
Received November 18, 2018, accepted December 5, 2018, date of publication December 13, 2018,
date of current version January 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2885950

Parallel Implementation of Reinforcement
Learning Q-Learning Technique for FPGA

LUCILEIDE M. D. DA SILVA1, MATHEUS F. TORQUATO2, AND MARCELO A. C. FERNANDES 3
1Department of Computer Science and Technology, Federal Institute of Rio Grande do Norte, Santa Cruz 59200 000, Brazil
2College of Engineering, Swansea University, Swansea SA2 8PP, U.K.
3Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil

Corresponding author: Marcelo A. C. Fernandes (mfernandes@dca.urn.br)

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001.

ABSTRACT Q-learning is an off-policy reinforcement learning technique, which has the main advantage of
obtaining an optimal policy interacting with an unknown model environment. This paper proposes a parallel
fixed-point Q-learning algorithm architecture implemented on field programmable gate arrays (FPGA)
focusing on optimizing the system processing time. The convergence results are presented, and the pro-
cessing time and occupied area were analyzed for different states and actions sizes scenarios and various
fixed-point formats. The studies concerning the accuracy of the Q-learning technique response and resolution
error associated with a decrease in the number of bits were also carried out for hardware implementation.
The architecture implementation details were featured. The entire project was developed using the system
generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

INDEX TERMS FPGA, Q-learning, reinforcement learning, reconfigurable computing.

I. INTRODUCTION

Reinforcement learning (RL), is an artificial intelligence for-
malism that allows an agent to learn from the interaction with
the environment where it is inserted [1]. This approach is
indicated for situations in which there is not enough infor-
mation about the behavior that the agent must take to reach
its objective, that is, the agent without previous knowledge
learns through interaction with the environment, receiving
rewards for his actions and finding, the optimal policy [2].
The development of the Q-learning reinforcement learning

technique in hardware enables designing faster systems than
their software equivalents, thus opening up possibilities of its
use in problems where meeting tight time constraints and/or
processing a large data volume is required. It is also possible
to reduce power consumption by reducing clock cycles in
applications where processing speed is not relevant or less
limiting than the need for low power consumption. Naviga-
tion algorithms on mobile robotics applications, in general,
respond in hundred of the milliseconds and this property
enables solutions on dedicated hardware work with a low
clock frequency regards the other software solutions embed-
ded on micro-controllers and microprocessors.
Real-time applicationsmay have different time restrictions.

Some examples of applications with the greatest restric-
tions are: systems for monitoring signals in health facilities,

industrial systems control, digital communication systems,
robots and even cars and aircraft. Traditional mechanisms and
methods are not always able to overcome the barriers imposed
by the more challenging time constraints. The research and
development of artificial intelligence hardware algorithms for
real-time applications has grown significantly in recent years
due to their sampling time performance potential [3]–[8].
One of the purposes for the Q-learning technique implemen-
tation in hardware is to accelerate the algorithm processing
and to obtain a faster optimal policy so that it can be used in
high demanding applications.

Another motivation for the development of this work is the
possibility to accelerate applicationswith great data flow such
as in Big Data processing. Another application with the same
burden of handling large amounts of data is Bioinformatics
which, usually, needs to handle a large amount of genomic
sequencing data [9]. It is also possible to use this approach
in Data Mining applications to discover relevant information,
which happens to be masked in large amounts of data [10].

Unlike general-purpose processors that usually have their
clock at the maximum throughput, on field programmable
gate arrays (FPGAs) the clock depends on what is run-
ning on it. Using a clock rate less than the maximum
theoretical operating frequency causes the dynamic power
consumed to decrease. The lower the clock, the lower the

2782
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7536-2506

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

consumption [11], making it suitable as well for low con-
sumption systems.
For this work, FPGA was chosen because it provides high

performance with a low operating frequency through the
exploration of parallelism [12]. The latest FPGAs can deliver
ASIC-like performance and density with the advantages of
reduced development time, ease and speed of reprogram-
ming, not to mention its flexible architecture [13].
Thus, this work presents a modular and parallel

architecture proposal for the Q-learning technique implemen-
tation on FPGA reconfigurable hardware with the purposes of
reducing processing time, allowing the algorithm to be used
both in high dynamic systems and large data flow as well
as low power consumption applications. The development
of this work, as well as all simulations and results, was
carried out using the development platform Xilinx System
Generator [14] configured to work with a FPGA Virtex
6 xc6vcx240t 1ff1156 [15].

A. RELATED WORK

Machine learning, artificial intelligence and signal processing
have been widely used in many recent applications. It is
important to note two important new features for these types
of applications: the amount of data that needs to be processed
is constantly growing and mobile and robotic systems are
becoming increasingly important [16]. As a result, several
machine learning algorithms and artificial intelligence hard-
ware implementations can be found in the related literature.
In [3], an overview of hardware implementations of

artificial neural networks and fuzzy systems is presented,
highlighting the main limitations, advantages and disad-
vantages of various application techniques. The author
also performs an analysis of various hardware performance
parameters, bottlenecks and and the cost-benefit intrinsic to
the various implementation methodologies. In [5] the imple-
mentation of an FPGA hardware architecture for a neural
network of associative memory applied to image recognition
systems is described, where a detailed study of the network
performance is conducted, including data such as occupancy
rate, processing speed and consumption of the system in
hardware.
However, little can be found regarding hardware imple-

mentation of fixed and programmable architecture for the
Q-Learning reinforcement learning technique.
In the work of [17], a hardware pipeline architecture was

described for the selectionmechanism of the best action in the
Q-learning state. According to the author, the algorithm delay
increases with the number of actions, being the bottleneck
of the system and it is possible to reduce this delay with
the implementation of a pipeline architecture to select the
best action in the state. It has also been proved, through a
consistent mathematical reasoning, that the value function
converges to an optimal policy, despite the pipeline architec-
ture implementation. However, no hardware solutions were
presented for the othermechanisms inherent to theQ-learning
algorithm for reinforcement learning, nor were the details

of the implementation, occupation analysis or tool used for
the hardware design of this system mechanism presented.
In [18], a hardware architecture of the SARSA (or On-line
Q-learning) learning algorithm for reinforcement learning
was developed for dynamic power management application.
The main difference between SARSA and Q-learning is that
SARSA is on-policy, that is, it learns action values related
to the policy it follows, while Q-learning is off-police, not
depending on the policy which is being used. The author
converted the SARSA algorithm into its equivalent hardware
modeling the architecture in VHDL (modelsim). The archi-
tecture implements a power management system that is able
to change policy according to its workload. The proposal was
simulated and synthesized in the Xilinx Spartan 2E. Imple-
mentations of Deep Q-Learning algorithms on FPGA are pre-
sented in [19]–[21] where the results show the of using FPGA
compared to GPU and CPU. However, the works [19]–[22]
are applying a semi-parallel implementation technique which
differ from the approach proposed in this work that it uses
a full-parallel implementation. The full-parallel approach
allows a high throughput performance when compared with
another implementation techniques.

Certain applications in signal processing and machine
learning impose hardware technical limitations. In addition,
the amount of data that needs to be processed is constantly
growing [16]. A practical alternative for the design of hard-
ware architectures is the use of reconfigurable tools such
as FPGAs which provides a density performance similar to
an ASIC (Application Specific Integrated Circuit) with the
advantage of using rapid and flexible prototyping [4]. Due to
its reconfigurable nature, new functions can always be added
and the system upgrade can be performed as needed [13].
Another relevant advantage for the use of FPGA is the pos-
sibility of designing hardware modules that work in par-
allel, then, increasing the system processing capacity [23],
which allows different parts of the algorithm to be executed
simultaneously in order to reduce the overall processing time.
This reduction results in an interesting alternative with a
better performance than conventional microprocessors such
as CPUs or GPUs, especially for applications where there are
severe time restrictions.

