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ABSTRACT

The aim of this paper is to provide a parallel strategy to be used when

implementing the Simulated Annealing process by distributed memory

systems.

It focuses the attention on the portfolio selection problem with dynamic and

integer constraints on the variables. However, this method can be extended to

any dynamic optimisation problem as the optimal control.

In the first part it develops the sequential algorithm of Simulated Annealing

stressing some features inherent in the application itself: the structure of the

neighbourhood of the solution, the starting value and the decreasing schedule

of the control parameter.

In the second part it deals with the formulation of a parallel strategy for the

algorithm. It starts from the consideration that an optimisation technique with

a probabilistic searching criterion cannot give a reliable result in a single

execution. Therefore it proposes a strategy performing a number of

independent concurrent Simulated Annealing processes applied to different

initial configurations of the same problem.

Finally, it proposes a co-operation policy among processes, by means of a

reduced number of communications. This policy enhance the efficiency of the

parallel computing system.

INTRODUCTION

Investment diversification is known as the best way to reduce the intrinsic risk of

individual financial assets.
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In early 1959 [1], Markowitz provided the theoretical framework for this topic,

introducing the variance of a portfolio as measure of the total risk and, thus

resolving the quadratic programming problem obtained.

Many authors have improved the Markowitz's original work by adding or

modifying some assumptions that bore no direct relation to the real mechanisms

of stock markets.

Two of these assumptions are: one, the hypothesis of perfect divisibility of the

shares and the other the one-period structure of the model that limits the

applicability of Markowitz's approach.

The case study of this paper consists in offering a solution for a multi-period

model of portfolio selection in which the variables are constrained to take integer

values. This problem is a very complex one; only a heuristic technique can give

useful results in terms of computational time and memory requirements.

Simulated annealing (SA) is a well-known algorithm used to solve combinatorial

and discrete optimisation problems. We implemented a modified version of SA

to portfolio selection and, furthermore, we developed a parallel version of this

method in order to distribute the computation onto a network of communicating

processors.

MULTI-PERIOD PORTFOLIO SELECTION

A multi-period model of portfolio selection was proposed by Sengupta [2]. In

this model the portfolio is represented by a discrete-time system evolving over a

specified time-horizon. The objective is to minimise a functional whose meaning

is analogous to the one-period objective function. The original model has been

modified in order to take into account integer constraints on variables, so we

have:

(2.1) P :

mm

s.t.

+ MI L Uf,

where:

is a n-dimensional vector, whose components (%) represent the amount of

capital allocated on stocks at time AT,
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Ut is a n-dimensional vector, whose components (% ) represent the number of

lots purchased at time k,

r̂  is a n-dimensional vector, whose components (%*) are the expected return

on stocks at time k;

L is a [n x n] diagonal matrix containing the minimal amount of stocks that can

be exchanged;

RI is the variance-covariance matrix of the returns of the stocks included in the

portfolio;

M̂  is a [n x n] diagonal matrix containing the elements /% = (l + /;.J which

correspond to the expected earn for a unit of capital invested;

Pt is a n-dimensional vector, whose components #* are the expected prices at

timek

S,Sk ,C* and/j* are, respectively, the rate of interest, the amount of capital

invested at time k, the amount of capital available at time k, the total return of

the portfolio at time k.

The objective is to minimise a future stream of risks discounted at the interest

rate & The first constraint describes the dynamics of the portfolio. The amount of

capital at time k+1 is made up of the capital allocated in the portfolio at time k

plus the interest (A£ x̂ ) and by the amount of stock purchased at time k. The

others two are a dynamic version of the return and balance constraint, assuring

that the optimal investment policies yield a minimal total return for each period

and that the capital invested does not exceed the capital available.

SIMULATED ANNEALING: AN OVERVIEW.

Simulated annealing was originally developed by Kirkpatrick et al. [3] to solve

combinatorial or discrete optimisation problems. This method is based on the

statistical mechanical annealing of solids. Annealing is the process by which a

solid at high temperature is brought to a low temperature state by the gradual

reduction of temperature. The algorithm describing this process was provided by

Metropolis et al. [4] in early 1953. In Metropolis's algorithm a collection of

configurations are randomly generated at each temperature J, observing that the

energies of the different configurations in this set can be represented by a

Boltzmann distribution given by:

(3.1)

where AE = Ej- £,. .

