update centroid (UCk) submodule.

D. CENTROID REGISTER MODULE

The Centroid Register (CR) module, is used to store each

k-th centroid, ck [m](n), present in the set of centroids, c[m],

and, as shown in Figure 1, it is not replicated. This module

is constituted by a set of m-bit registers, in which for each

dimension/attribute (D), of every k-th centroid, there is a reg-

ister. Hence, the total amount of registers required is defined

as

totalREG = D ∗ K . (13)

The initial value of each k-the centroid, ck [m](n), plays a

fundamental role in the resultant clusters generated by the

K-means algorithm. In the tests performed with the proposed

implementation, they were randomly generated as shown in

the line 1 of Algorithm 1. As mentioned before, these values

are generated outside the FPGA and stored in their respective

register, therefore the initial value can also be generated by

a second algorithm to improve the results, as the K-means++.

The MC module is responsible to update this module with

the new centroid values, ck [m](n+ 1), at each n-th iteration.

After updated, the algorithm steps are repeated until each

k-th centroid of c[m] do not change, as shown in line 2 of

Algorithm 1. This indicates that each j-th data point, p
g
j [m],

present in a dataset is assigned to the correct cluster. The

algorithm can also stop after complete a predefined number

of iterations.

Thus, this implementation allows the insertion of G differ-

ent data points, p
g
j [m], and also assign them to K centroids,

in parallel, at each n-th iteration. The centroid values are

updated after a total of J
G
iterations, to indicate that all data

points are grouped in their respective cluster.

IV. EXPERIMENTAL RESULTS

The development of this project was accomplished using the

development platform provided by the FPGA manufacturer,

in this case, Xilinx [24]. This platform allows the user to

develop systems using the block diagram strategy instead

of VHDL or Verilog. This approach allows the developer

to maintain a greater focus on the system architecture in a

simpler way and without giving up control of low-level

FIGURE 6. Synthetic two-dimensional gaussian dataset and its initial
centroids, randomly generated.

configurations [25]. All results were obtained for an

FPGA Virtex-6 xc6vlx240t-1ff1156. This FPGA has a total

of 37680 slices containing 301440 registers (flip-flops),

150720 LUTs that can be used as memory or any logic and

768 DSP cells.

Initially, in order to validate the K-means algorithm imple-

mented in this paper, simulations were performed for a

synthetic Gaussian dataset, compounded of two-dimensional

data points, p
g
j,2[m],∀j, 1 ≤ j ≤ 4096. The parallelization

degree was set to g = 4, and also the number of cluster

centroids, that is K = 4. As mentioned in the section III-A,

each j-th data point and k-th centroid is represented in fixed-

point, then the bit width was defined as m = 14 bits,

wherein 12 bits are dedicated to the fractional part. It is shown

in the Figure 6 the gaussian dataset and the initial centroid

values, randomly generated, while in the Figure 7 is shown

the resultant clusters and final centroids. As can be observed,

even with overlapping data, the implementation was able the

recognize and cluster the data. A video demonstration of the

proposal is presented in [26].

Once validated, several syntheses were performed to

analyze the influence of this proposal in relation to area

41078 VOLUME 8, 2020

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

FIGURE 7. Clustered two-dimensional gaussian dataset after K-means
runtime for K = 4.

TABLE 1. K-means synthesis on FPGA for g = 4, K = 4, D = 2 and m = 14.

occupation and processing time of the FPGA. Firstly, these

syntheses were performed for the different distance mea-

surements presented in section II, that is, Manhattan dis-

tance (MD), Euclidean distance (ED) and Squared Euclidean

distance (SED), respectively. In addition, syntheses were

also performed by varying the following parameters: paral-

lelization degree (g), cluster centroid number (ck [m]), data

dimension/attributes (D) and bit width (m).

It is presented in Table 1, the synthesis results obtained

for each mentioned distance. The parameters were defined

as g = 4, K = 4, D = 2 and m = 14, for analysis pur-

poses only. From the second to fifth columns are the FPGA

resources, that is, the number of registers, LUTs, multipliers

and total resources used in the FPGA, respectively, while in

the sixth column is the sample rate, Rg. This rate represents

the implementation throughput, in other words, the number

of data points per second (DPS) processed by the algorithm,

implying in the rate that the clusters are updated. Therefore,

allowing to estimate the data processing time, according to

the following equation

Rg =
1

Tg
∗ g (14)

where Tg is the time required for each n-th iteration.

