
Parallel implementation of the TRANSIMS

micro-simulation

Kai Nagel
�✂✁

and Marcus Rickert
✄✆☎�

Swiss Federal Institute of Technology (ETH), Zürich, Switzerland✄
sd&m AG, Troisdorf, Germany

June 24, 2000

Abstract

This paper describes the parallel implementation of the TRANSIMS traffic micro-simulation.

The parallelization method is domain decomposition, which means that each CPU of the

parallel computer is responsible for a different geographical area of the simulated region.

We describe how information between domains is exchanged, and how the transportation

network graph is partitioned. An adaptive scheme is used to optimize load balancing.

We then demonstrate how computing speeds of our parallel micro-simulations can be

systematically predicted once the scenario and the computer architecture are known. This

makes it possible, for example, to decide if a certain study is feasible with a certain com-

puting budget, and how to invest that budget. The main ingredients of the prediction are

knowledge about the parallel implementation of the micro-simulation, knowledge about the

characteristics of the partitioning of the transportation network graph, and knowledge about

the interaction of these quantities with the computer system. In particular, we investigate

the differences between switched and non-switched topologies, and the effects of 10 Mbit,

100 Mbit, and Gbit Ethernet.

As one example, we show that with a common technology – 100 Mbit switched Ethernet

– one can run the 20 000-link EMME/2-network for Portland (Oregon) more than 20 times

faster than real time on 16 coupled Pentium CPUs.

Keywords: Traffic simulation, parallel computing, transportation planning

1 Introduction

It is by now widely accepted that it is worth investigating if the microscopic simulation of large

transportation systems [1, 2] is a useful addition to the existing set of tools. By “microscopic”

we mean that all entities of the system – travelers, vehicles, traffic lights, intersections, etc. –

are represented as individual objects in the simulation [3, 4, 5, 6, 7, 8].✝
Corresponding author. Email: nagel@inf.ethz.ch. Postal: ETH Zentrum, Dept. of Computer Science, CH-8092

Zürich, Switzerland✞
Email: marcus.rickert@topmail.de

1

The conceptual advantage of a micro-simulation is that in principle it can be made arbitrarily

realistic. Indeed, microscopic simulations have been used for many decades for problems of

relatively small scale, such as intersection design or signal phasing. What is new is that it is now

possible to use microscopic simulations also for really large systems, such as whole regions with

several millions of travelers. At the heart of this are several converging developments:

1. The advent of fast desktop workstations.

2. The possibility to connect many of these workstations to parallel supercomputers, thus

multiplying the available computing power. This is particularly attractive for agent-based

transportation simulations since they do not benefit from traditional vector supercomput-

ers.

3. In our view, there is a third observation that is paramount to make these approaches work:

many aspects of a “correct” macroscopic behavior can be obtained with rather simple

microscopic rules.

The third point can actually be rigorously proven for some cases. For example, in physics the

ideal gas equation, ✟✡✠☞☛✍✌✏✎✒✑ , can be derived from particles without any interaction, i.e.

they move through each other. For traffic, one can show that rather simple microscopic models

generate certain fluid-dynamical equations for traffic flow [9].

In consequence, for situations where one expects that the fluid-dynamical representation of traf-

fic is realistic enough for the dynamics but one wants access to individual vehicles/drivers/...,

a simple microscopic simulation may be the solution. In addition to this, with the microscopic

approach it is always possible to make it more realistic at some later point. This is much harder

and sometimes impossible with macroscopic models.

The TRANSIMS (TRansportation ANalysis and SIMulation System) project at Los Alamos Na-

tional Laboratory [2] is such a micro-simulation project, with the goal to use micro-simulation

for transportation planning. Transportation planning is typically done for large regional areas

with several millions of travelers, and it is done with 20 year time horizons. The first means that,

if we want to do a micro-simulation approach, we need to be able to simulate large enough areas

fast enough. The second means that the methodology needs to be able to pick up aspects like

induced travel, where people change their activities and maybe their home locations because of

changed impedances of the transportation system. As an answer, TRANSIMS consists of the

following modules:✓ Population generation. Demographic data is disaggregated so that we obtain individual

households and individual household members, with certain characteristics, such as a

street address, car ownership, or household income [10].✓ Activities generation. For each individual, a set of activities and activity locations for a

day is generated [11, 12].✓ Modal and route choice. For each individual, modes and routes are generated that con-

nect activities at different locations [13].✓ Traffic micro-simulation. Up to here, all individuals have made plans about their behav-

ior. The traffic micro-simulation executes all those plans simultaneously. In particular,

2

we now obtain the result of interactions between the plans – for example congestion.1

As is well known, such an approach needs to make the modules consistent with each other:

For example, plans depend on congestion, but congestion depends on plans. A widely ac-

cepted method to resolve this is systematic relaxation [6] – that is, make preliminary plans, run

the traffic micro-simulation, adapt the plans, run the traffic micro-simulation again, etc., until

consistency between modules is reached. The method is somewhat similar to the Frank-Wolfe-

algorithm in static assignment.

The reason why this is important in the context of this paper is that it means that the micro-

simulation needs to be run more than once – in our experience about fifty times for a relaxation

from scratch [15, 16]. In consequence, a computing time that may be acceptable for a single run

is no longer acceptable for such a relaxation series – thus putting an even higher demand on the

technology.

This can be made more concrete by the following arguments:✓ The number of “about fifty” iterations was gained from systematic computational exper-

iments using a scenario in Dallas/Fort Worth. In fact, for route assignment alone, about

twenty iterations are probably sufficient [15, 16], but if one also allows for other behav-

ioral changes, more iterations are needed [17]. The numbers become plausible via the

following argument: Since relaxation methods rely on the fact that the situation does not

change too much from one iteration to the next, changes have to be small. Empirically,

changing more than 10% of the travellers sometimes leads to strong fluctuations away

from relaxation [15, 16]. A replanning fraction of 10% means that we need 10 iterations

in order to replan each traveller exactly once; and since during the first couple of iterations

travellers react to non-relaxed traffic patterns, we will have to replan those a second time,

resulting in 15-20 iterations. Nevertheless, future research will probably find methods to

decrease the number of iterations.✓ We assume that results of a scenario run should be available within a few days, say two.

Otherwise research becomes frustratingly slow, and we would assume that the same is true

in practical applications. Assuming further that we are interested in 24 hour scenarios, and

disregarding computing time for other modules besides the microsimulation, this means

that the simulation needs to run 25 times faster than real time.

We will show in this paper that the TRANSIMS microsimulation indeed can be run with this

computational speed, and that, for certain situations, this can even be done on relatively mod-

est hardware. By “modest” we mean a cluster of 10-20 standard PCs connected via standard

LAN technology (Beowulf cluster). We find that such a machine is affordable for most univer-

sity engineering departments, and we also learn from people working in the commercial sector

(mostly outside transportation) that this is not a problem. In consequence, TRANSIMS can be

used without access to a supercomputer. As mentioned before, it is beyond the scope of this

paper to discuss for which problems a simulation as detailed as TRANSIMS is really necessary

and for which problems a simpler approach might be sufficient.

1It is sometimes argued that TRANSIMS is unnecessarily realistic for the questions it is supposed to answer.

Although we tend to share the same intuition (see, for example, our work on the so-called queue model [14]), we

think that this needs to be evaluated systematically. We also expect that the answer will depend on the precise

question: It will be possible to answer certain questions with very simple models, while other questions may need

much more realistic models.

3

This paper will concentrate on the microsimulation of TRANSIMS. The other modules are

important, but they are less critical for computing (see also Sec. 10). We start with a description

of the most important aspects of the TRANSIMS driving logic (Sec. 3). The driving logic is

designed in a way that it allows domain decomposition as a parallelization strategy, which is

explained in Sec. 4. We then demonstrate that the implemented driving logic generates realistic

macroscopic traffic flow. Once one knows that the microsimulation can be partitioned, the

question becomes how to partition the street network graph. This is described in Sec. 6. Sec. 7

discusses how we adapt the graph partitioning to the different computational loads caused by

different traffic on different streets. These and additional arguments are then used to develop

a methodology for the prediction of computing speeds (Sec. 8). This is rather important, since

with this one can predict if certain investments in one’s computer system will make it possible

to run certain problems or not. We then shortly discuss what all this means for complete studies

(Sec. 10). This is followed by a summary.