Once a configuration is generated, as result of a small perturbation of the last

one, the correspondent energy level is valued. This new configuration is

accepted if the level of energy decreases; otherwise, the increment AE will be

subjected to the probability function (3.1).
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Temperature has no direct analogue in optimisation; it merely serves as a control

parameter. At high temperatures, as seen from expression (3.1), the SA

algorithm can traverse almost the entire space of solutions because large

increases of energy solutions can be easily accepted. However, by successively

lowering the temperature, the algorithm is confined to a smaller and smaller

region of the space of solutions. Thus, in optimisation , SA works as follows: at

high temperatures, the SA algorithm behaves more or less like a random search.

The continuos accepting increases of objective the function allows the algorithm

to escape from local minima. At low temperatures, only solutions that decrease

the objective function will be accepted, stopping the algorithm from leaving the

region that most probably contains the optimal solution.

It is important to underline that finding the optimal solution depends on different

parameters in the annealing process. Unfortunately, it is very difficult to offer a

standard rule about the determination of these values. They depend on the

optimisation problem one is dealing with, and, for the same problem, according

to the structure, we will need different values for these parameters.

Many authors [5],[6],[7] suggest a tuning stage in order to determine the

parameters that make the optimisation process converge better towards the

optimal solution.

APPLYING SA TO PORTFOLIO SELECTION.

The application of SA to portfolio selection is straightforward. Every investment

policy can be considered as a configuration of the annealing process. In our

problem the objective is to minimise the total risk of the portfolio over a time

horizon. Thus, the discounted stream of the future risk will assume the same

meaning as energy in the annealing process. As we have said, the algorithm

evolves generating new configurations by a small perturbation of the last

accepted one. To do that, we have to define the neighbourhood of the solutions

and carry out the random selection inside this neighbourhood. Of course, the

new investment policy must be feasible. Given a feasible investment policy x. a

new investment policy x/ is obtained by adding 1,0, or -1 to the former. If this

configuration does not satisfy the constraints, a high value of risk will be

attributed to it, in this way the correspondent configuration will definitely be

refused and the algorithm will converge toward a feasible optimal solution.

As mentioned in the previous section, the parameters used in the annealing

process affect the success of the algorithm in its search for the global optimal

solution. So, it is important to select an appropriate starting value and cooling

schedule for the control parameter.

The starting value of the control parameter is normally set to a value that allows

about 80% of transitions to be accepted in order to make the algorithm jump

from one solution to another as above mentioned. As regards the cooling

schedule, if the control parameter is lowered quickly, the algorithm tends to

converge towards local minima. On the other hand, too slow a reduction will

produce a waste of computer time. From our experiments we have found that an
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exponential rate of reduction gives a good annealing process; furthermore, an

exponential decrease of the control parameter highlight a condition useful for the

parallelism of the algorithm.

Taking into account the argument presented, we can provide a C-like code for

SA applied to portfolio selection:

mainO

{
seed Q; /* initialise a random generator */

init_investQ; /* Generate a random investment policy */

fo_old-Risk(); /* Evaluate the risk of the first investment policy */

CH = init_temp ; /* Assign the initial value of the control parameter */

perturbationf); /* Perturbs the last configuration accepted*/

fo_new=Risk();

ARisk =fo_new-fo_pld;

if(Boltz > random [0, 1]) accept current investment policy;

else discard it;

}
else accept current investment policy;

iter++

} while(iter < iterjnax);

Ct >final_temp)

} /* end main */

PARALLEL IMPLEMENTATION

The implementation of SA on a multiprocessor system is not straightforward

because of the sequential nature of the method. SA is commonly described as a

sequence of Markov chains where each computation step can start only after the

previous one has beencompleted.

