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Abstract

Inclusion-based points-to analysis provides a good trade-off

between precision of results and speed of analysis, and it

has been incorporated into several production compilers in-

cluding gcc. There is an extensive literature on how to speed

up this algorithm using heuristics such as detecting and col-

lapsing cycles of pointer-equivalent variables. This paper

describes a complementary approach based on exploiting

parallelism. Our implementation exploits two key insights.

First, we show that inclusion-based points-to analysis can

be formulated entirely in terms of graphs and graph rewrite

rules. This exposes the amorphous data-parallelism in this

algorithm and makes it easier to develop a parallel imple-

mentation. Second, we show that this graph-theoretic formu-

lation reveals certain key properties of the algorithm that can

be exploited to obtain an efficient parallel implementation.

Our parallel implementation achieves a scaling of up to 3x

on a 8-core machine for a suite of ten large C programs. For

all but the smallest benchmarks, the parallel analysis outper-

forms a state-of-the-art, highly optimized, serial implemen-

tation of the same algorithm. To the best of our knowledge,

this is the first parallel implementation of a points-to analy-

sis.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming—Parallel Program-

ming; D.3.3 [Programming Languages]: Language Con-

structs and Features—Frameworks

General Terms Algorithms, Languages, Performance

Keywords Inclusion-based Points-to Analysis, Irregular

Programs, Amorphous Data-parallelism, Galois System,

Synchronization Overheads, Extensive Transformers, Iter-

ation Coalescing, Binary Decision Diagrams.
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1. Introduction

Points-to analysis is a static analysis technique that deter-

mines what a pointer variable may point to during the execu-

tion of a program. The results of this analysis are useful for

program optimization, program verification, debugging and

whole program comprehension [13]. In the literature, there

are many variations of points-to analysis: some analyses are

context-sensitive while others are context-insensitive, some

are flow-sensitive while others are flow-insensitive, etc. [3,

4, 7, 8, 10, 32, 35]. These variations make different trade-offs

between precision and running time, but production compil-

ers like gcc and LLVM [21] seem to have settled on context-

insensitive, flow-insensitive points-to analysis because more

precise alternatives are currently intractable for large pro-

grams.

The most popular algorithm for context-insensitive, flow-

insensitive points-to analysis is known as inclusion-based or

Andersen-style analysis [3]. As explained in Section 2, it

requires the solution of a system of set constraints derived

from the program. The asymptotic worst-case complexity of

the solution procedure is O(n3), where n is the number of

variables in the program. Although this worst-case behavior

is not usually observed in practice, the solution procedure

is sufficiently expensive that much research has gone into

heuristics for speeding it up. A key observation was made

by Fahndrich et al [7], who showed that detecting and elim-

inating cyclic constraints can make a big difference in the

running time because it reduces the size of the constraint

system. Since cyclic constraints can arise dynamically dur-

ing the solution of the constraint system, it is not sufficient to

preprocess the system of constraints offline before the con-

straint system is solved [29]. A recent advance was made

by Hardekopf and Lin who invented ingenious heuristics for

determining when to trigger cycle detection online during

constraint solving [8].

The advent of multicore processors that support a shared-

memory programming model opens up a new avenue for

speeding up these kinds of expensive static analysis algo-

rithms. Unfortunately, most work on parallel programming

has focused on high-performance applications in which the

key computations are matrix and vector operations such as

linear system solvers and FFTs; as a consequence, little is



known about how to parallelize “irregular” algorithms like

inclusion-based points-to analysis in which the key data

structures are graphs, sets, binary decision diagrams [5]

(BDD’s), etc. There is an enormous literature on static anal-

ysis techniques for finding parallelism in programs [15], but

these techniques fail to find much parallelism in most ir-

regular algorithms. This is because dependences between

computations in irregular algorithms are functions of run-

time values, so static parallelization techniques end up being

overly conservative.

In the literature, several papers mention the possibility

of parallelizing points-to analysis, but there are no imple-

mentations or evaluations1. These papers use partitioning of

the analysis problem to reduce memory consumption [30]

or to perform different kinds of points-to analysis on dif-

ferent partitions [14, 36], and suggest in passing that parti-

tioning might also be useful for parallel implementations of

points-to analysis. Pereira et al [25] discuss the paralleliza-

tion of their “wavescalar” approach, but they do not have

an implementation. It is not clear to us that partitioning is

a useful approach for inclusion-based points-to analysis; as

we mentioned before, a key step in speeding up inclusion-

based points-to analysis is the detection and collapsing of

certain cyclic constraints that arise dynamically during the

constraint solving process, and these cycles may cross parti-

tions. In any case, partitioning is complementary to the ap-

proach presented here.