2 Related work

As mentioned above, micro-simulation of traffic, that is, the individual simulation of each ve-

hicle, has been done for quite some time (e.g. [18]). A prominent example is NETSIM [3, 4],

which was developed in the 70s. Newer models are, e.g., the Wiedemann-model [19], INTE-

GRATION [5], MITSIM [6], HUTSIM [7], or VISSIM [8].

NETSIM was even tried on a vector supercomputer [20], without a real break-through in com-

puting speeds. But, as pointed out earlier, ultimately the inherent structure of agent-based micro-

simulation is at odds with the computer architecture of vector supercomputers, and so not much

progress was made on the supercomputing end of micro-simulations until the parallel super-

computers became available. One should note that the programming model behind so-called

Single Instruction Multiple Data (SIMD) parallel computers is very similar to the one of vector

supercomputers and thus also problematic for agent-based simulations. In this paper, when we

talk about parallel computers, we mean in all cases Multiple Instruction Multiple Data (MIMD)

machines.

Early use of parallel computing in the transportation community includes parallelization of

fluid-dynamical models for traffic [21] and parallelization of assignment models [22]. Early

implementations of parallel micro-simulations can be found in [23, 24, 25].

It is usually easier to make an efficient parallel implementation from scratch than to port ex-

isting codes to a parallel computer. Maybe for that reason, early traffic agent-based traffic

micro-simulations which used parallel computers were completely new designs and implemen-

tations [1, 2, 25, 24]. All of these use domain decomposition as their parallelization strategy,

which means that the partition the network graph into domains of approximately equal size, and

then each CPU of the parallel computer is responsible for one of these domains. It is maybe no

surprise that the first three use, at least in their initial implementation, some cellular structure

of their road representation, since this simplifies domain decomposition, as will be seen later.

Besides the large body of work in the physics community (e.g. [26]), such “cellular” models

also have some tradition in the transportation community [18, 27].

Note that domain decomposition is rather different from a functional parallel decomposition, as

for example done by DYNAMIT/MITSIM [6]. A functional decomposition means that different

modules can run on different computers. For example, the micro-simulation could run on one

computer, while an on-line routing module could run on another computer. While the functional

4

decomposition is somewhat easier to implement and also is less demanding on the hardware

to be efficient, it also poses a severe limitation on the achievable speed-up. With functional

decomposition, the maximally achievable speed-up is the number of functional modules one

can compute simultaneously – for example micro-simulation, router, demand generation, ITS

logic computation, etc. Under normal circumstances, one probably does not have more than a

handful of these functional modules that can truly benefit from parallel execution, restricting the

speed-up to five or less. In contrast, as we will see the domain decomposition can, on certain

hardware, achieve a more than 100-fold increase in computational speed.

In the meantime, some of the “pre-existing” micro-simulations are ported to parallel computers.

For example, this has recently been done for DYNEMO [28],2 and a parallelization is planned

for VISSIM [8] (M. Fellendorf, personal communication).

3 Microsimulation driving logic

The TRANSIMS-19993 microsimulation uses a cellular automata (CA) technique for represent-

ing driving dynamics (e.g. [9]). The road is divided into cells, each of a length that a car uses

up in a jam – we currently use 7.5 meters. A cell is either empty, or occupied by exactly one

car. Movement takes place by hopping from one cell to another; different vehicle speeds are

represented by different hopping distances. Using one second as the time step works well (be-

cause of reaction-time arguments [31]); this implies for example that a hopping speed of 5 cells

per time step corresponds to 135 km/h. This models “car following”; the rules for car following

in the CA are: (i) linear acceleration up to maximum speed if no car is ahead; (ii) if a car is

ahead, then adjust velocity so that it is proportional to the distance between the cars (constant

time headway); (iii) sometimes be randomly slower than what would result from (i) and (ii).

Lane changing is done as pure sideways movement in a sub-time-step before the forwards move-

ment of the vehicles, i.e. each time-step is subdivided into two sub-time-steps. The first sub-

time-step is used for lane changing, while the second sub-time-step is used for forward motion.

Lane-changing rules for TRANSIMS are symmetric and consist of two simple elements: Decide

that you want to change lanes, and check if there is enough gap to “get in” [32]. A “reason to

change lanes” is either that the other lane is faster, or that the driver wants to make a turn at

the end of the link and needs to get into the correct lane. In the latter case, the accepted gap

decreases with decreasing distance to the intersection, that is, the driver becomes more and more

desperate.

Two other important elements of traffic simulations are signalized turns and unprotected turns.

The first of those is modeled by essentially putting a “virtual” vehicle of maximum velocity zero

at the end of the lane when the traffic light is red, and to remove it when it is green. Unprotected

turns get modeled via “gap acceptance”: There needs to be a large enough gap on the priority

street for the car from the non-priority street to accept it [33].

A full description of the TRANSIMS driving logic would go beyond the scope of the present

2DYNEMO is not strictly a micro-simulation – it has individual travelers but uses a macroscopic approach for

the speed calculation. It is mentioned here because of the parallelization effort.
3There are two versions of TRANSIMS with the number “1.0”: One from 1997, “TRANSIMS Release 1.0” [29],

and one from 1999, “TRANSIMS–LANL–1.0” [30]. Since 1997, many features have been added, such as public

transit with a different driving logic, or the option of using continuous corrections to the cellular structure. For

the purposes of this paper, the differences are not too important, except that computational performance was also

considerably increased.

5

paper. It can be found in Refs. [34, 30].

4 Micro-simulation parallelization: Domain decomposition

An important advantage of the CA is that it helps with the design of a parallel and local simu-

lation update, that is, the state at time step ✔✖✕✘✗ depends only on information from time step✔ , and only from neighboring cells. (To be completely correct, one would have to consider our

sub-time-steps.) This means that domain decomposition for parallelization is straightforward,

since one can communicate the boundaries for time step ✔ , then locally on each CPU perform

the update from ✔ to ✔✙✕✚✗ , and then exchange boundary information again.

Domain decomposition means that the geographical region is decomposed into several domains

of similar size (Fig. 1), and each CPU of the parallel computer computes the simulation dynam-

ics for one of these domains. Traffic simulations fulfill two conditions which make this approach

efficient:✓ Domains of similar size: The street network can be partitioned into domains of similar

size. A realistic measure for size is the accumulated length of all streets associated with a

domain.✓ Short-range interactions: For driving decisions, the distance of interactions between drivers

is limited. In our CA implementation, on links all of the TRANSIMS-1999 rule sets have

an interaction range of ✛✢✜✤✣✦✥ meters (☛ 5 cells) which is small with respect to the average

link length. Therefore, the network easily decomposes into independent components.

We decided to cut the street network in the middle of links rather than at intersections (Fig. 2);

THOREAU does the same [24]. This separates the traffic complexity at the intersections from

the complexity caused by the parallelization and makes optimization easier.

In the implementation, each divided link is fully represented in both CPUs. Each CPU is respon-

sible for one half of the link. In order to maintain consistency between CPUs, the CPUs send

information about the first five cells of “their” half of the link to the other CPU. Five cells is the

interaction range of all CA driving rules on a link. By doing this, the other CPU knows enough

about what is happening on the other half of the link in order to compute consistent traffic.

The resulting simplified update sequence on the split links is as follows (Fig. 3):4✓ Change lanes.✓ Exchange boundary information.✓ Calculate speed and move vehicles forward.✓ Exchange boundary information.