As can be seen, regarding the area occupation, the num-

ber of registers required to implement Manhattan distance

is ≈ 8.3% fewer compared to Euclidean distance and equal

to Squared Euclidean, while the number of LUTs is ≈ 48%

and ≈ 1.4% fewer, respectively. In addition, multipliers are

not needed for that distance. This is due to the fact that

FIGURE 8. Total resources used by varying g and K for D = 2 and m = 14.

Manhattan does not require the SQRTk andMULTk submod-

ules in theDMmodule, thus resulting in lower resources used.

Concerning processing speed, Manhattan distance allows a

processing of more than 53 millions of data points per sec-

ond, reaching a higher throughput compared to Euclidean

and Squared Euclidean, up to 44.88% and 10%, respec-

tively. However, despite the fewer resources required and

higher processing speed,Manhattan distance is a less accurate

metric [22].

The Euclidean distance is the most complex, requir-

ing ≈ 8.3% more registers and ≈ 47% more LUTs than

Squared Euclidean and it is also 38.5% slower (lower

throughput). This is due to the complexity of square root func-

tion, the operation performed in SQRTk submodule. On the

other side, the number of multipliers is equal as both dis-

tances has it defined according to equation (7). Nevertheless,

Squared Euclidean distance showed a better tradeoff for accu-

racy, area occupation and processing speed.

Despite that, it is important to emphasize that there

are unused FPGA resources. Even for Euclidean distance,

the most complex metric, only 18.7% of the total FPGA

resources has been used. Hence, the parallelization degree, g,

can be increased to achieve even higher processing speed and

also implement different systems.

Afterward, syntheses were performed varying the parame-

ters, which in turn, had its values defined based on configura-

tions of previous experiments found in the literature together

with some empirically obtained configurations. The bench-

mark datasets from UCI Machine Learning Repository [27]

and School of Computing from the University of Eastern

Finland [28], has been chosen for the tests.

Firstly, synthesis were performed varying the paralleliza-

tion degree (g) for three cluster number: K = 4, K = 8 and

K = 12. It is shown in Figure 8, the total resources used in

the FPGA for g = 1, g = 2, g = 4 and g = 8, respectively.

The remaining parameters were set to D = 2 and m = 14.

As can be observed, the resources used increases as cluster

number and parallelization degree increases, but not linearly.

VOLUME 8, 2020 41079

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

FIGURE 9. Throughput obtained by varying g and K for D = 2 and m = 14.

Regarding parallelization degree, for K = 4, the total

resources increases from 8.14% to 13.87% by doubling g,

while for K = 8 and K = 12 the resources used increases

from 17.35% to 36.76% and 27.89% to 45.42%, respectively.

As mentioned in section III, this parameter, allows to process

G data points, p
g
j [m], in parallel, at each n-th iteration. Hence,

increasing g results in an increased number of DM and CP

modules, thus the total resources. Concerning cluster number,

a resource increase for g = 1 from 8.14% to 27.89% is

obtained with the increase of K from 4 to 12, while for g = 8

is obtained an increase from 13.87% to 45.42%. This is due

to the fact that, the submodules of each g-th DM and CP

modules are replicated in order to process every g-th data

point, p
g
j [m], regarding each k-th centroid, ck [m], in parallel,

at each n-th iteration. In addition to that, the submodules of

MC modules are also replicated to update each k-th centroid

also in parallel. Thereby, the number of modules and sub-

modules are increased with these parameters resulting in that

increased number of resources.