Some papers found in the literature point out the design
of parallel algorithms to increase their processing capac-
ity. In [24], a decomposition technique for the Markov
Decision Process (MDP) is approached in sub-problems,
presenting a structure for the parallelization of reinforce-
ment learning techniques. This technique, according to the
work, is able to decrease processing time by up to ten times.
In [25], an implementation of the Q-learning algorithm is
proposed in a massively parallel machine using a Parallel
Virtual Machine (PVM) message exchange paradigm with
a cache-based communication scheme. This work presents
significant convergence results and increase of speed, point-
ing the parallelization as an interesting training time reduc-
tion alternative for the policy learning. The work shown
in [26] presents a comparative study of several parallel

VOLUME 7, 2019 2783

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

implementations of the Q-learning algorithm with com-
puter clustering architecture. The parallel Q-Learning (PQL)
methods studied were the State Division Learning Method
(SDLM), the Prioritized Field Learning Method (PFLM)
and the Parallel Fuzzy Q-Learning (PFQL). A parallel algo-
rithm with multi-agent learning using Q-learning is proposed
in [27]. The algorithm is called PQL with Co-allocation of
Storage and Processing (PCSP), and it uses a table par-
tition strategy for sharing Q-table information among the
processing nodes. The works presented in [24]–[27] have as
the objective the improvement in the Q-learning processing
using the High-Performance Computing (HPC), however this
alternative has been identified as a costly solution regards to
power consumption per processing.
Other works support using FPGA by presenting some

advantages over other platforms for applications with time
restrictions. In [12] a comparative performance study involv-
ing FPGA, GPU and CPU in image processing problems
is conducted. Despite the possibility of using parallelism in
multi-cores microprocessors, which improves performance
for a large number of applications, cores are all grouped,
and data transfer between them is very limited. Exclusively
for some simple problems (e.g. naive algorithms) the GPU is
able to achieve a performance similar to the FPGA. For more
sophisticated algorithms (e.g. shared arrays), GPUs do not
demonstrate the same performance since they have memory
access limitations as a result from its architecture.
FPGAs provide hardware platforms suitable for deploy-

ing software algorithms [23]. From the theoretical basis pre-
sented, it is possible to conclude that the low execution time of
FPGA devices in comparison with its software counterparts is
the main reason for its use as a platform for the development
of the Q-learning Reinforcement Learning Technique.

B. MAIN CONTRIBUTIONS

This work presents as contribution a hardware parallel archi-
tecture on FPGA of the Q-learning reinforcement learning
technique. The main idea is based on the development of a
modular and parallel architecture to enable an increase in the
algorithm execution speed or lower power consumption by
decreasing the clock frequency. The intrinsic properties of
the FPGA, such as: flexibility and parallel processing, were
fundamental to achieving this goal. The parallelization of the
data flow on FPGA allows the Q-learning technique to be
used in applications where there are a significant data flow
and strict processing time restrictions. Another possibility
of application of this architecture is in low consumption
systems, where the system clock can be reduced in way to
reduce the power consumption.

C. PAPER ORGANIZATION

This paper is organized as described in the following para-
graphs.
In this first section a brief introduction was presented,

in which the problem to be approached was contextual-
ized. A bibliographical and state of the art review was also

conducted as well as the main objectives to be achieved were
presented.

In section II a theoretical foundation on reinforcement
learning will be presented, exploring the main characteristics
and advantages of the algorithm that was implemented in
Hardware, the Q-learning.

In section III, a detailed description of the architec-
ture development and implementation will be explained,
describing the various modules used to build the algorithm
in hardware.

In Section IV, the system validation will be performed by
simulating few problems in the architecture presented, com-
paring with results obtained by simulating the same problems
in software. The hardware synthesis analysis for different
implementation scenarios was also performed, alongside
the evaluation of parameters such as occupation area and
throughput (or sampling frequency).

The section V will present the final considerations.

II. Q-LEARNING TECHNIQUE

This section aims to discuss the concepts and uses of rein-
forcement learning, emphasizing the technique used in this
work, Q-learning.

Reinforcement learning is the maximization of numerical
rewards by mapping events defined by states and actions [1].
The agent does not receive the information of what action to
take as in other forms of machine learning, instead, it must
find out which actions will produce the best reward in each
state from interactions with the environment. As described
in [1], the agent determines an action to be performed from
situations encountered in the environment. The executed
action transforms the environment and disturbs the state in the
inverse of reaching the goal. Modifications are transmitted to
the agent through a reward and next state.

The algorithm goal is to find a sequence of actions that
determines an optimal policy, defined as the state mapping in
actions that maximize the sum of the reinforcement values.
Figure 1 summarizes the described agent-environment inter-
action process, where:

• sk is a representation of the environment state where
sk ∈ S and S is the set of possible states;

• ak is an action representation, where ak ∈ A and A is the
set of possible actions in the state sk ;

• rk+1 is a numerical reward, a consequence of the action
ak taken;

• sk+1 is the new state.

FIGURE 1. Interaction agent-environment in reinforcement learning [1].

2784 VOLUME 7, 2019

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

Q-learning [28] is one of the learning techniques classified
as an off-policy time difference method, since the conver-
gence to optimal values of Q does not depend on the policy
being used. The future reward function in the s state when
performing an a action, denoted as Q(s, a), is assimilated by
interactions with the environment. It is considered as the most
popular RL algorithm and has been proposed as a way to
iteratively learn optimal policy when the system model is not
known.
The equation for updating the value function of the

state-action pairsQ(s, a) is based on the value-action function
expressed as:

Qk+1(s
n
k , a

z
k) = Qk (s

n
k , a

z
k) + α[r(snk , a

z
k)

+ γ max(Q(snk+1, a
z
k+1)) − Qk (s

n
k , a

z
k)] (1)

where

• k is the discretization instant, with sampling period Ts.
• snk is the n-th environment state in the k-th iteration;
• azk is the z-th action taken in the n-th state snk also in the
k-th iteration;

• Qk (snk , a
z
k) is the accumulated result for the agent having

chosen the action azk in the state s
n
k in the instant k;

• r(snk , a
z
k) is the immediate reinforcement received in snk

for taking action azk ;
• snk+1 is the future state;
• max(Q(snk+1, a

z
k)) is the value Q corresponding to the

maximum value function in the future state.
• α and γ are positive constants of value less than the
unit that represent the learning coefficient and discount
factor, respectively.

The learning coefficient determines to what extent new
information will replace the previous ones, while the closest
discount factor reduces the influence of immediate rewards
and considers those in the long run. The reward function
r indicates the immediate promising actions and the value
function Q indicates the total accumulated gain. When the
agent changes from a state to a future one, Q-learning updates
the new Q value function estimate from the new state to the
previous state.

A relevant aspect of the Q-learning reinforcement learning
technique is that the choice of actions to be performed during
the process of estimating the Q(s, a) value function can be
performed by any method of exploration/exploitation or even
randomly. As demonstrated by [28], if each action-state pair
is visited an infinite number of times the value function Q
will converge with probability 1 to its optimal value, using a
sufficiently small alpha learning coefficient.

Figure 2 shows the Q-learning algorithm pseudocode.
It has as inputs the learning coefficient, the time discount
rate and the reward function. It begins with the initialization
of the Q values function matrix and initial state s0. The
algorithm chooses an action from among the possible ones
for the current state and observes the next state and reward.
The value of Q is updated, the new state is defined and then
the process is repeated until it returns the updated Q matrix.