The TRANSIMS-1999 microsimulation also includes vehicles that enter the simulation from

parking and exit the simulation to parking, and logic for public transit such as buses. These ad-

ditions are implemented in a way that no further exchange of boundary information is necessary.

4Instead of “split links”, the terms “boundary links”, “shared links”, or “distributed links” are sometimes used.

As is well known, some people use “edge” instead of “link”.

6

The implementation uses the so-called master-slave approach. Master-slave approach means

that the simulation is started up by a master, which spawns slaves, distributes the workload to

them, and keeps control of the general scheduling. Master-slave approaches often do not scale

well with increasing numbers of CPUs since the workload of the master remains the same or

even increases with increasing numbers of CPUs. For that reason, in TRANSIMS-1999 the

master has nearly no tasks except initialization and synchronization. Even the output to file is

done in a decentralized fashion. With the numbers of CPUs that we have tested in practice, we

have never observed the master being the bottleneck of the parallelization.

The actual implementation was done by defining descendent C++ classes of the C++ base classes

provided in a Parallel Toolbox. The underlying communication library has interfaces for both

PVM (Parallel Virtual Machine [35]) and MPI (Message Passing Interface [36]). The toolbox

implementation is not specific to transportation simulations and thus beyond the scope of this

paper. More information can be found in [15].

5 Macroscopic (emergent) traffic flow characteristics

In our view, it is as least as important to discuss the resulting traffic flow characteristics as to

discuss the details of the driving logic. For that reason, we have performed systematic validation

of the various aspects of the emerging flow behavior. Since the microsimulation is composed

of car-following, lane changing, unprotected turns, and protected turns, we have corresponding

validations for those four aspects. Although we claim that this is a fairly systematic approach to

the situation, we do not claim that our validation suite is complete. For example, weaving [37]

is an important candidate for validation.

It should be noted that we do not only validate our driving logic, but we validate the imple-

mentation of it, including the parallel aspects. It is easy to add unrealistic aspects in a parallel

implementation of an otherwise flawless driving logic; and the authors of this paper are sceptic

about the feasibility of formal verification procedures for large-scale simulation software.

We show examples for the four categories (Fig. 4): (i) Traffic in a 1-lane circle, thus validating

the traffic flow behavior of the car following implementation. (ii) Results of traffic in a 3-lane

circle, thus validating the addition of lane changing. (iii) Merge flows through a stop sign, thus

validating the addition of gap acceptance at unprotected turns. (iv) Flows through a traffic light

where vehicles need to be in the correct lanes for their intended turns – it thus simultaneously

validates “lane changing for plan following” and traffic light logic.

In our view, our validation results are within the range of field measurements that one finds

in the literature. When going to a specific study area, and depending on the specific question,

more calibration may become necessary, or in some cases additions to the driving logic may be

necessary. For more information, see [34].

6 Graph partitioning

Once we are able to handle split links, we need to partition the whole transportation network

graph in an efficient way. Efficient means several competing things: Minimize the number of

split links; minimize the number of other domains each CPU shares links with; equilibrate the

computational load as much as possible.

7

One approach to domain decomposition is orthogonal recursive bi-section. Although less effi-

cient than METIS (explained below), orthogonal bi-section is useful for explaining the general

approach. In our case, since we cut in the middle of links, the first step is to accumulate compu-

tational loads at the nodes: Each node gets a weight corresponding to the computational load of

all of its attached half-links. Nodes are located at their geographical coordinates. Then, a verti-

cal straight line is searched so that as much as possible half of the computational load is on its

right and the other half on its left. Then the larger of the two pieces is picked and cut again, this

time by a horizontal line. This is recursively done until as many domains are obtained as there

are CPUs available, see Fig. 5. It is immediately clear that under normal circumstances this will

be most efficient for a number of CPUs that is a power of two. With orthogonal bi-section, we

obtain compact and localized domains, and the number of neighbor domains is limited.

Another option is to use the METIS library for graph partitioning (see [38] and references

therein). METIS uses multilevel partitioning. What that means is that first the graph is coars-

ened, then the coarsened graph is partitioned, and then it is uncoarsened again, while using an

exchange heuristic at every uncoarsening step. The coarsening can for example be done via

random matching, which means that first edges are randomly selected so that no two selected

links share the same vertex, and then the two nodes at the end of each edge are collapsed into

one. Once the graph is sufficiently collapsed, it is easy to find a good or optimal partitioning

for the collapsed graph. During uncoarsening, it is systematically tried if exchanges of nodes

at the boundaries lead to improvements. “Standard” METIS uses multilevel recursive bisec-

tion: The initial graph is partitioned into two pieces, each of the two pieces is partitioned into

two pieces each again, etc., until there are enough pieces. Each such split uses its own coars-

ening/uncoarsening sequence. ✧ -METIS means that all ✧ partitions are found during a single

coarsening/uncoarsening sequence, which is considerably faster. It also produces more consis-

tent and better results for large ✧ .

METIS considerably reduces the number of split links, ★✪✩✬✫✮✭ , as shown in Fig. 6. The fig-

ure shows the number of split links as a function of the number of domains for (i) orthogonal

bi-section for a Portland network with 200 000 links, (ii) METIS decomposition for the same

network, and (iii) METIS decomposition for a Portland network with 20 024 links. The network

with 200 000 links is derived from the TIGER census data base, and will be used for the Port-

land case study for TRANSIMS. The network with 20 024 links is derived from the EMME/2

network that Portland is currently using. An example of the domains generated by METIS can

be seen in Fig. 7; for example, the algorithm now picks up the fact that cutting along the rivers

in Portland should be of advantage since this results in a small number of split links.

We also show data fits to the METIS curves, ★✪✩✯✫✂✭✰☛✚✱✲✥✴✳✵✟✰✶✸✷ ✹✆✺ for the 200 000 links network and★✪✩✬✫✮✭✰☛✻✗✽✼✢✳✵✟ ✶✸✷ ✹✆✺✿✾ ✗✽✼✢✳ for the 20 024 links network, where ✟ is the number of domains. We are

not aware of any theoretical argument for the shapes of these curves for METIS. It is however

easy to see that, for orthogonal bisection, the scaling of ★❀✩✬✫✮✭ has to be ❁❂✟ ✶✸✷ ✹ . Also, the limiting

case where each node is on a different CPU needs to have the same ★✪✩✯✫✮✭ both for bisection and

for METIS. In consequence, it is plausible to use a scaling form of ✟✰❃ with ❄✘❅❆✳❇✣✦✥ . This is

confirmed by the straight line for large ✟ in the log-log-plot of Fig. 6. Since for ✟❈☛❉✗ , the

number of split links ★✪✩✬✫✮✭ should be zero, for the 20 024 links network we use the equation❊ ✟ ❃❋✾ ❊ , resulting in ★❀✩✬✫✮✭●☛❍✗✽✼✢✳✵✟ ✶✸✷ ✹✆✺■✾ ✗✽✼✢✳ . For the 200 000 links network, the resulting

fit is so bad that we did not add the negative term. This leads to a kink for the corresponding

curves in Fig. 13.

Such an investigation also allows to compute the theoretical efficiency based on the graph parti-

tioning. Efficiency is optimal if each CPU gets exactly the same computational load. However,

8

because of the granularity of the entities (nodes plus attached half-links) that we distribute, load

imbalances are unavoidable, and they become larger with more CPUs. We define the resulting

theoretical efficiency due to the graph partitioning as❏✂❑✆▲●▼❋◆ ☛ load on optimal partition

load on largest partition ❖ (1)

where the load on the optimal partition is just the total load divided by the number of CPUs.

We then calculated this number for actual partitionings of both of our 20 024 links and of our

200 000 links Portland networks, see Fig. 8. The result means that, according to this measure

alone, our 20 024 links network would still run efficiently on 128 CPUs, and our 200 000 links

network would run efficiently on up to 1024 CPUs.