This paper describes the first parallel implementation of

inclusion-based points-to analysis and it makes the follow-

ing contributions.

1. In Section 3, we show that inclusion-based points-to

analysis can be formulated entirely in terms of graphs

and graph rewrite rules. The system of set constraints

is expressed as a graph, and the solution to the set con-

straints is expressed in terms of rewrite rules for this

graph. This formulation exposes the amorphous data-

parallelism [26] in this algorithm, permitting the deriva-

tion of a parallel implementation of inclusion-based

points-to analysis. As in most irregular algorithms, de-

pendences in this algorithm are functions of runtime data,

so it is necessary to use optimistic or speculative paral-

lelization. Our implementation is based on the Galois

system [1], described in Section 4.

2. Speculative parallel execution of programs can incur sub-

stantial runtime overheads. Recent work has shown algo-

rithmic structure must be exploited to eliminate this over-

head [23]. In Section 5, we show that the graph-theoretic

formulation of inclusion-based points-to analysis reveals

important and novel algorithmic structure that can be ex-

ploited to dramatically reduce the overheads of specula-

tive parallel execution of this algorithm.

1 We are grateful to Ben Hardekopf for this information, and for the citations

in this paragraph.

3. Although online cycle detection is fundamental for achiev-

ing good performance, its addition to the basic algorithm

represents a challenge for parallelization. In Section 6,

we show how to reduce the problem of online cycle de-

tection to the simpler problem of merging two nodes in

the graph, and then show how to safely interleave merges

with graph rewriting rules for constraint solving.

Using these ideas, we implemented a parallel Java version

of a state-of-the-art points-to analysis algorithm by Hard-

ekopf and Lin [8] (their implementation has been incor-

porated into gcc and LLVM). The experimental results in

Section 7 show that our parallel implementation scales rea-

sonably well (up to 3x in a 8-core machine) for a bench-

mark suite of C programs ranging in size from 53,000 to

558,000 variables. Furthermore, this parallel version out-

performs the serial reference implementation for all but the

smallest benchmarks.

2. Inclusion-based points-to analysis

Inclusion-based points-to analysis is context-insensitive and

flow-insensitive. A context-sensitive analysis analyzes a pro-

cedure separately for each context in which it is invoked;

in contrast, a context-insensitive algorithm would merge

information from all call sites. Context-insensitive analy-

ses produce less accurate information, but they run faster

than context-sensitive alternatives for most problems. Flow-

sensitive analyses produce results that are specific to particu-

lar points in the program, while flow-insensitive alternatives

do not consider control-flow and produce a single conser-

vative approximation valid for all program points. Hind has

written an excellent survey of the enormous literature on

different varieties of points-to analysis [13]. The precision

of flow and context-insensitive alternatives is sufficient for

many application clients, so they have been incorporated

into production compilers such as gcc or LLVM.

Context-insensitive, flow-insensitive points-to analyses

are either unification-based or inclusion-based. If a and b are

pointer variables, and a = b is an assignment statement in

the program, a unification-based algorithm will assert con-

servatively that the points-to sets of a and b are equal; in

contrast, an inclusion-based algorithm makes the minimal

deduction that the points-to set of b must be a subset of the

points-to set of a. The points-to analyzers present in gcc and

LLVM are inclusion-based.

2.1 Set constraint formulation

Inclusion-based pointer analysis is usually formulated as a

set-constraint problem. A single pass through the program

code generates a system of set constraints that implicitly de-

fines the points-to set pts(v) for each variable v in the pro-

gram. Nested pointer dereferences are eliminated by intro-

ducing auxiliary variables, leaving only one pointer deref-

erence per statement. Figure 1 shows the different types of

assignment statements and the set constraint generated for



Statement Name Constraint

a = &b pointer loc(b) ∈ pts(a)
a = b copy pts(a) ⊇ pts(b)
a = ∗b load ∀v ∈ pts(b) : pts(a) ⊇ pts(v)
∗a = b store ∀v ∈ pts(a) : pts(v) ⊇ pts(b)

Figure 1. Formulating set constraints

Program Constraints

a = &v; loc(v) ∈ pts(a)
∗a = b; ∀v ∈ pts(a) : pts(v) ⊇ pts(b)
b = x; pts(b) ⊇ pts(x)
x = &w loc(w) ∈ pts(x)

Figure 2. Running example

each type. In these constraints, loc(v) represents the memory

location denoted by v. The most complex constraints result

from variable dereferencing in load and store statements. For

a load statement, the constraint asserts that for every variable

v in the points-to set of b, the points-to set of v is a subset

of the points-to set of a. The constraint for a store statement

asserts that for every variable v in the points-to set of a, the

points-to set of b is a subset of the points-to set of v. Load

and store constraints are called complex constraints. Figure 2

shows a simple program and its associated system of set con-

straints.