These parameters also influence the throughput, as shown

in Figure 9. The throughtput for g = 1 slightly decreased

from Rg = 12.18M DPS to Rg = 11.69M DPS and

Rg = 11.20M DPS for K = 4, K = 8 and K = 12,

respectively. While for g = 8, the respective throughputs

obtained was Rg = 88.99M DPS, Rg = 84.01M DPS and

Rg = 84.50M DPS. However, for a fixed cluster number,

an increase in g resulted in a higher throughput. As can be

observed, the throughput obtained for K = 4 was Rg =

12.18M DPS, Rg = 24.17M DPS, Rg = 47.70M DPS and

Rg = 88.99M DPS, for g = 1, g = 2, g = 4 and g = 8,

repectively, while for K = 12, it was obtained Rg = 11.20M

DPS, Rg = 22.48M DPS, Rg = 43.73M DPS and Rg =

84.50M DPS. Thereby, double g almost doubled Rg. This

increase in processing speed, resulting from the increase in g,

is not linear due to the join between each g-th CP and MC

modules, as shown in Figure 1. What also slightly affect the

speed when varying the cluster number, but not drastically as

the implementation is completely parallel.

FIGURE 10. Total resrouces used by varying D for g = 4, K = 8 and
m = 16.

Therefore, using parallel techniques allows reducing the

processing time by increasing the number of data points

processed simultaneously.

Secondly, synthesis were also performed for different data

dimension/attributes (D), while the other parameters were set

to g = 4, K = 8, and m = 16. It is shown in Figure 10,

the total resources used for D = 1, D = 2, D = 4 and D = 8

respectively. As can be observed, it grows from 13% to 89%

with the increase of dimensions, but not linearly. This is due

to the fact that, the number of submodules present in each

module increase, such as the amount of SUBk,D, MULTk,D
and SUMk in each g-th DM module.

Regarding processing speed, a throughput ofRg = 42.53M

DPS, Rg = 38M DPS, Rg = 33.33M DPS and Rg = 31.96M

DPS was obtained for D = 1, D = 2, D = 4 and D = 8,

respectively, as shown in Figure 11. Thereby, increasing the

number of dimensions increases the critical path and reduce

the processing speed, as there is an increase in the total of

adders submodules, SUMk , in each g-th DM module, as well

as SUM − N k and SUM − Dk , in MC module.

Finally, synthesis were performed for different bit

widths (m), while the other parameters were set to g = 1,

K = 4 andD = 2. It is shown in Figure 12, the total resources

used in the FPGA for m = 8, m = 14, m = 16 and m = 20,

respectively. Each synthesis were performed for a total of

m− 2 bits to the fractional part. As can be observed, the area

occupation grows only from 7% to 9% with the increase of

bits, which is not a significant increase compared to varying

the other parameters.

Concerning processing speed, a throughput of Rg =

11, 93M DPS, Rg = 11, 49M DPS, Rg = 11, 33M DPS

and Rg = 10, 70M DPS was obtained for m = 8, m = 14,

m = 16 andm = 20, respectively, as shown in Figure 13. The

processing speed wasn’t significantly afected. Despite this,

it is important to emphasize that reducing bit width prevents

the algorithm from converging to a local minima. For m = 8,

the algorithm didn’t converged.

41080 VOLUME 8, 2020

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

FIGURE 11. Throughput obtained by varying D for g = 4, K = 8 and
m = 16.

FIGURE 12. Total resources used by varying m for g = 1, K = 4 and D = 2.

FIGURE 13. Throughput obtained by varying m for g =, K = 4 and D = 2.

Therefore, it is clear that the use of parallel techniques

increase the required resources, but also increases processing

speed significantly. Given that, the resources available in the

TABLE 2. Comparison of area overhead and processing speed for g = 8,
K = 8 and D = 1.

FPGA is the only limiting factor to increase processing speed

to the desired level. Despite this, given the simplicity and

high degree of parallelization of the algorithm and proposed

implementation, it is possible to process a significant amount

of data in a short time making the application feasible for

real-time processing. Although there isn’t a test performed

that used all resources, g, K and D are the parameters that

most increase the area occupation.

A. COMPARISONS WITH THE STAT OF THE ART WORKS

Following, results obtained with this implementation is com-

pared to equivalent results found in works present in state

of the art. These comparisons were made with the greatest

similarity of parameters as possible.