7 Adaptive Load Balancing

In the last section, we explained how the street network is partitioned into domains that can

be loaded onto different CPUs. In order to be efficient, the loads on different CPUs should

be as similar as possible. These loads do however depend on the actual vehicle traffic in the

respective domains. Since we are doing iterations, we are running similar traffic scenarios over

and over again. We use this feature for an adaptive load balancing: During run time we collect

the execution time of each link and each intersection (node). The statistics are output to file.

For the next run of the micro-simulation, the file is fed back to the partitioning algorithm. In

that iteration, instead of using the link lengths as load estimate, the actual execution times are

used as distribution criterion. Fig. 9 shows the new domains after such a feedback (compare to

Fig. 5).

To verify the impact of this approach we monitored the execution times per time-step throughout

the simulation period. Figure 10 depicts the results of one of the iteration series. For iteration 1,

the load balancer uses the link lengths as criterion. The execution times are low until congestion

appears around 7:30 am. Then, the execution times increase fivefold from 0.04 sec to 0.2 sec.

In iteration 2 the execution times are almost independent of the simulation time. Note that due

to the equilibration, the execution times for early simulation hours increase from 0.04 sec to

0.06 sec, but this effect is more than compensated later on.

The figure also contains plots for later iterations (11, 15, 20, and 40). The improvement of

execution times is mainly due to the route adaptation process: congestion is reduced and the

average vehicle density is lower. On the machine sizes where we have tried it (up to 16 CPUs),

adaptive load balancing led to performance improvements up to a factor of 1.8. It should become

more important for larger numbers of CPUs since load imbalances have a stronger effect there.

8 Performance prediction for the TRANSIMS micro-simulation

It is possible to systematically predict the performance of parallel micro-simulations (e.g. [39,

40]). For this, several assumptions about the computer architecture need to be made. In the

following, we demonstrate the derivation of such predictive equations for coupled workstations

and for parallel supercomputers.

The method for this is to systematically calculate the wall clock time for one time step of the

micro-simulation. We start by assuming that the time for one time step has contributions from

9

computation, ✑✡P ▲ ✫ , and from communication, ✑✡P ▲◗▲ . If these do not overlap, as is reasonable

to assume for coupled workstations, we have✑❀❘❙✟✙❚❯☛❱✑ P ▲ ✫ ❘❙✟✡❚❲✕❂✑ P ▲◗▲ ❘❙✟✡❚ ❖ (2)

where ✟ is the number of CPUs.5

Time for computation is assumed to follow✑✙P ▲ ✫ ❘❙✟✙❚❳☛ ✑✿❨✟❬❩ ❭ ✗❪✕❴❫✴❵❜❛❞❝✴❘❙✟✙❚❲✕❴❫ ❑✆▲◗▼ ❘❙✟✡❚❜❡❢✣ (3)

Here, ✑ ❨ is the time of the same code on one CPU (assuming a problem size that fits on available

computer memory); ✟ is the number of CPUs; ❫✴❵❜❛❞❝ includes overhead effects (for example, split

links need to be administered by both CPUs); ❫ ❑❞▲●▼ ☛❣✗✂❤ ❏✮❑✆▲◗▼ ✾ ✗ includes the effect of unequal

domain sizes discussed in Sec. 6.

Time for communication typically has two contributions: Latency and bandwidth. Latency is

the time necessary to initiate the communication, and in consequence it is independent of the

message size. Bandwidth describes the number of bytes that can be communicated per second.

So the time for one message is ✑ ▲ ✩❥✐ ☛❱✑✙✭❧❦✰✕♥♠ ▲ ✩♦✐♣ ❖
where ✑✙✭❧❦ is the latency, ♠ ▲ ✩❥✐ , is the message size, and

♣
is the bandwidth.

However, for many of today’s computer architectures, bandwidth is given by at least two con-

tributions: node bandwidth, and network bandwidth. Node bandwidth is the bandwidth of the

connection from the CPU to the network. If two computers communicate with each other, this

is the maximum bandwidth they can reach. For that reason, this is sometimes also called the

“point-to-point” bandwidth.

The network bandwidth is given by the technology and topology of the network. Typical tech-

nologies are 10 Mbit Ethernet, 100 Mbit Ethernet, FDDI, etc. Typical topologies are bus topolo-

gies, switched topologies, two-dimensional topologies (e.g. grid/torus), hypercube topologies,

etc. A traditional Local Area Network (LAN) uses 10 Mbit Ethernet, and it has a shared bus

topology. In a shared bus topology, all communication goes over the same medium; that is, if

several pairs of computers communicate with each other, they have to share the bandwidth.

For example, in our 100 Mbit FDDI network (i.e. a network bandwidth of
♣ ▼✴q ❦ ☛r✗s✳✲✳ Mbit)

at Los Alamos National Laboratory, we found node bandwidths of about
♣ ▼✴❑ ☛✘✼✢✳ Mbit. That

means that two pairs of computers could communicate at full node bandwidth, i.e. using 80 of

the 100 Mbit/sec, while three or more pairs were limited by the network bandwidth. For exam-

ple, five pairs of computers could maximally get ✗s✳✲✳t❤✴✥✉☛✚✱✴✳ Mbit/sec each.

A switched topology is similar to a bus topology, except that the network bandwidth is given by

the backplane of the switch. Often, the backplane bandwidth is high enough to have all nodes

communicate with each other at full node bandwidth, and for practical purposes one can thus

neglect the network bandwidth effect for switched networks.

If computers become massively parallel, switches with enough backplane bandwidth become

too expensive. As a compromise, such supercomputers usually use a communications topology

where communication to “nearby” nodes can be done at full node bandwidth, whereas global

5For simplicity, we do not differentiate between CPUs and computational nodes. Computational nodes can have

more than one CPU — an example is a network of coupled PCs where each PC has Dual CPUs.

10

communication suffers some performance degradation. Since we partition our traffic simula-

tions in a way that communication is local, we can assume that we do communication with full

node bandwidth on a supercomputer. That is, on a parallel supercomputer, we can neglect the

contribution coming from the
♣ ▼✈q ❦ -term. This assumes, however, that the allocation of street

network partitions to computational nodes is done in some intelligent way which maintains

locality.

As a result of this discussion, we assume that the communication time per time step is✑✙P ▲●▲ ❘❙✟✡❚❳☛✇★✪✩♦① ✄ ❩ ❭✮② ▼ ✄ ❘❙✟✡❚t✑✡✭✦❦✵✕ ★✪✩✯✫✂✭♦❘❙✟✡❚✟ ♠ ✄ ▼✴❑♣ ▼✴❑ ✕③★✪✩✯✫✮✭♦❘❙✟✙❚ ♠ ✄ ▼✈❑♣ ▼✴q ❦ ❡ ❖
which will be explained in the following paragraphs. ★❀✩❥① ✄ is the number of sub-time-steps. As

discussed in Sec. 4, we do two boundary exchanges per time step, thus ★❀✩❥① ✄ ☛❣✱ for the 1999

TRANSIMS micro-simulation implementation.② ▼ ✄ is the number of neighbor domains each CPU talks to. All information which goes to the

same CPU is collected and sent as a single message, thus incurring the latency only once per

neighbor domain. For ✟④☛⑤✗ , ② ▼ ✄ is zero since there is no other domain to communicate with.

For ✟⑥☛⑦✱ , it is one. For ✟⑥⑧ ⑨ and assuming that domains are always connected, Euler’s

theorem for planar graphs says that the average number of neighbors cannot become more than

six. Based on a simple geometric argument, we use② ▼ ✄ ❘❙✟✡❚❯☛❈✱⑩❘❶✛✤❷ ✟ ✾ ✗✂❚✡❘❸❷ ✟ ✾ ✗✂❚✆❤❹✟ ❖
which correctly has

② ▼ ✄ ❘❺✗✂❚●☛✇✳ and

② ▼ ✄ ⑧❼❻ for ✟❽⑧❾⑨ . Note that the METIS library for graph

partitioning (Sec. 6) does not necessarily generate connected partitions, making this potentially

more complicated.✑✙✭❧❦ is the latency (or start-up time) of each message. ✑✡✭✦❦ between 0.5 and 2 milliseconds are

typical values for PVM on a LAN [15, 41].