Systems of set constraints such as the one in Figure 2

are higher order constraint systems, so one cannot appeal

to the usual monotonicity theorems [2] to assert that these

systems have solutions. For a given program P in which the

set of variables is V , let a points-to assignment be a function

V → 2V (intuitively, it is a function that maps each variable

to the subset of variables it points to). Points-to assignments

for a given program can be partially ordered in a natural way:

if A1 and A2 are points-to assignments, then A1 ≤ A2 if for

all variables v, A1(v) ⊆ A2(v) (in words, for every variable

v, the points-to set of v in A1 is a subset of the corresponding

set in A2). Let A be the set of points-to assignments for a

given program P with variables V . Define

• A1 ∧A2 (v) = A1(v) ∩A2(v)
• A1 ∨A2 (v) = A1(v) ∪A2(v)

Theorem 1. Let C be a system of set constraints generated

from a program P using the rules in Figure 1. C has a least

solution.

Proof. The proof involves the following steps.

• If A is the set of pointer assignments for P , (A,≤,∧,∨)
is a finite lattice.

• Let ⊤ denote the largest element of A (so ⊤(v) = V for

all v ∈ V ). ⊤ satisfies C.

• If S1 and S2 are two solutions of C, then S1 ∧ S2 is also

a solution.

2.2 Solving systems of set constraints

Andersen described a simple iterative algorithm for finding

the least solution of these set constraint systems [3]. The

points-to sets of all variables are initialized to the empty

set, and the constraints are processed iteratively until the

points-to sets converge. When a constraint is considered, it

is satisfied ”locally” by growing some of the points-to sets

as needed. The constraint for a pointer statement can be

satisfied by adding loc(b) to pts(a) if it is not in that set.

For all other kinds of statements, a constraint of the form

P1 ⊇ P2 is satisfied by setting P1 to P1 ∪ P2. Making these

kinds of updates to satisfy one constraint may violate others

considered previously, so it is necessary to iterate over the

system of constraints repeatedly until convergence.

To avoid redundant evaluations, implementations of this

iterative algorithm construct a propagation graph in which

there is a node for each variable, labeled with its points-

to set; these labels are initialized to the empty set. Pointer

constraints are processed by adding loc(b) to the label of a
(we will use the notation b ∈ pts(a)). Each copy constraint

pts(a) ⊇ pts(b) is processed by adding an edge b → a;

intuitively, any element added to the points-to set (label)

of b will ”flow down” into the points-to set of a. Complex

constraints are not explicitly represented in the graph; they

are maintained in a separate list. A node b is processed in

two steps:

1. For each outgoing edge b → a, check whether pts(a) ⊇
pts(b) holds. If not, propagate pts(b) to node a, i.e.,

pts(a) := pts(a) ∪ pts(b).

2. For each v ∈ pts(b):

• for each load constraint a = ∗b, add an edge v → a
to ensure that pts(a) ⊇ pts(v).

• for each store constraint ∗b = a, add an edge a → v
to ensure that pts(v) ⊇ pts(a).

This iterative process is repeated until the points-to sets

and graph edges do not change.

Figure 3 shows the iterative constraint solving process

for the running example in Figure 2. The points-to set of

a variable is shown in braces above that node. In each stage,

violated constraints are shaded.

3. Constraint solving by graph rewriting

In this section, we introduce one of the contributions of

this paper: we show that inclusion-based points-to analysis

can be formulated entirely in terms of graph rewriting rules

for certain constraint graphs that can be constructed from

the program. As we will see later in this section, there are

just three rewrite rules, and although they can be applied

in any arbitrary order, the final graph is unique (for a given

initial graph). The solution to the inclusion-based points-to

analysis problem can be read off from the final constraint

graph.