FIGURE 2. Q-learning algorithm.

Although the Q-learning convergence criterion requires
state-action pairs to be visited infinite times, in practice it
is possible to reach quite relevant values when executing a
sufficiently large number of iterations (considering the task
to be learned). For a problem of 18 states and 2 actions,
as described in [2], where Q-learning was used to determine
an optimum selection policy between beam conformation
and power control of an adaptive arrangement of anten-
nas, the matrix Q convergence happens after approximately
2500 iterations. In the work of [29], Q-learning was used to
make adaptive thermal management of multicores systems,
in order to improve the reliability and extend their useful life.
In this second work, the RL algorithm learned the relation
between the core mapping, the core frequency and its tem-
perature, defining the thermal stress intervals as states and
the threads, voltages and operating frequencies as actions.
For a quad-core Intel, the system was modeled by 12 state
and 8 actions, requiring a total of 5500 iterations for the Q
value function convergence. In the work presented in [30]
the Q-learning algorithm was used to determine the policy
optimization of three controllers applied to a tank system in
order to take advantage of the positive characteristic of each
of them, thus optimizing the system output. In this case the
error signal was discretized in 41 intervals, characterizing the
admissible states, and the choice among one of the three con-
trollers to the actions of the problem. A system with 41 state
and 3 actions, randomly choosing the actions, converges to
an optimal policy in approximately 8000 iterations.

III. IMPLEMENTATION DESCRIPTION

In this section the implementation details of the developed
architecture are described. In III-A is presented an FPGA
Hardware overview of the Q-learning architecture, where
the notation used to describe the structure is defined. In the
following topics, particularities of each of the system mod-
ules are discussed, detailing the mechanisms used for the
hardware implementation of the algorithm shown in Figure 2.

A. PROPOSED ARCHITECTURE OVERVIEW

An overview of the developed hardware architecture is pre-
sented in Figure 3. The system receives the FPGA clock as

VOLUME 7, 2019 2785

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

FIGURE 3. Overview of the proposed architecture.

input and the initial state value, s0, must be randomly initial-
ized in the REG1 register. The whole system is detailed from
this diagram, where the main mechanisms of action choice,
value function calculations, state-action pairs update and the
mechanisms of future state selection will be explained. The
system is designed to operate with N states and Z actions and
therefore a combination of N × Z possible state-action pairs.
The architecture was developed in an attempt to parallelize as
much as possible the algorithm execution in order to decrease
the Q-learning processing time.
The notation used in the figures is described below:
• k is the discretization time, with sampling time Ts,
in which one can measure the transfer rate, known by
throughput. The throughput (or sampling frequency) can
be expressed as Fs = 1/Ts in samples per seconds (Sps)
or iterations per seconds (Ips);

• snk is the n-th environment state in k-th iteration;
• azk is the z-th action taken in the n-th state snk also in the
k-th iteration;

• unk is a Z vectors elements that will enable or disable
the registers that store the value assigned to the value
function in the n-th state;

• rn is a constant value vector with the immediate
reinforcement for the Z actions of the n-th state;

• snk+1 is the n-th future state;
• maxQn is the Q value corresponding to the action with
higher reinforcement value in the state, updated at each
iteration;

• Qn
k is a vector containing the elements of the value

function assigned to the Z actions of the n-th state;
• α and γ are positive constants of value less than the unit
that represent the learning coefficient and the discount
factor, respectively.

The architecture is composed by five main modules types:
The GA module, responsible for randomly choosing the
actions of the algorithm; The EN modules, which determine
which state-action pair should be updated; The RS modules,
responsible for storing the reward values; The S modules,
responsible for the calculation of the Q value function; And
the SEL module, where the future state selection and the
storage of the Q value function are made. Each of the system
modules is detailed individually in the following sections.

B. GA - ACTION DRAW

As seen in the Q-learning pseudo-code shown in Figure 2
(Section II) it is necessary to draw the azk action for the snk
state. For this purpose, a Pseudo Random Number Gener-
ator (PRNG) was implemented. The generator draws from
all possible actions (0 to Z − 1) what action will be taken.
Each z-th action is formed by one word of log2(Z) bits. The
first s0 state is randomly initialized, among all possible states
(0 through N − 1), in the REG1 register, and has a size of
log2(N) bits.

The pseudo random number generator is the starting
point for executing the algorithm. From the second iter-
ation, the following states are defined by feedback, as a

2786 VOLUME 7, 2019

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

consequence of the system actions and the actions continue
to be randomly defined.
For the algorithm convergence, it is necessary for

all state-action pairs to be visited a sufficiently large
(ideally infinite) number of times. And for this it’s used the
pseudo-random number generator based on the numerical
congruence described in [31]. The expression used to imple-
ment the PRNG is presented as

azk = P1 × azk−1 + P2 (mod Z), (2)

where the values P1 and P2 are constants, azk is an integer
between 0 and Z − 1 and azk−1 is the value from the previous
instant of the pseudo-random number series. The internal
architecture of the random number generator is illustrated
in Figure 4.

FIGURE 4. Pseudo random number generator architecture.

Here, the constant P2 was adopted as zero. The modulo
operation (mod Z) is performed from an intrinsic multiplier
overflow function, the wrap-around (i.e. values that exceed
the maximum number of bits are bypassed within the repre-
sentable range by saving only the least significant bits).

However, problems can occur where the number of possi-
ble actions are not multiple of two. To solve this limitation,
an artifice shown in Figure 5 was adopted. A PRNG with a
number of possible combinations (N◦max) much larger than
the number of desired actions is utilized. Then, the interval
containing all combinations is divided into Z equal intervals,
where Z is the desired number of actions. If the number
drawn is 0 < x < C1 the action azk will be a0k . In case the
number drawn is C1 < x < C2 the action a1k and so on until
x > CZ−1, when the action will be aZ−1

k . This division is
made using comparators and combinational logic.
Once determined the action-state pair at each iteration, it is

known which of the elements of the value function matrix
Qk (snk , s

z
k) must be updated. As the actions are randomly

chosen (pseudo-random), the architecture performs only the
exploration (training) of the environment by the agent to
obtain the optimal policy, not worring about the exploitation.

FIGURE 5. Hardware implemented of the random number generator.

C. EN - UPDATE MODULE

The update modules called EN are responsible for selecting
which state-action pair (snk , a

z
k) will be updated. Each n-th

module, ENn, is a combinational logic block that has as inputs
the k-th state, snk , action a

z
k , and its output is a vector of Z

elements, here denoted as unk and represented by

unk =

u
n,0
k

u
n,1
k
...

u
n,Z−1
k

(3)

where un,zk is a bit that when at high logic level represents that
the matrix element of the Q value function referring to the
n-th state and the z-th action must be updated. Considering
the outputs of all N modules, there are N × Z outputs,
the same number of state-action pairs. However, only one
output from one of these modules will have high logic level
for each iteration. The logical operation that determines unk is
expressed as

unk =

{

(1 >> azk)||A if snk = n

A
(4)

where >> is a logical shift operator to the right and A is a Z
zeros vector.
The values for each value function Qk (snk , s

z
k) action-state

pair are stored in N × Z registers which have their enable
inputs connected to the outputs of the ENmodules. Therefore,
the value function is only updated when one of the elements
of one of the n-th unk vectors is at the high logic level.

D. RS - REWARD FUNCTION MODULE

The values of the immediate reinforcements, or reward, are
stored in the N modules called RS. The reward function rn is
a vector of Z elements, represented as

rn =

rn,0

rn,1

...

rn,Z−1

, (5)

which indicates the immediate promising actions in that state.
Each n-th RS module has Z constant, rn,z, associated with
each of the Z actions of the n-th state. These constants express

VOLUME 7, 2019 2787

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

the goal the agent wants to achieve. Each z-th rn,z variable
consists of a word of B bits. Actions leading to the target state
have a positive numerical rn,z reinforcement value. Undesired
actions in the state receive a negative numeric boost rn,z. The
actions that lead to other states receive rn,z = 0.