The algorithms proposed in literature can be grouped in two classes. In the first

class, one finds algorithms that try to reduce the amount of computation time in

performing a single chain [5],[7],[8],[9]. In the second class, one finds

algorithms basing on the idea that if an optimal solution is desired, one can run

several annealing processes independently on different processors.

We focused our attention on this last class of algorithms because these strategies

are the most effective ones and, furthermore, they can be improved thus

obtaining super-linear speedups [10], [1 1],[12].
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We focused our attention on this last class of algorithms because these strategies

are the most effective ones and, furthermore, they can be improved thus

obtaining super-linear speedups [10],[11],[12],

An important feature to investigate is the influence of the decreasing schedule of

the control parameter on the parallel independent annealings.

We observed in our experiments that using a linear decreasing schedule of the

control parameter, the trajectories cross each other and it is impossible to

recognise the most promising annealing processes (Fig. 1).

Conversely, using an exponential decreasing rule, the annealing processes

producing the best solutions maintain this behaviour up to the end and very

rarely do the worst ones obtain the best solution.

Furthermore, the exponential decrease provokes an initial narrow beam of the

trajectories that gradually enlarges during the middle period.

4000

3500 -

3000 -

2500

2000

100 200 300 400

Fig. 1: linear decreasing schedule.

500

It can be observed that the exponential decrease produced trajectories at a lower

level then the lowest one reached by the linear decrease.

If we correctly determine a suitable degree of parallelism, there is a high

probability that this large beam of trajectories includes the optimal solution.
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2500 --

2000
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Fig. 2: exponential decreasing schedule.

DEGREE OF PARALLELISM

Running independent SA processes on different processors is a strategy that

obviously gives an efficiency equal to 1. The execution time is in fact perfectly

divided by the number of processors employed. So that, in order to achieve the

highest efficiency of the computational system, it is important to determine the

minimum number of processes that gives the higher probability of including the

best solution.

When tuning the sequential application, we set the values of the implementation

parameters (initial value of the control parameter, decreasing schedule, number

of iterations for each level of the control parameter) so that each individual

process has the same probability of reaching the optimum solution within the

same number of iterations.

However, if we decide to perform a high number of executions (for instance

128), we can observe that only some of them reach values of a given precision.

The ratio between this number of processes and the previous quantity can be

considered as the efficiency of the whole set of computations when referred to a

given precision.

We can relate its value to the complexity of the specific problem and to the

settings of the above parameters; however, at present, we have no general rule

for determining this value. It can be done only empirically.

To this end, we observed the distances between the best solutions obtained by

128 executions of SA. In Fig 3, the distribution of the minimum risk is shown for

a portfolio selection of 5 shares and 5 periods.
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As can be seen, on average, the are six solutions having values close to 1200;

this means that, if we want to get solutions falling near that ring, we should run

the SA 21 at least times (128/6). Hence, this number can be hence considered the

degree of parallelism we are looking for.

Fig. 3 : portfolio with 5 shares and 5 periods.

In fig. 4 and 5, the same types of distribution are shown: one for a problem of 5

shares and 10 periods, and the other of 15 shares and 10 periods. In both cases,

there are two solutions close to the inner ring; therefore we should run the SA at

least 64 times (128/2).

50000

Fig.4 : portfolio with 5 shares and 10 periods.

As expected, the complexity of the problem has a determining influence on the

degree of parallelism, but it is important to underline that these values are only
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indicative. A better indication is given by the distance between the best solutions

and the next best solutions.

For the first case (5 x 5), we have six solutions very close to the minimum value

(1200). However the distance between them and the next nearest other ones is

not so significant, so we can extend the range of the acceptable solutions.

For instance, if we are satisfied with a level of the objective function up to 1600,

we find that the degree of parallelism gradually becomes about 5 (128/25).

Differently, observing the chart in Fig. 4, which concerns the case (5 x 10), we

note that there are two best solutions close to the 25000 level, but there are no

neighbouring solutions. In this case it is a better option to maintain the degree of

parallelism at its upper value (64) at least.

In the last case, we again have two solutions close to the minimum level (10?);

however there are some other neighbouring solutions. In this case we can reduce

the degree of parallelism, for instance to 25 (128/5).

x10

Fig. 5 : portfolio with 15 shares and 10 periods.