Propagation graph Constraint system

loc(v) ∈ pts(a)
∀v ∈ pts(a) : pts(v) ⊇ pts(b)

pts(b) ⊇ pts(x)
loc(w) ∈ pts(x)

loc(v) ∈ pts(a)
∀v ∈ pts(a) : pts(v) ⊇ pts(b)

pts(b) ⊇ pts(x)
loc(w) ∈ pts(x)

loc(v) ∈ pts(a)
∀v ∈ pts(a) : pts(v) ⊇ pts(b)

pts(b) ⊇ pts(x)
loc(w) ∈ pts(x)

Figure 3. Solving the constraint system for the running

example

The major advantage of this graph rewriting formulation

is that it simplifies the reasoning about these kinds of analy-

sis algorithms - in particular, about their parallelization. The

other benefit is that it enables us to take advantage of exist-

ing optimization technology and tools that were developed

by the Galois project for other irregular problems, as we will

show in Section 4.

3.1 Constraint graphs

Given a program with the four kinds of statements shown

in Figure 1, the constraint graph for that program contains

(i) one node for each variable in the program, and (ii) one

edge a → b for each type of statement involving variables

a and b, labeled with the type of that statement, as shown in

Figure 4. Note that there might be many edges from a node

a to a node b, but they must have different labels2. Figure 5

shows the constraint graph for the running example.

More formally, a constraint graph for a program P is

a graph (V,E) in which there is one node in V for each

variable in the program P, and E = Ep ∪ Ec ∪ El ∪ Es,

where these sets of edges are defined as follows.

• Ep: These are points edges. There is an edge a
p
−→ b in

the constraint graph if a = &b is a statement in program

P.

• Ec: These are copy edges. There is an edge b
c
−→ a in the

constraint graph if a = b is a statement in program P, .

• El: These are load edges. There is an edge b
l
−→ a in the

constraint graph if a = ∗b is a statement in program P,h.

• Es: These are store edges. There is an edge a
s
−→ b in the

constraint graph if ∗a = b is a statement in program P, .

2 To be consistent with the standard definition of a graph, we should replace

these edges with a single edge with multiple labels, but we have not done

this, to keep the description more intuitive.

Code Name Edge

a=&b points

a=b copy

a=*b load

*a=b store

Figure 4. Basic edge types

Program Constraint Graph

a = &v;
∗a = b;
b = x;
x = &w

Figure 5. Constraint graph for running example

As we will see next, points and copy edges are added

dynamically to the graph during the graph rewriting process.

3.2 Graph rewriting

There are three graph rewrite rules as shown in Figure 6.

Each rewrite rule enforces a certain invariant in the con-

straint graph by adding edges to the graph as needed. As

in general term rewriting systems, these graph rewrite rules

can be considered as purely syntactic rules, but it is useful to

understand the intuition behind them.

• Copy rule: Edge b
c
−→ a represents the constraint pts(a) ⊇

pts(b), so if v ∈ pts(b), v must be in pts(a). Edge a
p
−→ v

is added if it is not already in the graph, to ensure this.

• Load rule: Edge b
l
−→ a represents the constraint ∀v ∈

pts(b) : pts(a) ⊇ pts(v). As a step towards enforcing

this, edge v
c
−→ a is added if it is not already in the graph.

The addition of this copy edge may trigger one or more

applications of the copy rule.

• Store rule: The intuition behind this rule is similar to the

intuition behind the load rule.

Notice that each rewrite rule is triggered if there is a node

with two outgoing edges at which the relevant invariant is not

satisfied because of a missing edge between the destination

nodes of the outgoing edges. Such a node is called an active

node. In Figure 6, the active node for each rule is shaded.

When an active node is processed and an edge is added to the

graph, it may cause other nodes to become active. There may

be many active nodes in a given constraint graph, a fact that

we exploit in the parallel algorithm described in Section 4.

A high level description of the algorithm is the following.

The constraint graph is built from the program. At each step,



Name Invariant Rewrite rule
Ensures

copy
∃b

p
−→ v ∧ ∃b

c
−→ a

⇒ ∃a
p
−→ v

pts(a) ⊇ pts(b)

load
∃b

p
−→ v ∧ ∃b

l
−→ a

⇒ ∃v
c
−→ a

∀v ∈ pts(b) :
pts(a) ⊇ pts(v)

store
∃a

p
−→ v ∧ ∃a

s
−→ b

⇒ ∃b
c
−→ v

∀v ∈ pts(a) :
pts(v) ⊇ pts(b)

Figure 6. Constraint graph rewriting rules

an arbitrary active node is selected and the relevant rewrite

rule is applied to the graph. This process can be described

formally in terms of pushouts and graph morphisms as is

done in graph grammars [6], but we will not do so here. The

algorithm terminates when there are no more active nodes

in the graph. The solution to the inclusion-based points-to

analysis problem can be read off from the final graph: if

v
p
−→ w is an edge in the graph, w ∈ pts(v). Figure 7 shows

this rewriting process applied to the running example.