E. S - VALUE FUNCTION CALCULATION MODULE

The Q-learning hardware architecture, as observed in the
main diagram shown in Figure 3, is paralleled regarding
its states (snk). The nth-state module, Sn, is subdivided into
two other different functions modules. Its configuration is
illustrated in Figure 6.

FIGURE 6. Sn module architecture.

In the SFn module, the future state, snk+1, is determined
locally, from the draw action information only, azk . In the Qn
module, the calculation of the value function vector elements
Qnk is performed, and the value function corresponding to the
action with the highest value, maxQn, is determined for the
n-th state.

1) Qn - VALUE FUNCTION CALCULATION

Each n-th module Qn computes the vector

Qn
k =

Q
n,0
k

Q
n,1
k
...

Q
n,Z−1
k

. (6)

Qn
k is a vector of Z elements, where each Qn,zk element is

formed by B bits. The set of N vectors, Qn
k , forms the matrix

value function Qk (snk , a
z
k) that can be expressed as

Qk (s
n
k , a

z
k) =

[

Q0
k Q1

k ... QN−1
k

]

=

Q
0,0
k Q

1,0
k ... Q

N−1,0
k

Q
0,1
k Q

1,1
k ... Q

N−1,1
k

...
... ...

...

Q
0,Z−1
k Q

1,Z−1
k ... Q

N−1,Z−1
k

.

(7)

The inputs for this module are the enable vector unk , the rn

reward function, the learning coefficient α and the Q value
corresponding to the action with the greatest future reinforce-
ment value in the future discounted state of γ (γ.maxQ).

Part of the internal architecture of the Sn modules is
illustrated in Figure 7, which is also a parallel architecture,
paralleled regarding the system actions. At each iteration
the Q matrix is updated. In order to do so, 2 × Z adders
(SUM1nz and SUM2nz), Z subtractors (SUBnz), and Z mul-
tipliers (MULTnZ) are used in each of the n-th Sn mod-
ules that implement Equation 1 which is the fundamental
Q-learning equation. Additionally, Z registers are used for the
Qn
k storage.
In addition to calculating the value function, in module Sn

is also calculated the Q value corresponding to the action
with the highest value in the n-th state. This variable is
illustrated in Figure 7 as maxQn and it is obtained from the
comparison (COMPn) of all z-th elements of vectorQn

k in the
n-th state.

2) SFn - FUTURE STATE

There is also a third functionality implemented in the Sn
module. In it is determined what would be the future Snk+1
status for the ak action drawn by GA. The structure shown
in Figure 8 represents the portion of the architecture of the
module Sn, the internal module SFn, responsible for execut-
ing this functionality. Since it is a parallelized architecture,
a future state is determined in each of the N modules Sn
taking into account only the information of the action ak
drawn. In the SELmodule it is decided which n-th future state
Snk+1 will continue in the algorithm and become the current
state in the next iteration.

Therefore, the Sn block delivers three information to the
system: the value function vector for the n-th stateQn

k actions,
the value function correspondent to the actionwith the highest
value maxQn and the n-th future state snk+1(s) determined
from the action taken.

F. SEL - FUTURE STATE SELECTION MODULE

The last module from the architecture is the SEL module. Its
structure is shown in Figure 9. It is the algorithm junction
point, where information parallel computed in previous mod-
ules meet. It is in this module that it is determined which will
be the next state to be explored by the architecture. It is also
where the action with greater value in the future state maxQ
is determined and where the N vectors Qn

k are assembled to
construct the system value function matrix Qk (snk , a

z
k).

In order to determine the future state sk+1, all n-th future
snk+1 states from the N modules Sn are placed in a MUX2
multiplexer, which selects the current state sk . This future
state value is fed back to the beginning of the architecture
and becomes the current state in the next iteration.
In an effor to determine the action with the highest value

in the future state maxQ, the future state sk+1 is used as the
selector of the MUX3 multiplexer that has as input the N
actions with the highest value of the N states from the maxQn

architecture. The value of maxQ is multiplied by the time
discount factor γ and fed back to the inputs of the Snmodules
for the calculation of the Qn

k vectors that make up the value
function.

2788 VOLUME 7, 2019

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

FIGURE 7. Qn module architecture - function value calculation.

FIGURE 8. SFn module architecture - future state choice.

IV. RESULTS

In this section, simulation and hardware synthesis results for
the architecture proposed in this work are presented. Sim-
ulations and syntheses for different scenarios were carried
out and the numbers of states and actions were varied. All
scenarios were simulated and synthesized for different bits
resolutions. The simulation results were used to validate the
hardware architecture and to evaluate the resolution error
from the bits number. The synthesis results allowed the sys-
tem analysis regarding important parameters for the design of
hardware architectures, such as occupation rate and sampling
time.
The applicability of the proposed architecture to real prob-

lems is also analyzed in this section. Applications found in

the literature, using the Q-learning algorithm for training
the agent were synthesized on FPGA in order to obtain the
throughput, Fs, and the time of convergence for the optimal
policy.

A. SIMULATION RESULTS

For the the Q-learning algorithm architecture simulation and
validation, a scenario in which a robot moved in an arena,
aiming to reach a certain region of it was analyzed. The
number of states in this problem represents the granularity
of the arena, while the actions represent the robot possible
movements. The arena was divided into six regions (states:
s1, s2, s3, s4, s5 and s6) and the robot had four possible direc-
tions of movement (actions: a1 - up, a2 - down, a3 - left,
a4 - right). The problem described is illustrated in Figure 10
and was simulated with fixed-point digital representation for
five different resolutions. The notation used is [n.b] where n
is the total number of bits, b bits represent the fractional part
and (n− b) bits represent the integer part.
It was desired that the agent could reach room 6 (s6),

regardless of the room in which it was in. To define room
6 as a goal, an immediate rn,z = 100 reinforcement was
associated with actions that directly lead to the desired region.
Blue arrows were used in Figure 10 to illustrate these actions.
If the agent performed an action that resulted in collision
with the edges of the arena, it received an immediate negative
reward (rn,z = −500). These actions are represented by red
arrows. In all other transitions, the received reward is zero

VOLUME 7, 2019 2789

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

FIGURE 9. SEL module architecture.

FIGURE 10. Example used for simulation and validation of the hardware
implementation.

(rn,z = 0), represented by the white arrows. The r matrix

r =

−500 0 −500 0
−500 0 0 0
−500 100 0 −500
0 −500 −500 0
0 −500 0 100
0 −500 0 −500

(8)

shows all rewards for all state-action pairs, where states
(s1, s2, s3, s4, s5, s6) are represented in the array rows, while
the (a1, a2, a3, a4), are represented by the columns. Each
element of the r array is formed by one word of [n.b] bits.
The numerical results of the function value Qk (snk , a

z
k)

after the developed architecture simulation were compared
with results obtained through an Matlab floating point imple-
mentation, IEEE 754 standard. To simulate the example
described, a learning coefficient α = 0.8 and a discount
rate γ = 0.8 were used as parameters. These parameters
were used both in the Matlab floating-point simulation and in
the parallel hardware architecture simulation performed using
System Generator.
The floating-point value function matrix in the IEEE

754 standard is shown below.