Next are the terms that describe our two bandwidth effects. ★❀✩✬✫✮✭♦❘❙✟✡❚ is the number of split

links in the whole simulation; this was already discussed in Sec. 6 (see Fig. 6). Accordingly,★✪✩✬✫✮✭♦❘❙✟✡❚✆❤❹✟ is the number of split links per computational node. ♠ ✄ ▼✴❑ is the size of the message

per split link.
♣ ▼✴❑ and

♣ ▼✴q ❦ are the node and network bandwidths, as discussed above.

In consequence, the combined time for one time step is✑✪❘❙✟✡❚❳☛ ✑✿❨✟ ❭ ✗✖✕❿❫✴❵❜❛❞❝✲❘❙✟✡❚➀✕➁❫ ❑✆▲●▼ ❘❙✟✡❚❜❡✉✕❿★❀✩❥① ✄ ❩✵➂ ② ▼ ✄ ❘❙✟✡❚t✑✙✭❧❦✵✕ ★❀✩✬✫✮✭♦❘❙✟✡❚✟ ♠ ✄ ▼✴❑♣ ▼✈❑ ✕❂★✪✩✯✫✂✭❥❘❙✟✡❚❯♠ ✄ ▼✴❑♣ ▼✴q ❦➀➃ ✣
According to what we have discussed above, for ✟❈⑧ ⑨ the number of neighbors scales as② ▼ ✄ ❁➅➄✽➆ ②➈➇ ✔ and the number of split links in the simulation scales as ★✪✩✯✫✂✭❪❁ ❷ ✟ . In conse-

quence for ❫ ❵❜❛❞❝ and ❫ ❑✆▲◗▼ small enough, we have:✓ for a shared or bus topology,
♣ ▼✈q ❦ is relatively small and constant, and thus✑❀❘❙✟✙❚❯❁ ✗✟ ✕✇✗●✕ ✗❷ ✟ ✕❱❷ ✟❽⑧➉❷ ✟❽➊✓ for a switched or a parallel supercomputer topology, we assume

♣ ▼✈q ❦ ☛❈⑨ and obtain✑❀❘❙✟✡❚❯❁ ✗✟ ✕✇✗◗✕ ✗❷ ✟ ⑧☞✗✒✣
11

Thus, in a shared topology, adding CPUs will eventually increase the simulation time, thus

making the simulation slower. In a non-shared topology, adding CPUs will eventually not make

the simulation any faster, but at least it will not be detrimental to computational speed. The

dominant term in a shared topology for ✟➋⑧❼⑨ is the network bandwidth; the dominant term in

a non-shared topology is the latency.

The curves in Fig. 11 are results from this prediction for a switched 100 Mbit Ethernet LAN;

dots and crosses show actual performance results. The top graph shows the time for one time

step, i.e. ✑❀❘❙✟✡❚ , and the individual contributions to this value. The bottom graph shows the real

time ratio (RTR) ➌ ✔ ➌ ❘❙✟✡❚ ◆ ☛ ➍ ✔✑✪❘❙✟✡❚ ☛ ✗ ➇ ❏ ➄✑❀❘❙✟✙❚ ❖
which says how much faster than reality the simulation is running. ➍ ✔ is the duration a simula-

tion time step, which is ✗ ➇ ❏ ➄ in TRANSIMS-1999. The values of the free parameters are:✓ Hardware-dependent parameters. We assume that the switch has enough bandwidth so

that the effect of
♣ ▼✈q ❦ is negligeable. Other hardware parameters are ✑✙✭❧❦■☛➎✳❇✣✦➏ ms and♣ ▼✈❑ ☛❈✥✴✳ Mbit/s.6✓ Implementation-dependent parameters. The number of message exchanges per time

step is ★✪✩❥① ✄ ☛✚✱ .✓ Scenario-dependent parameters. Except when noted, our performance predictions and

measurements refer to the Portland 20 024 links network. We use, for the number of split

links, ★✪✩✬✫✮✭♦❘❙✟✡❚❳☛✘✗✽✼✢✳ ❩ ✟✰✶✸✷ ✹✆✺ ✾ ✗✽✼✢✳ , as explained in Sec. 6.✓ Other Parameters. The message size depends on the plans format (which depends on

the software design and implementation), on the typical number of links in a plan, and on

the frequency per link of vehicles migrating from one CPU to another. We use ♠ ✄ ▼✈❑ ☛✱✴✳✲✳➑➐❀➒✤✔ ❏ ➇ . This is an average number; it includes all the information that needs to be

sent when a vehicle migrates from one CPU to another. The new TRANSIMS multi-

modal plans format easily has 200 entries per driver and trip, resulting in 800 bytes of

information just for the plan. In addition, there is information about the vehicle (ID,

speed, maximum acceleration, etc.); however, not in every time step a vehicle is migrated

across a boundary on every split link. In principle it is however possible to compress the

plans information, so improvements are possible here in the future. Also, we have not

explicitely modelled simulation output, which is indeed a performance issue on Beowulf

clusters.

These parameters were obtained in the following way: First, we obtained plausible values via

systematic communication tests using messages similar to the ones used in the actual simula-

tion [15]. Then, we ran the simulation without any vehicles (see below) and adapted our values

accordingly. Running the simulation without vehicles means that we have a much better control

of ♠ ✄ ▼✴❑ . In practice, the main result of this step was to set ✔❺✭ � ❦ to 0.8 msec, which is plausible

when compared to the hardware value of 0.5 msec. Last, we ran the simulations with vehicles

and adjusted ♠ ✄ ▼✴❑ to fit the data. — In consequence, for the switched 100 Mbit Ethernet config-

urations, within the data range our curves are model fits to the data. Outside the data range and

for other configurations, the curves are model-based predictions.

6Our measurements have consistently shown that node bandwidths are lower than network bandwidths. Even

CISCO itself specifies 148 000 packets/sec, which translates to about 75 Mbit/sec, for the 100 Mbit switch that we

use.

12

The plot (Fig. 11) shows that even something as relatively profane as a combination of regular

Pentium CPUs using a switched 100Mbit Ethernet technology is quite capable in reaching good

computational speeds. For example, with 16 CPUs the simulation runs 40 times faster than

real time; the simulation of a 24 hour time period would thus take 0.6 hours. These numbers

refer, as said above, to the Portland 20 024 links network. Included in the plot (black dots) are

measurements with a compute cluster that corresponds to this architecture. The triangles with

lower performance for the same number of CPUs come from using dual instead of single CPUs

on the computational nodes. Note that the curve levels out at about forty times faster than real

time, no matter what the number of CPUs. As one can see in the top figure, the reason is the

latency term, which eventually consumes nearly all the time for a time step. This is one of the

important elements where parallel supercomputers are different: For example the Cray T3D has

a more than a factor of ten lower latency under PVM [41].

As mentioned above, we also ran the same simulation without any vehicles. In the TRANSIMS-

1999 implementation, the simulation sends the contents of each CA boundary region to the

neighboring CPU even when the boundary region is empty. Without compression, this is five

integers for five sites, times the number of lanes, resulting in about 40 bytes per split edge,

which is considerably less than the 800 bytes from above. The results are shown in Fig. 12.

Shown are the computing times with 1 to 15 single-CPU slaves, and the corresponding real

time ratio. Clearly, we reach better speed-up without vehicles than with vehicles (compare to

Fig. 11). Interestingly, this does not matter for the maximum computational speed that can be

reached with this architecture: Both with and without vehicles, the maximum real time ratio is

about 80; it is simply reached with a higher number of CPUs for the simulation with vehicles.

The reason is that eventually the only limiting factor is the network latency term, which does

not have anything to do with the amount of information that is communicated.