It is presented in Table 2 a comparison with the implemen-

tation proposed in [4], developed in a Virtex-6 xc6vlx240t

FPGA, the same as this proposal. In the second to third rows

are presented the FPGA resources used, that is, the number

of registers, LUTs, and multipliers, while in the fourth and

fifth are shown the time per iteration and the throughput,

respectively, according to equation 14. This comparison was

performed for the ‘‘Wholesale customer dataset’’ from UCI

Machine Learning Repository, and the parameters set to

g = 8, K = 8 and D = 1 to match those of the work in

comparison.

As can be seen, regarding the total resources available

on FPGA, this work occupies 96% and 27.3% fewer reg-

isters and multipliers, respectively, but 18.6% more LUTs.

As mentioned in section I-A, in [4], the step that generates the

distance of a j-th data point to each k-th centroid, is obtained

in a serial scheme and there is also a constant access to

memories, resulting in a high number of registers. While in

the implementation proposed here, these steps are completely

performed in parallel, resulting in the increased amount of

LUTs. Regarding processing time, the time of each n-th iter-

ation is significantly different, also due to sequential process-

ing. Hence, this proposal achieves a speedup of ≈ 15573×.

A comparison for area occupation and processing speed

were also made about the proposed implementation of [5],

for two cluster values, K = 8 and K = 16, respectively, and

it is shown in Table 3. It is presented in the second and third

columns the cluster and total resource numbers, while in the

fourth and fifth columns are presented the time per iteration

and throughput, respectively.

The proposal of [5], for K = 8 were developed in a

Virtex-4 xc4vfx12 FPGA, the parameters were set to D = 10

and m = 12, and the algorithm step that updates centroids

VOLUME 8, 2020 41081

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

TABLE 3. Comparison of area overhead and processing speed for K = 8
and K = 16.

TABLE 4. Comparison of area overhead for g = 1, K = 12 and D = 2.

wasn’t developed on the FPGA, just the distance metric and

clustering steps. While for K = 16, the entire algorithm has

been performed on the FPGA and parameters were set to

D = 1 and m = 13. Meanwhile, in the proposal of this work,

the entire algorithmwere developed in a Virtex-6 xc6vlx240t,

and the parameters were set to g = 1, D = 8 and m = 16 for

K = 8 and g = 1, D = 2 and m = 16 for K = 16. As can

be observed, for K = 8, only 59% of the total resources

were occupied in this implementation, while in [5] 92% were

occupied, even not implementing the step to update centroids

on the FPGA, and forK = 16, it was occupied 51% and 34%,

respectively. However, since the implementations were devel-

oped on different FPGAs, the total resource number cannot

be directly compared. In addition, as the Virtex-6 has a more

recent FPGA technology and a higher number of logic cells,

the implementation presented here requires a significantly

higher number of resources. This is due to the high paral-

lelism adopted here, while most steps of the implementation

proposed by [5] is performed in a serial manner.

Concerning processing time, each iteration has a time

significantly higher in [5], mainly because of the division

operation, performed as fixed-point arithmetic for K = 16,

which generated a clock latency of 84 cycles, and also by

performing it for each centroid in a sequential scheme as

only one divisor circuit was implemented. In addition to that,

for K = 8 the step to update centroids is performed in

a host and not on FPGA, increasing the time of an itera-

tion due to the constant communication between the FPGA

and host. Hence, a significantly low throughput is achieved

regarding the implementation proposed here, ≈ 637063×

and ≈ 24426× slower, for K = 8 and K = 16 respectively.

A comparison was also performed for the proposed imple-

mentation in [7]. It is shown in Table 4. The second column

presents the FPGA used for the implementation, in the third

and fourth are presented the number of registers and LUTs,

respectively, while the fifth column presents the throughput.

The parameters were set to g = 1, K = 12 and D = 2.

As can be observed, the implementation proposed here

used only 0, 6% of the total register number, and also 21%

of the LUTs, while the proposal of [7] used 45% and 73%,

respectively. Since the FPGA used are different, the resources

TABLE 5. Comparison of area overhead and processing speed for K = 4.

cannot be directly compared, but it is important to emphasize

that the Kintex-7 FPGA has more resources and an advanced

technology compared to a Virtex-6. Therefore, the resources

used for this work is significantly lower. This is due to the

extra hardware needed to realize the communication between

the host and mapper-reducer FPGAs in [7]. Concerning the

processing time, the proposal in [7] is limited by this com-

munication between mapper-reduce FPGAs and achieved a

maximum of 13, 96M DPS, only 1.2× faster than the imple-

mentation proposed here, even using an advanced FPGA.