Q(snk , a
z) =

−357.8 177.8 −357.8 177.8
−322.2 222.2 142.2 222.2
−277.8 277.8 177.8 −277.8
142.2 −322.2 −322.2 222.2
177.8 −277.8 177.8 277.8
222.2 −322.2 222.2 −322.2

(9)

The hardware architecture simulation results are shown
in Table 1. The hardware architecture was simulated with
digital fixed-point representation in four different scenarios.
In the first scenario, 24 bits were used, 14 bits for the binary
part (Table 1(a)). In the second, 20 bits, being 10 for the
binary part (Table 1(b)). In the third one, 16 bits with 6 bits
in the binary part were used (Table 1(c)). In the last scenario,
12 bits were used with 2 bits in the binary part (Table 1(d)).
After the simulations, it was possible to observe from the

optimal policy results obtained, the lower the number of bits,
the greater the resolution error (e) obtained regarding the
floating point. However, it is important to emphasize that the
resolution of the Q matrix is not as significant as long as its
optimal policy is well defined. Figure 11 is the representation
of the value function obtained in the floating-point simulation
from a color matrix where the values of the actions are
codified in a linear scale from −400 to 400. The smallest
value of the scale is represented by the darkest blue while the
highest value is represented by lightest shade or red. Figure 12
is the representation, in color matrices, of the functions values
obtained from the fixed-point architecture simulation using
the same scale as reference. From this it is possible to observe
that, despite the resolution error associated with the decrease
on the number of bits, the policy is well characterized. Even
in the worst simulated case, with only 12 bits of resolution
where an error greater than 30% was obtained, the best and
worst actions, despite having different colors of the reference
matrix, are well defined and present the same policy when
compared with the floating point and with the other cases
simulated in different resolutions.
The resolution error can always be improved by increas-

ing the number of bits. However, as will be detailed in the
following sections, this directly implies the increase of the

2790 VOLUME 7, 2019

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

TABLE 1. Value function for different binary representations.

FIGURE 11. Color matrix for function value obtained at floating point
representation.

FIGURE 12. Color matrices for value functions obtained at fixed-point
representation. (a) [24:14] bits. (b) [20:10] bits. (c) [16:06] bits.
(d) [10:00] bits.

occupied area in the FPGA and increase in the processing
time.

B. SYNTHESIS RESULTS

For the hardware architecture synthesis analysis, in addition
to the scenario presented in Figure 10, nine other distinct
scenarios were analyzed, with different numbers of states
and actions. The scenarios were characterized using also as

problem the robot, described in section IV-A, that moves in
an arena. The greater the granularity of the arena, the greater
the number of states. Six scenarios were determined for four
possible actions: a1 - up, a2 - down, a3 - left, a4 - right, where
the agent moves from a position in the direction indicated
by the action. Other four scenarios were characterized for
eight possible actions: a1 - up, a2 - down, a3 - left, a4 - right,
a5 - up2, a6 - down2, a7 - left2, a8 - right2, where the behavior
of the agent is the same as in the previous scenarios for the
first four actions while in the other actions it moves two
positions in the direction indicated by the action. The size
of all examples implemented and simulated are presented
in Table 2, where N represents the number of states and Z the
number of actions. The parameters used in the tests of these
10 scenarios are shown in Table 3. All results were obtained
for the Xilinx Virtex-6 FPGA [15].

TABLE 2. Synthetized cases.

TABLE 3. Synthesis parameters.

Figure 13 shows the hardware setup for the experi-
ments. It was used the Virtex-6 FPGA ML605 Evaluation
Kit by Xilinx [15], [32]. The architecture was developed

VOLUME 7, 2019 2791

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

FIGURE 13. Hardware setup for the experiments with the Xilinx
Virtex-6 FPGA ML605 Evaluation Kit.

TABLE 4. Hardware synthesis - Scenario I (N = 6, Z = 4).

TABLE 5. Hardware synthesis - Scenario II (N = 12, Z = 4).

using structural modeling with the System Generator for
DSPTM [14]. The system generator is the architecture-level
design tool used to create high-performance algorithms
on Xilinx devices using Matlab/Simulink (license number
1080073) [33] together with the Xilinx Vivado Design Suite
(license number 505318) [34].
All scenarios were synthesized with all variables at fixed-

point. The Tables 4 - 13 illustrate the results obtained both
in terms of occupancy rate and throughput, Fs, in Mega-
Samples per second (MSps) or Mega-Iterations per second
(MIps). In the first columns is indicated the bit resolution
synthesized for the variables rn and Qn

k , the other variables
have its resolution fixed. For this synthesis analysis, four
different representations were implemented.

TABLE 6. Hardware synthesis - Scenario III (N = 12, Z = 8).

TABLE 7. Hardware synthesis - Scenario IV (N = 20, Z = 4).

TABLE 8. Hardware synthesis - Scenario V (N = 20, Z = 8).

TABLE 9. Hardware synthesis - Scenario VI (N = 30, Z = 4).

C. ANALYSIS OF HARDWARE OCCUPATION RESULTS

In Tables 4 - 13, the second column was used to display
the number of multipliers used. The multipliers are used

2792 VOLUME 7, 2019

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

TABLE 10. Hardware synthesis - Scenario VII (N = 30, Z = 8).

TABLE 11. Hardware synthesis - Scenario VIII (N = 56, Z = 4).

TABLE 12. Hardware synthesis - Scenario IX (N = 56, Z = 8).

TABLE 13. Hardware synthesis - Scenario X (N = 132, Z = 4).

in the PRNG (GA module), as well as in the S modules
where the value function is calculated, specifically for the
multiplication of the learning coefficient (α) (MULTnz) and

for the multiplication of the factor (γ) for the actions with the
highest future reinforcement value (maxQ) (SEL module).
An increase in the number of multipliers, in all scenarios,
is observed for configurations larger than 20 bits. This is due
to the size of the hardware multipliers built into the used
FPGA, which is of 48 bits. Therefore, arithmetic operations
performed with a multiplier now need more than one unit.
All the multiplications carried out in the first 8 scenarios
(I-VIII) were implemented through embedded multipliers
(DSP48E1) from the Virtex-6 FPGA. In scenarios IX and X,
due to a greater systems complexity, some multiplication
operations were implemented through logical cells (lookup
table - LUTs) as the chosen FPGA did no have enough
embedded multipliers to implement these scenarios when
synthesized in higher resolution.

The third column displays the number of registers for the
implementation. The area occupied by the registers is due to
the storage of the Qk (snk , a

z
k) (REGnz) value function which

is calculated for each of the state-action pairs. Registers have
also been used to store the value of the function corresponding
to the action with the highest value maxQn for each state and
to store the future state (sk+1) during an iteration before it is
fed back to the beginning of the architecture and becomes the
current state (sk)(REG1).

The fourth column shows the number of logical cells used.
The occupation of the logical cells is related to the arithmetic
operations implemented in the N S blocks to enable the
calculation of the value function Q. In the more complex
scenarios, IX and X, this occupation is directly related to the
use of LUTs to carry out themultiplication operations in place
of the embedded multipliers.

Figures 14, 15 and 16 illustrate the occupation varyingwith
the states and actions for the scenarios already characterized.
Figures 14(a), 15(a) and 16(a) illustrate the occupa-
tion for the highest synthesized resolution, [24.14] bits.
Figures 14(b), 15(b) and 16(b) were constructed from the
lowest resolution data, [10.0] bits. It is possible to notice
that the occupied area increases almost linearly with the
number of state-action pairs. The discontinuities present
in Figures 14 and 16 therefore appear when replacing some
embedded multipliers by LUTs, in the scenarios of greater
complexity, consequently increasing the proportional number
of LUTs and decreasing the number of multipliers. When
comparing the occupied area for the case of higher resolution
with the case of lower resolution, it is possible to observe that
the behavior is practically the same regarding the area occu-
pied by multipliers (Figure 14) and by registers (Figure 15).
However, it is possible to notice that for LUTs this does not
happen. The growth in LUTs ismuch higher when the number
of bits is increased and LUTs are used for multiplication
operations in place of the embedded multipliers.