Fig. 13 (top) shows some predicted real time ratios for other computing architectures. For

simplicity, we assume that all of them except for one special case explained below use the same

500 MHz Pentium compute nodes. The difference is in the networks: We assume 10 Mbit

non-switched, 10 Mbit switched, 1 Gbit non-switched, and 1 Gbit switched. The curves for

100 Mbit are in between and were left out for clarity; values for switched 100 Mbit Ethernet

were already in Fig. 11. One clearly sees that for this problem and with today’s computers, it

is nearly impossible to reach any speed-up on a 10 Mbit Ethernet, even when switched. Gbit

Ethernet is somewhat more efficient than 100 Mbit Ethernet for small numbers of CPUs, but for

larger numbers of CPUs, switched Gbit Ethernet saturates at exactly the same computational

speed as the switched 100 Mbit Ethernet. This is due to the fact that we assume that latency

remains the same – after all, there was no improvement in latency when moving from 10 to

100 Mbit Ethernet. FDDI is supposedly even worse [41].

The thick line in Fig. 13 corresponds to the ASCI Blue Mountain parallel supercomputer at

Los Alamos National Laboratory. On a per-CPU basis, this machine is slower than a 500 MHz

Pentium. The higher bandwidth and in particular the lower latency make it possible to use

higher numbers of CPUs efficiently, and in fact one should be able to reach a real time ratio

of 128 according to this plot. By then, however, the granularity effect of the unequal domains

(Eq. (1), Fig. 8) would have set in, limiting the computational speed probably to about 100 times

real time with 128 CPUs. We actually have some speed measurements on that machine for up to

96 CPUs, but with a considerably slower code from summer 1998. We omit those values from

the plot in order to avoid confusion.

Fig. 13 (bottom) shows predictions for the higher fidelity Portland 200 000 links network with

the same computer architectures. The assumption was that the time for one time step, i.e. ✑✿❨
13

of Eq. (3), increases by a factor of eight due to the increased load. This has not been verified

yet. However, the general message does not depend on the particular details: When problems

become larger, then larger numbers of CPUs become more efficient. Note that we again saturate,

with the switched Ethernet architecture, at 80 times faster than real time, but this time we need

about 64 CPUs with switched Gbit Ethernet in order to get 40 times faster than real time — for

the smaller Portland 20 024 links network with switched Gbit Ethernet we would need 8 of the

same CPUs to reach the same real time ratio. In short and somewhat simplified: As long as we

have enough CPUs, we can micro-simulate road networks of arbitrarily largesize, with hundreds

of thousands of links and more, 40 times faster than real time, even without supercomputer

hardware. — Based on our experience, we are confident that these predictions will be lower

bounds on performance: In the past, we have always found ways to make the code more efficient.

9 Speed-up and efficiency

We have cast our results in terms of the real time ratio, since this is the most important quantity

when one wants to get a practical study done. In this section, we will translate our results into

numbers of speed-up, efficiency, and scale-up, which allow easier comparison for computing

people.

Let us define speed-up as ♠ ❘❙✟✙❚ ◆ ☛ ✑❀❘❺✗✂❚✑❀❘❙✟✡❚➓❖
where ✟ is again the number of CPUs, ✑❀❘❺✗✂❚ is the time for one time-step on one CPU, and✑✪❘❙✟✡❚ is the time for one time step on ✟ CPUs. Depending on the viewpoint, for ✑❀❘❺✗✂❚ one

uses either the running time of the parallel algorithm on a single CPU, or the fastest existing

sequential algorithm. Since TRANSIMS has been designed for parallel computing and since

there is no sequential simulation with exactly the same properties, ✑❀❘❺✗✂❚ will be the running time

of the parallel algorithm on a single CPU. For time-stepped simulations such as used here, the

difference is expected to be small.7

Now note again that the real time ratio is

➌ ✔ ➌ ❘❙✟✡❚➔☛→✗ ➇ ❏ ➄s❤✂✑✪❘❙✟✡❚➣✣ Thus, in order to obtain the

speed-up from the real time ratio, one has to multiply all real time ratios by ✑❀❘❺✗✂❚✆❤❇❘❺✗ ➇ ❏ ➄✮❚ . On

a logarithmic scale, a multiplication corresponds to a linear shift. In consequence, speed-up

curves can be obtained from our real time ratio curves by shifting the curves up or down so that

they start at one.

This also makes it easy to judge if our speed-up is linear or not. For example in Fig. 13 bottom,

the curve which starts at 0.5 for 1 CPU should have an RTR of 2 at 4 CPU, an RTR of 8 at

16 CPUs, etc. Downward deviations from this mean sub-linear speed-up. Such deviations are

commonly described by another number, called efficiency, and defined as↔ ❘❙✟✙❚ ◆ ☛ ✑❀❘❺✗✂❚✆❤❹✟✑❀❘❙✟✡❚ ✣
Fig. 14 contains an example. Note that this number contains no new information; it is just a

re-interpretation. Also note that in our logarithmic plots,
↔ ❘❙✟✙❚ will just be the difference to the

diagonal ✟↕✑❀❘❺✗✂❚ . Efficiency can point out where improvements would be useful.

7An event-driven simulation could be a counter-example: Depending on the implementation, it could be ex-

tremely fast on a single CPU up to medium problem sizes, but slow on a parallel machine.

14

10 Other modules

As explained in the introduction, a micro-simulation in a software suite for transportation plan-

ning would have to be run many times (“feedback iterations”) in order to achieve consistency

between modules. For the microsimulation alone, and assuming our 16 CPU-machine with

switched 100 Mbit Ethernet, we would need about 30 hours of computing time in order to simu-

late 24 hours of traffic fifty times in a row. In addition, we have the contributions from the other

modules (routing, activities generation). In the past, these have never been a larger problem than

the micro-simulation, for several reasons:✓ The algorithms of the other modules by themselves did significantly less computation

than the micro-simulation.✓ Even whey these algorithms start using considerable amounts of computer time, they are

“trivially” parallelizable by simply distributing the households across CPUs.8✓ In addition, during the iterations we never replan more than about 10% of the population,

saving additional computer time.

In consequence, we are confident that one goal that TRANSIMS originally started with — to

make it run on hardware that will become affordable — is within reach.

11 Summary

This paper explains the parallel implementation of the TRANSIMS micro-simulation. Since

other modules are computationally less demanding and also simpler to parallelize, the parallel

implementation of the micro-simulation is the most important and most complicated piece of

parallelization work. The parallelization method for the TRANSIMS micro-simulation is do-

main decomposition, that is, the network graph is cut into as many domains as there are CPUs,

and each CPU simulates the traffic on its domain. We cut the network graph in the middle of the

links rather than at nodes (intersections), in order to separate the traffic dynamics complexity at

intersections from the complexity of the parallel implementation. We explain how the cellular

automata (CA) or any technique with a similar time depencency scheduling helps to design such

split links, and how the message exchange in TRANSIMS works.

The network graph needs to be partitioned into domains in a way that the time for message ex-

change is minimized. TRANSIMS uses the METIS library for this goal. Based on partitionings

of two different networks of Portland (Oregon), we calculate the number of CPUs where this

approach would become inefficient just due to this criterion. For a network with 200 000 links,

we find that due to this criterion alone, up to 1024 CPUs would be efficient. We also explain

how the TRANSIMS micro-simulation adapts the partitions from one run to the next during

feedback iterations (adaptive load balancing).

We finally demonstrate how computing time for the TRANSIMS micro-simulation (and there-

fore for all of TRANSIMS) can be systematically predicted. An important result is that the

Portland 20 024 links network runs about 40 times faster than real time on 16 dual 500 MHz

Pentium computers connected via switched 100 Mbit Ethernet. These are regular desktop/LAN

8This is possible because of the specific purpose TRANSIMS is designed for. In real time applications, where

absolute speed between request and response matters, the situation is different [42].