Thus, the criterion based on the distance between solutions can offer suggestions

about the most suitable degree of parallelism, more effective than the ones based

on the size of the problems.

Furthermore, when such a reduction of the degree of parallelism can takes place,

one can also rely on the improvements that an actual parallel environment can

create. As we will see, applying suitable strategies to the co-operation between

processes, it is possible to reach better solutions, thus increasing the efficiency of

the computational system.

CO-OPERATING PROCESSES

The exponential decrease of the control parameter, as shown in Fig. 2,

determines the differentiation between the trajectories so that the most promising
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ones can be identified. This allows us to predict that there are a number of

processes that will continue running on paths that stand practically no chance of

reaching good approximations to the solution.

We could consider this situation as a redundancy that provokes downgrading of

the efficiency. Therefore we can consider the option of re-addressing the

processes giving unpromising trajectories. They can be more conveniently

utilised to speedup the search drawn by the most promising trajectories.

There are many avenues that one can follow to make the processes co-operate

with one another to this end.The most important question to solve is the criterion

for deciding when a process can be considered unpromising. We must take into

account that when the control parameter has a high value, the co-operation

between processes involved in building the same Markow chain has low

efficiency. Almost all the configuration are accepted, but only one can be

included in the chain.Therefore, it is a better option to let the processes initially

follow individual paths into the space of solutions. At selected stages, the

process with the highest result can be considered unpromising and therefore it

can be forced to restart from the best solution found by one of the other

processes.We must also consider that if the co-operation provokes too fast a

decrease of the objective function, the probability of a long staying into the area

of a local minimum increases. This consideration suggests that the intervention

should not take place too frequently. It will also stop the process from leaving a

useful path too early.We experimented with many strategies. Among them, the

one that gave the best results consists in counting the number of iterations in

which a process does not decrease its best intermediate solution. When a process

holding the highest value exceeds a given threshold in such a condition, it is

forced to sprout a new branch from the best global intermediate solution at that

moment.

Fig. 6 shows the results given by different values of this threshold. Each unit

consists in a burst of iterations performed at the same level of the control

parameter.

30 40 70 80 9050 60

max count

Fig. 6 : threshold selection.

The best value for the examined problem (5 x 5) is 50. It means that the process

persisting in the highest value of the intermediate solution for more than 50
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reduction of the control parameter, must be considered unpromising and, hence,

re-addressed to sprout a new branch.

Fig. 7 shows the behaviour of the trajectories when adopting this strategy and

Fig. 8 gives the plots of 32+32 executions of 4 concurrent processes.

2600 -ff

2400

2200

2000

1800

1600

1400 -

1200 -

1000

1000

100 200 300 400

control parameter decreases

Fig. 7 : four co-operating processes.

500

executions

Fig. 8 : independent and co-operating executions

The upper curve concerns independent processes, while the lower one draws the

results obtained by 4 co-operating processes.
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Fig. 9 : efficiency of the co-operation strategy

The results were previously arranged in descending order to better highlight the

differences. The same values are listed in Tab.l where the column on the left

reports the best results of each group of four co-operating processes and the

other column lists the results of four independent processes.

Finally, Fig.9 plots the efficiency ratios between the two columns of results. For

instance, the value 1269 gives an efficiency ratio of 3.3 because this value is

reached by 3 runs of four independent processes and by 10 runs of four co-

operating processes. Therefore the efficiency is 10/3.

Since the efficiency of 4 independent processes is always 1, this ratio can be

considered the parallelism efficiency of the co-operation strategy for the given

value of the solution.
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CONCLUSION

This paper explored the parallel implementation of SA on a multi-period

portfolio selection problem with variables constrained to integer values.

Together with an improvement in the level of risk for the selected policies, we

achieved a super-linear speedup of the application. The strategy was tailored for

distributed memory systems since a reduced amount of communications are

performed. A new efficiency evaluation criterion has been introduced, taking

into account the number of times a series of executions reaches a given

precision of the objective function.
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