It is observed that occupation area is determined both by
the number of bits and by the complexity of the problem,
i.e. the higher the resolution used in the problem and the
more state-action pairs (n, z) the more space occupied in the
FPGA. In situations where it is necessary to reduce the FPGA

VOLUME 7, 2019 2793

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

FIGURE 14. Occupied area in multipliers for different scenarios.
(a) [24.14] bits. (b) [10.00] bits.

occupancy, it is possible to modify the resolution, because
as demonstrated in section IV-A (Figure 12), it is possible to
obtain the optimal policy even though there is an associated
resolution error.

D. ANALYSIS OF SAMPLING RESULTS

In Tables 4 - 13, the throughput, Fs, is observed in before
the last column. Since the system was developed in such
a way as to parallelize the data stream to the maximum,
the sampling rate does not vary significantly, maintaining a
very high throughput, Fs, in the order of 10MSps.
From the sampling data, a decrease in the maximum

throughput is observed with the increase in the number of
states of the problem. It is also possible to note that this
throughput decreases with the increase in the number of
possible actions per state. This is explained by the increase
in the complexity of the problem which results in a greater
amount of data to be processed. Figures 17(a) and 17(b)
present the throughput for different state numbers and actions
with [24.14] and [10.00] bits, respectively. As the system
was developed in such a way as to parallelize data flow to
the maximum, this variation is not so significant. Since even
increasing the number of state-action pairs, the path traveled

FIGURE 15. Occupied area in register for different scenarios.
(a) [24.14] bits. (b) [10.00] bits.

during the processing of the information is not significantly
modified. A small reduction in the throughput, Fs, occurs
because by increasing the number of actions per state, it is
necessary to make the value function Q(s, a) comparison
(COMP n) of all possible actions in order to determine the
value function maximum maxQ(st+1, a) for the best action
in the nth-state. By increasing the number of states, conse-
quently the number of multiplexers inputs that select the next
state (MUX1 n) in the modules S n also grows. The same
occurs in the multiplexers that select the next state (st+1)
(MUX2), and the maximum function value of the future state
maxQ(st+1, a) (MUX3). These are the main bottlenecks for
the complete parallelization of the system and the factors that
influence the decrease of the sampling rate as the complexity
of the problem increases. Despite bottlenecks, it is observed
that between the biggest (N = 132, Z = 4) and the smallest
case (N = 6, Z = 4) the variation of the sampling period is
less than 50 ns.

E. POWER CONSUMPTION ANALYSIS

Tables 4 - 13 show the dynamic power (last column) for
each of the scenarios and the four different representations

2794 VOLUME 7, 2019

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

FIGURE 16. Occupied area in LUTs for different scenarios. (a) [24.14] bits.
(b) [10.00] bits.

in bits (first column). Figure 18 shows the dynamic power as
a function of the number of bits for all scenarios (see Table 2),
and it is possible to observe that the power consumption
increase with the number of bits and the size of matrix Q

(N × Z) for all scenarios. However, it is possible to notice
that the dynamic power consumption is small, in the order of
90mW for the scenarios with greater complexity and higher
resolution (N = 132, Z = 4).
The Figure 19 shows the dynamic power consumption as a

function of the size of matrix Q (N × Z) and also according
to the throughput (color bar) and the number of bits (size
of circle). All situations were plotted with four different
resolutions (or the number of bits), an they were [10.00],
[16.06], [20.10]] and [24.14]. There are always four circles
with the same size of matrix Q (there are ten different sizes
of matrix Q).
Analyzing the Figure 19, it can be inferred that the increase

of the Q matrix size, N × Z , reduces the throughput, Fs, and
increases the power consumption. Another critical point, it is
the non-linear power growth as showed in Figure 19. The
number of bits has a minor impact on power consumption
for low Q matrix sizes (N × Z < 200) however it has a high

FIGURE 17. Throughput (Fs) in MSps for different scenarios.
(a) [24.14] bits. (b) [10.00] bits.

nonlinear impact for large Q matrix size (N × Z > 200).
When there is an increase in the number of states (N) or a
problem with a greater number of actions (Z), for the same
amount of states, it implies an increase in power consumption
and a reduction of the throughput (Fs). That is, the power
consumption and the throughput (Fs) are determined by the
complexity of the problem.

F. REAL-WORLD EXPERIMENTS

Table 14 shows some practical applications of Q-learning
found in the literature. The first column contains the ref-
erence. In the second and third columns are presented the
dimensions of the problem (number of states and actions).
In the fourth column are presented the number of iterations
necessary for the problems, according to those dimensions,
to converge to the optimal value function if implemented in
the Q-learning hardware architecture proposed in this work.
In the following column is presented the sampling rate that
the problem could reach if Q-learning were implemented
in the proposed architecture. In the last column, from the
number of iterations and the maximum throughput, an esti-
mation of the convergence time for the optimal policy of the
mentioned problems is calculated. In a problem like the one

VOLUME 7, 2019 2795

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

FIGURE 18. The dynamic power as a function of the number of bits for all scenarios (see Table 2).

TABLE 14. Convergence time and sampling Rate of literature applications using the Q-learning hardware architecture.

FIGURE 19. The power consumption as a function of the size of matrix Q

(N × Z) and also according to the throughput (color bar) and the number
of bits (size of circle).

presented in [30], which has the same order of complexity
as scenario VIII, it is possible to execute the Q-learning
with a sampling rate of approximately 15MSps. As seen in
Section II, it takes 8000 iterations for the convergence of
the Q matrix, which means that the optimal policy would be
available to the system after 0.5ms. In the problem presented
in [29], which has the same number of states and actions of
scenario III as the value function matrix, which converges
with 5500 iterations, it would need 0.2ms. In the problem
presented in [2], with 2500 iterations, it would take 0.1ms.
If there is a time restriction to acquire the necessary data
for the calculation of the policy, it is also possible to reduce
the system clock so that, as demonstrated in [11], the system

consumption is reduced and the execution time is adjusted for
the data acquisition.

G. COMPARISON WITH OTHER PLATFORMS

In [25] was propose a parallel implementation for a PVM
platform. A two-dimensional maze problem was studied
with 135 states and 4 actions each of them. The maximum
iterations (or episodes) used was of 32000 and the time
for 1, 2, 4 and 8 processors were 4.32 s (throughput about
7400 samples or iterations per second), 3.4 s (throughput
about 9411 samples or iterations per second), 1.85 s (through-
put about 172971 samples (or iterations) per second) and
2.65 s (throughput about 12075 samples or iterations per sec-
ond), respectively. The hardware proposed in this work has
a throughput about 12.23MSps (or 12.23 Mega-iterations
per second) in the scenario with N = 132 states, Z = 4
actions and this is equivalent of 2.61ms for 32000 iterations.
For this case, the hardware implementation proposed here
reaches a speed up about 1655×, 1302×, 708× and 1015×
for 1, 2, 4 and 8 processors used in [25], respectively.