15

technologies. When using the next generation of communications technology, i.e. Gbit Ethernet,

we predict the same computing speed for a much larger network of 200 000 links with 64 CPUs.

12 Acknowledgments

This is a continuation of work that was started at Los Alamos National Laboratory (New Mex-

ico) and at the University of Cologne (Germany). An earlier version of some of the same ma-

terial can be found in Ref. [43]. We thank the U.S. Federal Department of Transportation and

Los Alamos National Laboratory for making TRANSIMS available free of charge to academic

institutions. The version used for this work was “TRANSIMS-LANL Version 1.0”.

References

[1] G. D. B. Cameron and C. I. D. Duncan. PARAMICS — Parallel microscopic simulation

of road traffic. J. Supercomputing, 10(1):25, 1996.

[2] TRANSIMS, TRansportation ANalysis and SIMulation System, since 1992. See tran-

sims.tsasa.lanl.gov.

[3] Federal Highway Administration, Washington, D.C. Traffic Network Analysis with

NETSIM—A User Guide, 1980.

[4] A K Rathi and Santiago A J. The new NETSIM simulation program. Traffic Engineering

and Control, pages 317–320, 1990.

[5] H. A. Rakha and M. W. Van Aerde. Comparison of simulation modules of TRANSYT and

INTEGRATION models. In Traffic Flow Theory and Traffic Flow Simulation Models, vol-

ume 1566 of Transportation Research Record, pages 1–7. Transportation Research Board,

Washington, D.C., 1996.

[6] DYNAMIT/MITSIM, 1999. Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts. See its.mit.edu.

[7] I. Kosonen. HUTSIM. PhD thesis, University of Helsinki, Finnland, 1999.

[8] VISIM, Planung Transport und Verkehr (PTV) GmbH. See www.ptv.de.

[9] K. Nagel. From particle hopping models to traffic flow theory. Transportation Research

Records, 1644:1–9, 1999.

[10] R. J. Beckman, K. A. Baggerly, and M. D. McKay. Creating synthetic base-line popula-

tions. Transportion Research Part A – Policy and Practice, 30(6):415–429, 1996.

[11] K.M. Vaughn, P. Speckman, and E.I. Pas. Generating household activity-travel patterns

(HATPs) for synthetic populations, 1997.

[12] J. L. Bowman. The day activity schedule approach to travel demand analysis. PhD thesis,

Massachusetts Institute of Technology, Boston, MA, 1998.

16

[13] R. R. Jacob, M. V. Marathe, and K. Nagel. A computational study of routing algorithms

for realistic transportation networks. ACM Journal of Experimental Algorithms, in press.

See www.inf.ethz.ch/˜nagel/papers.

[14] P. M. Simon and K. Nagel. Simple queueing model applied to the city of Portland. Inter-

national Journal of Modern Physics C, 10(5):941–960, 1999.

[15] M. Rickert. Traffic simulation on distributed memory computers. PhD thesis, University

of Cologne, Germany, 1998. See www.zpr.uni-koeln.de/˜mr/dissertation.

[16] M. Rickert and K. Nagel. Issues of simulation-based route assignment. Presented at

the International Symposium on Traffic and Transportation Theory (ISTTT) in Jerusalem,

1999. See www.inf.ethz.ch/˜nagel/papers.

[17] J. Esser and K. Nagel. Census-based travel demand generation for transportation simu-

lations. In W. Brilon, F. Huber, M. Schreckenberg, and H. Wallentowitz, editors, Traffic

and Mobility: Simulation – Economics – Environment, pages 135–148, Aachen, Germany,

Sep/Oct 1999.

[18] D. L. Gerlough. Simulation of freeway traffic by an electronic computer. In F. Burggraf

and E.M. Ward, editors, Proc. 35th Annual Meeting, page 543. Highway Research Board,

National Research Council, Washington, D.C., 1956.

[19] R. Wiedemann. Simulation des Straßenverkehrsflusses. Schriftenreihe Heft 8, Institute for

Transportation Science, University of Karlsruhe, Germany, 1994.

[20] H.S. Mahmassani, R. Jayakrishnan, and R. Herman. Network traffic flow theory: Micro-

scopic simulation experiments on supercomputers. Transpn. Res. A, 24A (2):149, 1990.

[21] A. Chronopolous and P. Michalopoulos. Traffic flow simulation through parallel process-

ing. Final research report. Technical report, Center for Transportation Studies, Minnesota

University, Minneapolis, MN, 1991.

[22] A. Hislop, M. McDonald, and N. Hounsell. The application of parallel processing to traffic

assignment for use with route guidance. Traffic Engineering and Control, pages 510–515,

1991.

[23] G.L. Chang, T. Junchaya, and A.J. Santiago. A real-time network traffic simulation model

for ATMS applications: Part I — Simulation methodologies. IVHS Journal, 1(3):227–241,

1994.

[24] W. Niedringhaus, J. Opper, L. Rhodes, and B. Hughes. IVHS traffic modeling using par-

allel computing: Performance results. In Proceedings of the International Conference on

Parallel Processing, pages 688–693. IEEE, 1994.

[25] A. Bachem, K. Nagel, and M. Rickert. Ultraschnelle mikroskopische Verkehrssimulatio-

nen. In R. Flieger and R. Grebe, editors, Parallele Datenverarbeitung Aktuell TAT, 1994.

[26] S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, Singapore,

1986.

[27] M. Cremer and J. Ludwig. A fast simulation model for traffic flow on the basis of Boolean

operations. Mathematics and Computers in Simulation, 28:297–303, 1986.

17

[28] T. Schwerdtfeger. Makroskopisches Simulationsmodell für Schnellstraßennetze mit Be-

rücksichtigung von Einzelfahrzeugen (DYNEMO). PhD thesis, University of Karsruhe,

Germany, 1987.

[29] R.J. Beckman et al. TRANSIMS–Release 1.0 – The Dallas-Fort Worth case study. Los

Alamos Unclassified Report (LA-UR) 97-4502, see transims.tsasa.lanl.gov, 1997.

[30] TRANSIMS-LANL Version 1.0. See transims.tsasa.lanl.gov, 1999.

[31] S. Krauß. Microscopic modeling of traffic flow: Investigation of collision free vehicle

dynamics. PhD thesis, University of Cologne, Germany, 1997. See www.zpr.uni-koeln.de.

[32] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations using

cellular automata. Physica A, 231:534, 1996.

[33] Transportation Research Board. Highway Capacity Manual. Special Report No. 209.

National Research Council, Washington, D.C., 3rd edition, 1994.

[34] K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and C. L. Barrett. TRAN-

SIMS traffic flow characteristics. Los Alamos Unclassified Report (LA-UR) 97-3530,

see www.inf.ethz.ch/˜nagel/papers, 1997. Earlier version: Transportation Research Board

Annual Meeting paper 981332.

[35] PVM: Parallel Virtual Machine. See www.epm.ornl.gov/pvm/pvm home.html.

[36] MPI: Message Passing Interface. See www-unix.mcs.anl.gov/mpi/mpich.

[37] J. Stewart, M. Baker, and M. van Aerde. Evaluating weaving section designs using INTE-

GRATION. Transportation Research Records, (1555):33–41, 1996.

[38] METIS library. www-users.cs.umn.edu/˜karypis/metis/metis.html.

[39] A. Jakobs and R.W. Gerling. Scaling aspects for the performance of parallel algorithms.

Parallel Computing, 19(9):1063–1073, 1993.

[40] K. Nagel and A. Schleicher. Microscopic traffic modeling on parallel high performance

computers. Parallel Computing, 20:125–146, 1994.

[41] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Numerical linear algebra

for high-performance computers. Software, Environments, and Tools. SIAM Society for

Industrial and Applied Mathematics, Philadelphia, 1998.

[42] I. Chabini. Discrete dynamic shortest path problems in transportation applications:

Complexity and algorithms with optimal run time. Transportation Research Records,

1645:170–175, 1998.