This is due to the fact that the implementation proposed in [7]

obtains the distance metric for each data point about each

centroid in a sequential scheme, as the map function, and also

use multiple FPGAs.

Another comparison was performed for the proposed

implementation in [15] and shown in Table 5. In the sec-

ond to third rows are presented the FPGA resources used,

that is, the number of registers, LUTs, and multipliers, while

in the fourth and fifth are shown the time per iteration and

the throughput, respectively. The parameters in this paper

proposal were set to g = 8, and D = 2 while the work

being compared were set to g = 12, and D = 4, both

for K = 4.

As can be observed, the implementation proposed here

used only 0, 2% of the total register number, and also 12%

of the LUTs, while the proposal of [15] used 47.61% and

81.51%, respectively. Since the FPGA used are different,

the resources cannot be directly compared, but it is important

to emphasize that the compared proposal has a high num-

ber of dimensions and data points being processed and that

Virtex-6 FPGA has more resources and an advanced technol-

ogy. Despite that, this area overhead in [15] is due to extra

hardware needed to realize the control and communication

between mapper-reducer circuits and memories. Concerning

the processing time, the proposal in [15] is limited by the

communication and control between mapper-reducer circuits

and the constant access to memories in between them, achiev-

ing a maximum of 0, 0014M DPS, ≈ 58307× slower than

the implementation proposed here, even processingmore data

points per iteration.

V. CONCLUSION

This work presented a parallel implementation of the

K-means algorithm on an FPGA. All implementation details

of the proposal were presented and analyzed in terms of

processing speed and hardware area occupancy.

41082 VOLUME 8, 2020

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

Based on the obtained results, it can be affirmed that the

implementation proposed was in fact validated and fulfill its

objective of being a parallel implementation of high perfor-

mance of a K-means algorithm.

The synthesis results confirmed that the present proposed

parallel implementation of K-means on FPGA is able to opti-

mize, in a viable time, critical applications that require short

time constraints or a large amount of data to be processed in

a short interval and even for real-time applications, reaching

throughputs higher than 53 millions of data points processed

per second (M DPS).

Beyond the high performance achieved, since the imple-

mentations do not occupy the total resources of the FPGA,

it is possible for other systems to also be embedded in the

FPGA, or increase the parallelization degree increasing even

further processing time.

Comparisons with state of the art were also discussed,

showing that fully parallel implementation can achieve high

throughputs compared to proposals that involve sequential

schemes.

The experiments carried out can help future implemen-

tations of the K-means algorithm, to easily choose the best

distance metric as well as the degree of parallelization,

and even the parameter m, allowing to level, according to

the desired purpose, the speed processing, and hardware

area.

REFERENCES

[1] I. Yaqoob, I. Hashem, A. Gani, S. Mokhtar, E. Ahmed, N. Anuar, and

A. Vasilakos, ‘‘Big data: From beginning to future,’’ Int. J. Inf. Manage.,

vol. 36, no. 6, pp. 1231–1247, Dec. 2016.

[2] S. Ayani, K. Moulaei, S. D. Khanehsari, M. Jahanbakhsh, and F. Sadeghi,

‘‘A systematic review of big data potential to make synergies between

sciences for achieving sustainable health: Challenges and solutions,’’ Appl.

Med. Inform., vol. 41, no. 2, pp. 53–64, 2019.

[3] N. Koseleva and G. Ropaite, ‘‘Big data in building energy efficiency:

Understanding of big data and main challenges,’’ Procedia Eng., vol. 172,

pp. 544–549, 2017.

[4] R. Raghavan and D. G. Perera, ‘‘A fast and scalable FPGA-based parallel

processing architecture for K-means clustering for big data analysis,’’

in Proc. IEEE Pacific Rim Conf. Commun., Comput. Signal Process.

(PACRIM), Aug. 2017, pp. 1–8.