This high level algorithm can be implemented in the

obvious way by keeping a work-list of active nodes. To

identify the rewrite rule to be applied, we can store the two

outgoing edges of the active node together with that active

node in the work-list. When an active node is removed from

the work-list, we first check to see if the necessary edge

has already been added by a previous step. If so, there is

nothing to be done. Otherwise, the relevant edge e is added

as required by the rewrite rule, and the source node s of

this edge is checked to see if the newly added edge makes

s active. If so, it is added to the work-list together with e and

its partner edge.

Theorem 2. Given a program P , let C be the system of set

constraints, and let G be the constraint graph. The following

facts hold.

(a) The graph rewriting process always terminates.

(b) The final graph produced at the end of the rewriting

process is independent of the order in which the rewrite

rules are applied.

(c) The solution to the points-to analysis problem read off

from the final graph is identical to the least solution of C.

We give a sketch of the proof.

Proof. (a) Follows from the fact that each of the rewrite

rules in Figure 6 adds an edge to the graph and does

not remove any nodes or edges. In the worst case, the

rewriting must terminate when there are points and copy

edges between every pair of nodes.

(b) It is easy to see that the rewrite rules of Figure 6 are lo-

cally confluent. From part (a), we know that there are

no infinite chains of rewriting steps. From Newman’s

lemma [16], it follows that the rewriting system is glob-

ally confluent and the final constraint graph is unique.

(c) Using an induction on any sequence of rewriting steps, it

is easy to show that if A1 is the points-to assignment

read off from the final graph and A2 is the points-to

assignment that is the least solution of C, then A1 ≤ A2.

The fact that A1 < A2 cannot hold can be proved from

the fact that when the rewriting stops, there cannot be

any active nodes left in the graph.

3.3 Parallelism in constraint graph rewriting

In general, there will be many active nodes in a constraint

graph at any point during the rewriting process. If the rewrit-

ing steps at two active nodes do not interfere with each other,

they can obviously be performed in parallel. Therefore, the

key problem in parallelizing the graph rewriting process is

finding non-interfering active nodes.

As mentioned earlier, this is a far more difficult problem

than the well-studied problem of parallelizing regular ap-

plications like dense matrix multiplication, FFTs and stencil



Figure 7. Constraint graph rewrite rule example.

codes [15]. In a regular application, dependences between

computations are independent of runtime values, so it is

possible in principle to produce a parallel schedule for the

application before the program is executed. Unfortunately,

inclusion-based points-to analysis is an example of an irreg-

ular computation in which the computations that need to be

performed, as well as the dependences between these com-

putations, are functions of runtime data, so it is not possible

to produce a parallel schedule statically.

4. Parallel graph rewriting using the Galois

system

One solution to parallelizing constraint graph rewriting is to

use the Galois system [1]. To make this paper self-contained,

we give a brief description of the Galois system in this

section, and show how it can be used to implement parallel

graph rewriting.

4.1 Background: the Galois system

The Galois system is intended to support the parallel exe-

cution of irregular applications such as those that operate

on large graphs and trees. Examples of such applications in-

clude n-body simulations, mesh generators, social network

applications, SAT solvers, etc.

The abstractions supported by the Galois programming

model are derived from an operator formulation of irregu-

lar algorithms, which we explain using the graph shown in

Figure 8. At each point during the execution of such an al-

gorithm, there are certain nodes or edges in the graph where

computation might be performed. Performing a computa-

tion may require reading or writing other nodes and edges

in the graph. The node or edge on which a computation

is centered is called an active element, and the computa-

tion itself is called an activity. It is convenient to think of

an activity as resulting from the application of an opera-

tor (graph transformer) to the active node. The set of nodes

and edges that are read or written in performing the activ-

ity is called the neighborhood of that activity. In Figure 8,

the filled nodes represent active nodes, and shaded regions

represent the neighborhoods of those active nodes. In some

Figure 8. Data-centric view of algorithms.

algorithms, activities may modify the graph structure of the

neighborhood by adding or removing graph elements.

In general, there are many active nodes in a graph, so a

sequential implementation must pick one of them and per-

form the appropriate computation. In this discussion, we fo-

cus on algorithms such as the preflow-push maxflow algo-

rithm and Delaunay mesh refinement in which the imple-

mentation is allowed to pick any active node for execution.