The Q-learning FPGA implementation is shown in [19]
and [22] where it is proposed a semi-parallel approach. For
a scenario where the Q matrix has about 240 elements
(N ×Z), the works [19], [22] achieved a throughput of about
2.34MSps (or 2.34Mega-iterations per second). On the other
hand, the throuhput achieved by the present implementation
as 15.53MSps (or 15.53 Mega-iterations per second), i.e., a
speed up of about 6.63×. Another FPGA implementation
of the Q-learning is shown in [21] where for the scenario
with N = 27 states and Z = 5 actions (Q matrix with
135 elements). In this case, it was obtained a throughput of

2796 VOLUME 7, 2019

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

TABLE 15. Comparative results regarding the speed up with other platforms.

about 25000 Sps (or 25000 iterations per second) for the best
example. In the similar scenario with N = 20 and Z = 8
(Q matrix with 160 elements), the architecture here pro-
posed achieved a throughput of about 16.74MSps (or 16.74
Mega-iterations per second), i.e., speed up about 669.6×.
Table 15 shows the speedups achieved by the approach

proposed in the work here presented in comparison with the
schemes presented in [19], [22], and [25].

V. CONCLUSION

This work illustrated a Hardware parallel architecture pro-
posal of the Q-learning technique on FPGA. The state of
the art of implementations of machine learning techniques in
hardware was presented, giving emphasis to RL techniques.
Applications using use Q-learning as a technique were listed,
thus illustrating the main motivations for the development of
this work. The choice of FPGA was justified due to its high
performance, low operation frequency and to have several
processing cores.
Q-learning is a reinforcement learning technique that has

as its main advantage the possibility of obtaining an optimal
policy interacting with the environment without any knowl-
edge about the system model needed. Developing this tech-
nique in hardware allows shortening the system processing
time. The FPGA was used due to the possibility of rapid
prototyping and flexibility, parallelism and low power con-
sumption, some of the main advantages of FPGA. Details of
the implementation of the Hardware architecture have been
described. It was also discussed details of individual system
modules and what hardware mechanisms were used to imple-
ment the Q-learning algorithm. It was proposed a generic
architecture of N states and Z actions that makes the data
processing from a parallel and distributed implementation so
that the processing time of Q-learning is optimized.

A detailed analysis of the implementation was conducted,
in addition to the analysis of simulation and synthesis data.
From the simulation data, the architecture was validated.
It was also investigated the impacts of the resolution error
to obtain the problem optimal policy. It is possible to observe
that obtaining the optimal policy can also happen even for
low resolutions in bits that imply in a smaller area of occu-
pancy. The analysis of the synthesis data allowed to verify
the behavior of the system regarding important parameters,
such as occupancy rate and sampling time. By observing

FPGA synthesis performed in this work it was observed that
with the development of this algorithm, directly in hard-
ware, it is possible to reach high performance, especially
in terms of processing time and/or low power consumption
when compared with their counterparts in software. These
characteristics allow their use in more complex practical situ-
ations and with the most diverse types of applications, mainly
time-constrained applications such as real-time applications,
telecommunications applications where data flow needs to
be handled very quickly; or in applications where there are
power restrictions and low power consumption is required for
these devices.

REFERENCES

[1] R. S. Sutton, Ed., Reinforcement Learning: A Special Issue of Machine

Learning on Reinforcement Learning, 8th ed. Norwell, MA, USA: Kluwer,
1992.

[2] N. C. de Almeida, M. A. C. Fernandes, and A. D. D. Neto, ‘‘Beamforming
and power control in sensor arrays using reinforcement learning,’’ Sensors,
vol. 15, no. 3, pp. 6668–6687, 2015.

[3] L. M. Reyneri, ‘‘Implementation issues of neuro-fuzzy hardware: Going
toward HW/SW codesign,’’ IEEE Trans. Neural Netw., vol. 14, no. 1,
pp. 176–194, Jan. 2003.

[4] A. C. D. de Souza and M. A. C. Fernandes, ‘‘Parallel fixed point imple-
mentation of a radial basis function network in an FPGA,’’ Sensors, vol. 14,
no. 10, pp. 18223–18243, 2014.

[5] B. J. Leiner, V. Q. Lorena, T. M. Cesar, and M. V. Lorenzo, ‘‘Hardware
architecture for FPGA implementation of a neural network and its appli-
cation in images processing,’’ in Proc. Electron., Robot. Automot. Mech.
Conf. (CERMA), Morelos, Mexico, 2008, pp. 405–410.

[6] F. Mengxu and T. Bin, ‘‘FPGA implementation of an adaptive
genetic algorithm,’’ in in Proc. 12th Int. Conf. Service Syst. Service

Manage. (ICSSSM), Guangzhou, China, Jun. 2015, pp. 1–5.
[7] M. F. Torquato and M. A. C. Fernandes. (2018). ‘‘High-performance par-

allel implementation of genetic algorithm on FPGA.’’ [Online]. Available:
https://arxiv.org/abs/1806.11555

[8] S. Usenmez, R. A. Dilan,M. Dolen, and A. B. Koku, ‘‘Real-time hardware-
in-the-loop simulation of electrical machine systems using FPGAs,’’ in
Proc. Int. Conf. Elect. Mach. Syst., Nov. 2009, pp. 1–6.

[9] H. Saldanha et al., ‘‘A cloud architecture for bioinformatics workflows,’’
in Proc. 1st Int. Conf. Cloud Comput. Services Sci., Noordwijkerhout,
The Netherlands, 2011, pp. 477–483.

[10] L. A. V. de Carvalho, Datamining: A Mineração de Dados no Marketing,
Medicina, Economia, Engenharia e Administração. São Paulo, Brazil:
Editora Ciência Moderna, 2005.

[11] L. Shang, A. S. Kaviani, and K. Bathala, ‘‘Dynamic power consumption
in Virtex-II FPGA family,’’ in Proc. ACM/SIGDA 10th Int. Symp. Field-

Program. Gate Arrays (FPGA), 2002, pp. 157–164.
[12] S. Asano, T. Maruyama, and Y. Yamaguchi, ‘‘Performance comparison

of FPGA, GPU and CPU in image processing,’’ in Proc. Int. Conf. Field
Program. Logic Appl., Prague, Czech Republic, 2009, pp. 126–131.

[13] I. Kuon and J. Rose, ‘‘Measuring the gap between FPGAs and ASICs,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

VOLUME 7, 2019 2797

L. M. D. da Silva et al.: Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA

[14] Xilinx. (2018). System Generator for DSP. Accessed: Nov. 17, 2018.
[Online]. Available: https://www.xilinx.com/products/design-tools/
vivado/integration/sysgen.html

[15] Xilinx. (2018). Virtex-6 Family. Accessed: Nov. 17, 2018. [Online]. Avail-
able: https://www.xilinx.com/support/documentation-navigation/silicon-
devices/fpga/virtex-6.html

[16] H.Woehrle and F. Kirchner, ‘‘Reconfigurable hardware-based acceleration
for machine learning and signal processing,’’ in Formal Modeling and

Verification of Cyber-Physical Systems. Wiesbaden, Germany: Springer,
2015.

[17] Z. Liu and I. Elhany, ‘‘Large-scale tabular-form hardware architecture for
Q-learning with delays,’’ in Proc. Midwest Symp. Circuits Syst., Montreal,
QC, Canada, Aug. 2007, pp. 827–830.

[18] V. L. Prabha and E. C. Monie, ‘‘Hardware architecture of reinforcement
learning scheme for dynamic power management in embedded systems,’’
EURASIP J. Embedded Syst., vol. 2007, no. 1, p. 065478, 2007.

[19] P. R. Gankidi and J. Thangavelautham, ‘‘FPGA architecture for deep
learning and its application to planetary robotics,’’ in Proc. IEEE Aerosp.
Conf., Mar. 2017, pp. 1–9.

[20] S. Shao et al., ‘‘Towards hardware accelerated reinforcement learning for
application-specific robotic control,’’ in Proc. IEEE 29th Int. Conf. Appl.-
Specific Syst., Archit. Process. (ASAP), Jul. 2018, pp. 1–8.