[5] H.M. Hussain, K. Benkrid, A. T. Erdogan, and H. Seker, ‘‘Highly parame-

terized K-means clustering on FPGAs: Comparative results with GPPs and

GPUs,’’ in Proc. Int. Conf. Reconfigurable Comput. (FPGAs), Nov. 2011,

pp. 475–480.

[6] G. Venkatesh and K. Arunesh, ‘‘Map reduce for big data processing based

on traffic aware partition and aggregation,’’ Cluster Comput., vol. 22,

no. S5, pp. 12909–12915, Feb. 2018.

[7] Y.-M. Choi and H. K.-H. So, ‘‘Map-reduce processing of K-means

algorithm with FPGA-accelerated computer cluster,’’ in Proc. IEEE

25th Int. Conf. Appl.-Specific Syst., Archit. Processors, Jun. 2014,

pp. 9–16.

[8] V. Tirumalai, K. G. Ricks, and K. A. Woodbury, ‘‘Using parallelization

and hardware concurrency to improve the performance of a genetic algo-

rithm,’’ Concurrency Comput., Pract. Exper., vol. 19, no. 4, pp. 443–462,

2007.

[9] N. Instruments. (2011). Understanding parallel hardware: Multiproces-

sors, hyperthreading, dual-core, multicore and fpgas. [Online]. Available:

http://www.ni.com/tutorial/6097/en/

[10] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

Machine Learning Tools and Techniques. San Mateo, CA, USA: Morgan

Kaufmann, 2016.

[11] K. M. A. Patel and P. Thakral, ‘‘The best clustering algorithms in data

mining,’’ in Proc. Int. Conf. Commun. Signal Process. (ICCSP), Apr. 2016,

pp. 2042–2046.

[12] J. Canilho, M. Vestias, and H. Neto, ‘‘Multi-core for K-means clustering

on FPGA,’’ in Proc. 26th Int. Conf. Field Program. Log. Appl. (FPL),

Aug. 2016, pp. 1–4.

[13] C.-C. Chung and Y.-H. Wang, ‘‘Hadoop cluster with FPGA-based hard-

ware accelerators for K-means clustering algorithm,’’ in Proc. IEEE Int.

Conf. Consum. Electron. Taiwan (ICCE-TW), Jun. 2017, pp. 143–144.

[14] Mahout. (2018). Mahout-Machine Learning Applications.

Accessed: May 31, 2018. [Online]. Available: https://mahout.apache.org/

[15] Z. Li, J. Jin, and L. Wang, ‘‘High-performance K-means implementation

based on a simplified map-reduce architecture,’’ 2016, arXiv:1610.05601.

[Online]. Available: http://arxiv.org/abs/1610.05601

[16] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, ‘‘Scal-

able K-means++,’’ Proc. VLDB Endowment, vol. 5, no. 7, pp. 622–633,

2012.

[17] K. Neshatpour, A. Koohi, F. Farahmand, R. Joshi, S. Rafatirad, A. Sasan,

and H. Homayoun, ‘‘Big biomedical image processing hardware acceler-

ation: A case study for K-means and image filtering,’’ in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), May 2016, pp. 1134–1137.

[18] P. Arora, Deepali, and S. Varshney, ‘‘Analysis of K-Means and K-Medoids

algorithm for big data,’’ Procedia Comput. Sci., vol. 78, pp. 507–512,

Jan. 2016.

[19] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, ‘‘FPGA imple-

mentation of K-means algorithm for bioinformatics application: An accel-

erated approach to clustering microarray data,’’ in Proc. NASA/ESA Conf.

Adapt. Hardw. Syst. (AHS), Jun. 2011, pp. 248–255.

[20] K. Neshatpour, M. Malik, and H. Homayoun, ‘‘Accelerating machine

learning kernel in Hadoop using FPGAs,’’ in Proc. 15th IEEE/ACM Int.

Symp. Cluster, Cloud Grid Comput., May 2015, pp. 1151–1154.

[21] Z. Kakushadze and W. Yu, ‘‘K-means and cluster models for cancer

signatures,’’ Biomolecular Detection Quantification, vol. 13, pp. 7–31,

Sep. 2017.