These are called unordered algorithms. Programmers write

algorithms in a sequential, object-oriented language like se-

quential Java, using a Galois set iterator to assert that the

algorithm is unordered. The Galois set iterator is similar to a

set iterator in Java except that it permits new elements to be

added to the set while the iterator executes. In addition, the

Galois system has a library of concurrent data structures like

graphs, priority queues, sets, etc. All concurrency control is

implemented within this library.

4.1.1 Baseline parallel execution model

Figure 8 shows how opportunities for exploiting parallelism

arise in graph algorithms: if there are many active elements

at some point in the computation, each one is a site where a

processor can perform computation, subject to neighborhood

constraints. In the baseline parallel execution model, the

graph is stored in shared-memory, and active nodes are pro-

cessed by some number of threads. Like thread-level specu-

lation [17] and transactional memory [12], the Galois system

uses speculative parallel execution to handle the problem of

dependences that can only be elucidated at runtime. A free

thread picks an arbitrary active node and speculatively ap-

plies the operator to that node, making calls to the graph

class API to perform operations on the graph as needed. The

neighborhood of an activity can be visualized as a blue ink-

blot that begins at the active node and spreads incremen-

tally whenever a graph API call is made that touches new

nodes or edges in the graph. To ensure that neighborhood

constraints are respected, each graph element has an associ-

ated exclusive abstract lock. Locks are held until the activity

terminates. If a lock cannot be acquired because it is already

owned by another thread, a conflict is reported to the run-

time system, which rolls back one of the conflicting activi-

ties. To enable rollback, each graph API method that modi-

fies the graph makes a copy of the data before modification.

Like abstract lock manipulation, rollbacks are a service im-



plemented by the library and runtime system. The activity

terminates when the application of the operator is complete

and all acquired locks are released.

Intuitively, the use of abstract locks ensures that graph

API operations from concurrently executing iterations com-

mute with each other, ensuring that the iterations appear to

execute in some serial order as required by the semantics

of the Galois set iterator. There are more sophisticated tech-

niques for checking commutativity, but these are more com-

plex to implement [18]. Commuting graph API operations

that touch the same locations in the concrete representation

must be synchronized.

The Galois system has been used to parallelize many

complex applications including Delaunay mesh generation

and refinement, agglomerative clustering, survey propaga-

tion, and the preflow-push maxflow algorithm [19].

4.2 Baseline parallelization of constraint graph

rewriting

The constraint graph rewriting algorithm described in Sec-

tion 3 is an unordered algorithm: the active nodes in the

graph are the nodes where an invariant of Figure 6 are vi-

olated, the operator is the appropriate rewrite rule, and the

neighborhood of an activity consists of the three nodes and

their incident edges.

Since the baseline implementation uses exclusive abstract

locks, a conflict occurs when two or more activities touch

the same node. Figure 9 shows two examples of conflicts.

In Figure 9(a), one rule wants to add an edge a
p
−→ v, while

the other wants to add x
p
−→ v. Because both activities try

to lock b and v, they cannot proceed in parallel. A conflict

arises in Figure 9(b) because the two activities are trying to

add points edges to node a (the destination nodes of these

edges are different).

For this algorithm, the baseline parallelization approach

adds substantial overheads to a small computation (two edge

reads, one edge addition). These overheads come from four

sources:

• Enforcing neighborhood constraints: Acquiring and re-

leasing abstract locks on neighborhood elements can be

a major source of overhead.

• Copying data for rollbacks: When an activity modifies a

graph element, a copy of that element is made to enable

rollbacks.

• Aborted activities: When an activity is aborted, the com-

putational work performed up to that point by that activ-

ity is wasted. Furthermore, the runtime system needs to

take corrective action to roll back the activity, which adds

to the overhead.

• Dynamic assignment of work: Threads go to the central-

ized work-list to get work. This requires synchronization;

moreover, if there are many threads and the computation

performed in each activity is small, contention between

threads will limit speedup.

Figure 9. Conflicts occur when two neighborhoods contain

the same node.

5. Exploiting structure to optimize parallel

execution

Reducing the overheads of the baseline system requires ex-

ploiting algorithmic structure in general. For example, when

the graph can be partitioned between the threads, abstract

locks can be assigned to partitions rather than to graph ele-

ments, and separate work-lists can be used for each partition;

this reduces the number of aborted activities, contention be-

tween threads for the work-list and the overhead of lock-

ing [20]. However, partitioning a graph is an overhead in it-

self. Fortunately, constraint graph rewriting has structure of

its own that can be exploited to reduce or even completely

eliminate most of these overheads.