[21] J. Su, J. Liu, D. B. Thomas, and P. Y. K. Cheung, ‘‘Neural network based
reinforcement learning acceleration on FPGA platforms,’’ ACM SIGARCH

Comput. Archit. News, vol. 44, no. 4, pp. 68–73, 2017.
[22] P. R. Gankidi, ‘‘FPGA accelerator architecture for Q-learning and its

applications in space exploration rovers,’’ Ph.D. dissertation, SpaceTREx
Lab., Univ. Arizona, Tucson, AZ, USA, 2016.

[23] R. Faraji and H. R. Naji, ‘‘An efficient crossover architecture for hardware
parallel implementation of genetic algorithm,’’ Neurocomputing, vol. 128,
pp. 316–327, 2014.

[24] J. T. Barron, D. S. Golland, and N. J. Hay, ‘‘Parallelizing reinforcement
learning,’’ Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., UCBerkeley,
Berkeley, CA, USA, 2009.

[25] A. M. Printista, M. L. Errecalde, and C. I. Montoya, ‘‘A parallel implemen-
tation of Q-learning based on communication with cache,’’ J. Comput. Sci.
Technol., vol. 1, no. 6, p. 11, 2002.

[26] M. Kushida, K. Takahashi, H. Ueda, and T. Miyahara, ‘‘A comparative
study of parallel reinforcement learning methods with a PC cluster sys-
tem,’’ inProc. IEEE/WIC/ACM Int. Conf. Intell. Agent Technol., Dec. 2006,
pp. 416–419.

[27] M. Camelo, J. Famaey, and A. S. Latré, ‘‘A scalable parallel Q-learning
algorithm for resource constrained decentralized computing environ-
ments,’’ in Proc. 2nd Workshop Mach. Learn. HPC Environ. (MLHPC),
Nov. 2016, pp. 27–35.

[28] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[29] A. Das, R. A. Shafik, and G. V. Merrett, ‘‘Reinforcement learning-based
inter- and intra-application thermal optimization for lifetime improvement
of multicore systems,’’ in Proc. ACM/EDAC/IEEE Design Autom. Conf.

(DAC), San Francisco, CA, USA, Jun. 2014, pp. 1–6.
[30] A. A. R. Diniz, A. J. J. L. Filho, P. R. da Motta Pires, S. M. Kanazava,

J. D. de Melo, and A. D. D. Neto, ‘‘Application of q-learning to define
optimal policy for triggering pid, neural and fuzzy controllers in a level
control process,’’ in Proc. Brazilian Congr. Autom., 2010, pp. 3270–3277.

[31] P.-C. Wu, ‘‘Multiplicative, congruential random-number generators with
multiplier ±2k1 ±2k2 and modulus 2p−1,’’ ACM Trans. Math. Softw.,
vol. 23, no. 2, pp. 255–265, 1997.

[32] Xilinx. (2018). Virtex-6 FPGA ML605 Evaluation Kit. Accessed:
Nov. 17, 2018. [Online]. Available: https://www.xilinx.com/products/
boards-and-kits/ek-v6-ml605-g.html

[33] MathWorks. (2018). MATLAB/Simulink. Accessed: Nov. 17, 2018.
[Online]. Available: http://www.mathworks.com

[34] Xilinx. (2018). Vivado Design Suite. Accessed: Nov. 17, 2018. [Online].
Available: https://www.xilinx.com/products/design-tools/vivado.html

LUCILEIDE M. D. DA SILVA was born in
Natal, Brazil. She received the B.S. degree
in electrical engineering from École Nationale
Supérieure d’électronique, d’Electrotechnique,
d’Informatique et d’Hydraulique de Toulouse
(ENSEEIHT), Toulouse, France, in 2011, and the
M.S. degree in computer engineering from the
Federal University of Rio Grande do Norte, Natal,
Brazil, in 2012 and 2016, respectively. She is
currently a Professor with the Informatics Group,

Federal Institute of RioGrande doNorte, Santa Cruz, Brazil. She is part of the
Robotics Group’s at the Institute, training teenagers in different competitions
and developing assistive technology to children with special needs. She is
also part of the Research Group on Embedded Systems and Reconfigurable
Hardware, Department of Computer Engineering and Automation, Federal
University of Rio Grande do Norte, where the main research topics are
the acceleration of articial intelligence algorithms through reconfigurable
computing on FPGA. Her research interests include artificial intelligence,
embedded systems, reconfigurable hardware, tactile Internet, educational
robotics for teenagers and specially children.

MATHEUS F. TORQUATO was born in Natal,
Brazil. He received the B.Sc. degree in science and
technology, in 2013, the B.E. degree in computer
engineering, in 2015, and theM.Sc. degree in com-
puter engineering from the Federal University of
Rio Grande do Norte, Natal, Brazil, in 2017. He is
currently part of the Research Group on Embedded
Systems and Reconfigurable Hardware, where the
main research topics are the acceleration of arti-
ficial intelligence (AI) algorithms through recon-

figurable computing (RC) on FPGA. Apart from his main research topic of
AI and RC at the Federal University of Rio Grande do Norte, he has other
research experiences, such as human–computer interaction at the Future
Interaction Technology Lab, Swansea University,Wales, U.K., and computer
vision at the Sensing and Machine Vision for Automation and Robotic
Intelligence Lab, University of Ottawa, Ottawa, ON, Canada. His research
interests include artificial intelligence, embedded systems, reconfigurable
hardware, human–computer interaction, and tactile Internet.

MARCELO A. C. FERNANDES was born inNatal,
Brazil. He received the B.S. and M.S. degrees in
electrical engineering from the Federal University
of Rio Grande do Norte, Natal, Brazil, in 1997 and
1999, respectively, and the Ph.D. degree in elec-
trical engineering from the University of Camp-
inas, Campinas, SP, Brazil, in 2010. From 2015 to
2016, he was a Visiting Researcher with the Cen-
tre Telecommunication Research, King’s College
London, London, U.K. He is currently an Adjunct

Professor with the Department of Computer Engineering and Automation,
Federal University of Rio Grande do Norte. He is also the Leader of the
Research Group on Embedded Systems and Reconfigurable Computing and
the Coordinator of the Laboratory of Machine Learning and Intelligent
System. He has authored or co-authored many scientific papers and prac-
tical studies on reconfigurable computing on FPGA to accelerate artificial
intelligence algorithms. His research interests include artificial intelligence,
digital signal processing, embedded systems, reconfigurable hardware, and
tactile internet.

2798 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	MAIN CONTRIBUTIONS
	PAPER ORGANIZATION

	Q-LEARNING TECHNIQUE
	IMPLEMENTATION DESCRIPTION
	PROPOSED ARCHITECTURE OVERVIEW
	GA - ACTION DRAW
	EN - UPDATE MODULE
	RS - REWARD FUNCTION MODULE
	S - VALUE FUNCTION CALCULATION MODULE
	Qn - VALUE FUNCTION CALCULATION
	SFn - FUTURE STATE

	SEL - FUTURE STATE SELECTION MODULE

	RESULTS
	SIMULATION RESULTS
	SYNTHESIS RESULTS
	ANALYSIS OF HARDWARE OCCUPATION RESULTS
	ANALYSIS OF SAMPLING RESULTS
	POWER CONSUMPTION ANALYSIS
	REAL-WORLD EXPERIMENTS
	COMPARISON WITH OTHER PLATFORMS

	CONCLUSION
	REFERENCES
	Biographies
	LUCILEIDE M. D. DA SILVA
	MATHEUS F. TORQUATO
	MARCELO A. C. FERNANDES