[43] M. Rickert and K. Nagel. Dynamic traffic assignment on parallel computers. Future

generation computer systems, in press. See www.inf.ethz.ch/˜nagel/papers.

18

CPU link

CPU 2

CPU 3

CPU 1

CPU 2
CPU 1

Master Slave

edge

boundary edge

intersection CPU

tile boundary

CPU 0 CPU 0

Figure 1: Domain decomposition of transportation network. Left: Global view. Right: View of

a slave CPU. The slave CPU is only aware of the part of the network which is attached to its

local nodes. This includes links which are shared with neighbor domains.

19

CPN 1

CPN 2
boundary boundary

active Range [0.5, 1.0]

localremote

0.0 1.00.5

active Range [0.0, 0.5]

remotelocal

Figure 2: Distributed link.

20

At beginning of time step:

CPU 1

CPU 2

CPU 1

CPU 2

After lane changes:

CPU 1

CPU 2

After boundary exchanges (parallel implementation):

CPU 1

CPU 2

CPU 1

CPU 2

After movements:

After 2nd exchange of boundaries:

Figure 3: Example of parallel logic of a split link with two lanes. The figure shows the general

logic of one time step. Remember that with a split link, one CPU is responsible for one half

and another CPU is responsible for the other half. These two halves are shown separately but

correctly lined up. The dotted part is the “boundary region”, which is where the link stores

information from the other CPU. The arrows denote when information is transferred from one

CPU to the other via boundary exchange.

21

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

fl
o

w
 [

v
e

h
/h

o
u

r/
la

n
e

]➙

density [veh/km/lane]

1-lane freeway

TRANSIMS Mar 1998

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90

fl
o

w
 [

v
e

h
/h

o
u

r/
la

n
e

]➛

density [veh/km/lane]

3-lane freeway

TRANSIMS Mar 1998

0

500

1000

1500

2000

0 500 1000 1500 2000

fl
o

w
 t

h
ro

u
g

h
 u

n
p

ro
te

c
te

d
 t

u
rn

s
 [

v
e

h
/h

/l
a

n
e

]

➜

flow of opposing lane(s) [veh/h/lane]

stop from minor into 2-lane major

TRANSIMS Mar 1998
HCM

0 5 10 15 20 25
800

850

900

950

1000

1050

1100

1150

1200

F
lo

w
 T

−
In

te
rs

e
c
ti
o
n
 [
v
e
h
/h

r/
la

n
e
]

Time [min]

Time − Flow Diagram for traffic light controlled T−intersection

Figure 4: TRANSIMS macroscopic (emergent) traffic flow characteristics. (a) 1-lane freeway.

(b) 3-lane freeway. (c) Flow through stop sign onto 2-lane roadway. (d) Flow through traffic

signal that is 30 sec red and 30 sec green, scaled to hourly flow rates.

22

Figure 5: Orthogonal bi-section for Portland 20 024 links network.

23

100

1000

10000

100000

1 4 16 64 256 1024

n
u

m
b

e
r

o
f

s
p

lit
 e

d
g

e
s

number of CPUs

orth. bisec. (200k links)
METIS (200k links)

250*x**0.59
METIS (20k links)
140*x**0.59 - 140

Figure 6: Number of split links as a function of the number of CPUs. The top curve shows the

result of orthogonal bisection for the 200 000 links network. The middle curve shows the result

of METIS for the same network – clearly, the use of METIS results in considerably fewer split

links. The bottom curve shows the result for the Portland 20 024 links network when again using

METIS. The theoretical scaling for orthogonal bisection is ★✪✩✬✫✮✭✰❁ ❷ ✟ , where ✟ is the number of

CPUs. Note that for ✟➋⑧➝★✉✭✦➞ ▼✈➟ ✩ , ★❀✩✬✫✮✭ needs to be the same for both graph partitioning methods.

24

Figure 7: Partitioning by METIS. Compare to Fig. 5.

25

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024

m
a

x
 e

ff
ic

ie
n

c
y

➠

number of CPUs

e2 network (20k links)

OB
METIS

METIS (k-way)

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024

m
a

x
 e

ff
ic

ie
n

c
y

➠

number of CPUs

allstr network (200k links)

OB
METIS

METIS (k-way)

Figure 8: Top: Theoretical efficiency for Portland network with 20 024 links. Bottom: Theo-

retical efficiency for Portland network with 200 000 links. “OB” refers to orthogonal bisection.

“METIS (k-way)” refers to an option in the METIS library.

26

Figure 9: Partitioning after adaptive load balancing. Compare to Fig. 5.

27

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

5 6 7 8 9 10 11 12

e
x
e
c
u
ti
o
n
 t
im

e
 o

n
 s

lo
w

e
s
t
C

P
N

 [
s
]

➡

simulation time [h]

it 1
it 2
it 5

it 11
it 15
it 20
it 40

Figure 10: Execution times with external load feedback. These results were obtained during the

Dallas case study [29, 15].

28

0

0.05

0.1

0.15

0.2

0.25

1 4 16 64 256 1024

w
a

ll
c
lo

c
k
 t

im
e

 p
e

r
ti
m

e
 s

te
p

➢

number of CPUs

Portland EMME/2 network (20 000 links)

Tcmp(x)
Tlat(x)

Tnode(x)
Tnet(x)

T(x)
Jun 00; Pentium Cluster

Jun 00; Pentium Cluster Dual CPUs

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
a

l
ti
m

e
 r

a
ti
o➤

number of CPUs

Portland EMME/2 network (20 000 links)

1/T(x)
Jun 00; Pentium Cluster

Jun 00; Pentium Cluster Dual CPUs

Figure 11: 100 Mbit switched Ethernet LAN. Top: Individual time contributions. Bottom:

Corresponding Real Time Ratios. The black dots refer to actually measured performance when

using one CPU per cluster node; the crosses refer to actually measured performance when using

dual CPUs per node (the ➥ -axis still denotes the number of CPUs used). The thick curve is the

prediction according to the model. The thin lines show the individual time contributions to the

thick curve.

29

0

0.05

0.1

0.15

0.2

0.25

1 4 16 64 256 1024

w
a

ll
c
lo

c
k
 t

im
e

 p
e

r
ti
m

e
 s

te
p

➢

number of CPUs

Portland EMME/2 network (20 000 links)

Tcmp(x)
Tlat(x)

Tnode(x)
Tnet(x)

T(x)
Jun 00; Pentium Cluster; no cars

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
a

l
ti
m

e
 r

a
ti
o➤

number of CPUs

Portland EMME/2 network (20 000 links)

1/T(x)
Jun 00; Pentium Cluster; no cars

Figure 12: 100 Mbit switched Ethernet LAN; simulation without vehicles. Top: Individual

time contributions. Bottom: Corresponding Real Time Ratios. The same remarks as to Fig. 11

apply. In particular, black dots show measured performance, whereas curves show predicted

performance.

30

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
a

l
ti
m

e
 r

a
ti
o➤

number of CPUs

Portland EMME/2 network (20 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
a

l
ti
m

e
 r

a
ti
o➤

number of CPUs

Portland TIGER network (200 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

Figure 13: Predictions of real time ratio for other computer configurations. Top: With Portland

EMME/2 network (20 024 links). Bottom: With Portland TIGER network (200 000 links). Note

that for the switched configurations and for the supercomputer, the saturating real time ratio

is the same for both network sizes, but it is reached with different numbers of CPUs. This

behavior is typical for parallel computers: They are particularly good at running larger and

larger problems within the same computing time. — All curves in both graphs are predictions

from our model. We have some performance measurements for the ASCI maschine, but since

they were done with an older and slower version of the code, they are omitted in order to avoid

confusion.

31

0.0001

0.001

0.01

0.1

1

1 4 16 64 256 1024

e
ff

ic
ie

n
c
y

number of CPUs

Portland TIGER network (200 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

Figure 14: Efficiency for the same configurations as in Fig. 13 bottom. Note that the curves

contain exactly the same information.

32