5.1 Optimizations

Eliminating abstract locks: To reduce the overhead of en-

forcing neighborhood constraints, we observe first that if the

constraint graph were a read-only data structure, we would

not need any abstract locks to ensure commutativity of graph

API operations. Unfortunately, the rewrite rules of Figure 6

do update the constraint graph, so this simple optimization

cannot be used. However, notice that these rewrite rules

never remove nodes or edges from the graph; they can only

add edges to the graph. This means that the two edges in the

precondition of each rewrite rule will exist permanently in

the graph regardless of what other rewrites are performed,

so it is not necessary to use abstract locks to ensure this. As

a consequence, when executing a rewrite rule, we need to ac-

quire an abstract lock only for the node at which the edge is

added. This reduces the number of abstract lock acquisitions

and releases by two-thirds.

While this optimization is relatively straight-forward, a

more careful analysis shows that we do not need an abstract

lock even at the node at which the edge is added. The only

concurrent activities that can happen when an activity I is

adding a copy or points edge (a, v) are the following.

• Another activity reads an edge that starts at node a. This

edge cannot be removed by I .

• Another activity adds an edge (a, w) such that v 6= w.

This new edge cannot affect the update rule executed by

I , because it does not depend on that edge.



• Another activity tries to add the same edge (a, v). The

two rules can be interleaved in any fashion and the final

state will be the same, provided the concrete representa-

tion of the edge set is properly synchronized to ensure

that the edge is added only once. The work performed by

one of the activities is redundant, but it is irrelevant which

one actually performs the addition of the edge.

It is important to note that the elimination of abstract

locks depends critically on the fact that the operators (rewrite

rules) are extensive3: they only add edges, and never remove

nodes or edges from the graph4.

Eliminating copying of data: Since there are no conflicts

between concurrently executing rewrite rules, there are no

rollbacks, so it is unnecessary to make backup copies of

modified data.

Aborted activities: There are no aborted activities. Some

activities may perform a small amount of redundant work

since the edge they want to add may have been added by

a concurrent activity, which cannot happen in a sequential

implementation.

Therefore, the remaining overhead is the dynamic assign-

ment of work. Since each activity performs a relatively small

computation, the overhead of adding and removing work

from the centralized work-list can be substantial. To reduce

this performance penalty, we use iteration coalescing [23],

which can be viewed as a data-centric version of loop chunk-

ing [27]. When an activity adds an edge to the graph, it

checks to see if the new edge violates any invariants at the

source node. If so, it puts the work on a local work-list of its

own, and performs those activities itself, rather than putting

them on the global work-list. Intuitively, the optimization in-

creases the granularity of the work and reduces the perfor-

mance impact of having a global work-list.

5.2 Discussion

In our current implementation of inclusion-based points-to

analysis, the optimizations described in this section are im-

plemented by hand. However, we believe it should be pos-

sible to automate these optimizations. The key observation

is that the rewrite rules of Figure 6 are extensive operators,

and this is straight-forward for a static analysis to deduce

from the Galois code since this code uses the Galois graph

API, and properties of API methods are available to the static

analysis. Note that this kind of analysis would be almost im-

3 In mathematics, if D is a partially ordered set, f : D → D is extensive if

x ≤ f(x).
4 If the baseline system used commutativity of method invocations to detect

conflicts [18], the system would correctly report that concurrent applica-

tions of the rewrite rules do not conflict with each other. However, checking

commutativity of graph API method invocations is expensive in general. To

eliminate these checks for this particular problem, the system needs global

information that all graph API method invocations in the body of the opera-

tor commute, which is similar to what is needed when conflicts are checked

using exclusive abstract locks.

Name Edge

equivalence

hcd

Figure 10. Additional edge types to support merging

possible if the code were written in a language like C without

using data abstractions.

A second issue is whether it is worth implementing this

analysis and these optimizations in a general-purpose sys-

tem. In other words, how common are extensive operators in

practice? Notice that any flow-insensitive dataflow analysis

involves monotone and extensive operators, so these opti-

mizations are useful for all such analyses.

6. Node coalescing

Fahndrich et al [7] introduced a key optimization of the basic

algorithm for inclusion-based points-to analysis described

in Section 2. They observed that the constraint systems of

many programs can be reduced substantially by eliminating

cycles of copy constraints. For example, a pair of statements

of the form a = b; b = a; produces a cycle of constraints that

imply that pts(a) = pts(b). We call these equivalent nodes;

coalescing equivalent nodes into a single node reduces the

size of the problem. Unfortunately, cycles can also arise

dynamically during the constraint process, so we cannot find

all equivalent nodes during preprocessing.