[22] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski, ‘‘Algorithmic trans-

formations in the implementation of K-means clustering on reconfigurable

hardware,’’ in Proc. ACM/SIGDA 9th Int. Symp. Field Program. Gate

Arrays (FPGA). New York, NY, USA: ACM, 2001, pp. 103–110, doi:

10.1145/360276.360311.

[23] N. Nedjah and L. de M. Mourelle, ‘‘An efficient problem-independent

hardware implementation of genetic algorithms,’’ Neurocomputing,

vol. 71, nos. 1–3, pp. 88–94, Dec. 2007.

[24] Xilinx. (2008). System Generator for DSP. Accessed: May 31, 2015.

[Online]. Available: http://www.xilinx.com

[25] A. Suzuki, T. Morie, and H. Tamukoh, ‘‘A shared synapse architecture for

efficient FPGA implementation of autoencoders,’’ PLoS ONE, vol. 13,

no. 3, Mar. 2018, Art. no. e0194049.

[26] L. A. Dias. (2019). Video Demonstration. Accessed: Oct. 21, 2019.

[Online]. Available: https://drive.google.com/file/d/1iAScU-

r772wNHYl72xk9H3RuqcHQartD/view

[27] M. Cardoso. (2014). Wholesale Customer Data Set.

Accessed: Apr. 10, 2018. [Online]. Available: https://archive.ics.uci.edu/

ml/datasets/wholesale+customers

[28] Clustering Basic Benchmark. Accessed: 2015. [Online]. Available:

http://cs.uef.fi/sipu/datasets/

LEONARDO A. DIAS was born in Sousa, Brazil.

He received the Associate degree in industrial

automation from the Federal Institute of Paraíba,

in 2014, and the M.S. degree in electrical engi-

neering from the Federal University of Paraíba,

Paraíba, Brazil, in 2016. He is currently pur-

suing the Ph.D. degree in electrical engineer-

ing with the Federal University of Rio Grande

do Norte, Natal, Brazil. He is also a part of

the Research Group on Embedded Systems and

Reconfigurable Hardware, where the main research topic is the acceleration

of clustering algorithms through reconfigurable computing (RC) in FPGA.

His research interests include artificial intelligence, embedded systems, and

reconfigurable hardware.

VOLUME 8, 2020 41083

http://dx.doi.org/10.1145/360276.360311

L. A. Dias et al.: Parallel Implementation of K-Means Algorithm on FPGA

JOÃO C. FERREIRA (Senior Member, IEEE)

received the Licenciatura and Ph.D. degrees in

electrical and computer engineering from the Uni-

versity of Porto, Porto, Portugal, in 1989 and

2001, respectively. He is currently an Associate

Professor with the Faculty of Engineering, Uni-

versity of Porto. He is also a Senior Researcher

with the Instituto de Engenharia de Sistemas

e Computadores—Tecnologia e Ciência, Porto.

His current research interests include dynamically

reconfigurable systems, application-specific architectures for cognitive radio

and sensor networks, and adaptive embedded systems. Dr. Ferreira is also a

member of ACM and Euromicro.

MARCELO A. C. FERNANDES was born inNatal,

Brazil. He received the B.S. degree in electrical

engineering and the M.S. degree in electrical engi-

neering from the Federal University of Rio Grande

do Norte, Natal, in 1997 and 1999, respectively,

and the Ph.D. degree in electrical engineering from

the University of Campinas, Campinas, Brazil,

in 2010. From 2015 to 2016, he was a Visiting

Researcher with the Centre Telecommunication

Research (CTR), King’s College London, London,

U.K. He is currently an Associate Professor with the Department of Com-

puter Engineering and Automation, Federal University of Rio Grande do

Norte. He is also a Visiting Scholar with the John A. Paulson School of

Engineering and Applied Sciences, Harvard University, Cambridge, USA.

He is also the Leader of the Research Group on Embedded Systems and

Reconfigurable Computing (RESRC) and, coordinator of the Laboratory

of Machine Learning and Intelligent System (LMLIS). He is the author

and coauthor of many scientific articles and practical studies with reconfig-

urable computing on FPGA to accelerate artificial intelligence algorithms.

His research interests include artificial intelligence, digital signal processing,

embedded systems, reconfigurable hardware, and the tactile Internet.

41084 VOLUME 8, 2020