In the literature, cycle detection comes in two flavors:

offline methods [29] look for cycles during a preprocess-

ing phase, while online methods [7] look for cycles dur-

ing the constraint solving process. Some intermediate tech-

niques, such as Hybrid Cycle Detection [8] (HCD), com-

bine the two: potential cycles are identified in the offline

phase, and these are collapsed during analysis. Potential cy-

cles arise from statements of the form *a = b; b = *a;. With-

out knowing pts(a), we do not know the nodes that partici-

pate in cycles with b, so these cycles cannot be eliminated

during preprocessing, but we can remove them during the

constraint solving process whenever we add nodes to pts(a).

We experimented with these alternatives, and ultimately set-

tled on combining offline techniques [9] with HCD. Our ex-

periments, which are described in more detail in Section 7,

showed that this is faster than online cycle detection even

for serial execution; moreover, HCD is easier to parallelize,

making it the preferred choice for a parallel implementation.

In this section, we focus on the parallelization of the on-

line phase of HCD, which coalesces nodes that must have the

same point-to sets. In principle, all that needs to be done is

to replace the two nodes being coalesced with a single node

that inherits all the edges incident on the eliminated nodes.

However, removing nodes from a graph in a parallel imple-

mentation can be expensive, so we perform this operation



Invariant Rewrite rule

∃a
p
−→ v ∧ ∃a

h
−→ b

⇒ ∃b
=

−− v

(a) detect rule

∃a
p
−→ v ∧ ∃a

=

−− b

⇒ ∃b
p
−→ v

(b) push rule

∃a
=

−− b ∧ ∃a
=

−− v

⇒ ∃b
=

−− v

(c) transitive rule

Figure 11. Rewriting rules to support node coalescing

implicitly in a way that permits coalescing to happen in par-

allel with graph rewriting for constraint solving. A simple

scheme that accomplishes this is described in Section 6.1.

Our actual implementation is a refinement of this scheme, as

described in Section 6.2.

6.1 Rewrite rules for equivalent nodes

We start by adding two new types of edges, shown in Fig-

ure 10. An hcd edge a
h
−→ b indicates that b and all the

variables in ∗a can be coalesced; these edges are added by

the HCD preprocessing phase. An equivalence edge such as

a
=

−− b indicates that the points-to sets of a and b are equal,

so they can be coalesced.

The analysis graph is initialized as in the basic algorithm

in Section 3, except that hcd edges are added by the of-

fline detection phase of HCD. This initial graph contains no

equivalence edges. The set of basic graph rewrite rules in

Figure 6 is augmented with three additional rules, shown in

Figure 11.

• The detect rule implements the HCD cycle detection pol-

icy: if there is an hcd edge between a and b, then every

variable v pointed by a is equivalent to b.

Figure 12. Node collapsing: example.

• The push rule states that if there is a points edge a
p
−→ v,

and a is equivalent to b, then there must be a points edge

b
p
−→ v.

• The transitive rule ensures the correct propagation of

equivalences throughout the analysis graph. It exploits

the transitive nature of the given equivalence: if a is

equivalent to b, and b is equivalent to c, then a is equiva-

lent to c.

While the detection rule is particular to HCD, the push

and transitive rules are applicable to the coalescing phase of

any other algorithm that exploits cycles.

Figure 12 shows how an initial constraint graph is rewrit-

ten by application of the new rewriting rules. First, we apply

the transitive rule so {a, b, v} are in the same equivalence

class (Figure 12b). Then we repeatedly apply the push rule

to enforce the requirement that the points-to sets of equiva-

lent variables are identical, thereby adding the edges a
p
−→ x

and v
p
−→ x.

6.2 Parallelization and optimizations

Like the constraint graph rewriting rules of Section 3, the

new rewrite rules are extensive operators and do not delete

nodes or edges from the graph. Therefore, we can apply the

same reasoning as in Section 5 to devise a parallel imple-

mentation of the extended algorithm that does not require

any abstract locking.

On the other hand, this baseline merging scheme has the

disadvantage that a points edge is propagated to all equiva-

lent nodes. A better approach is to implement a union-find

data structure [34] to track equivalent nodes, and propagate

points edges only to representative nodes wherever possi-

ble. In our implementation, the union-find data structure is

overlayed with the constraint graph by making equivalence

edges directional (these are called representative edges). The

representative for a set of equivalent nodes is the node with

the highest ID. Because of concurrent graph rewriting, a

node may have several outgoing representative edges. These

edges are kept sorted by the node IDs of the destination

nodes of these edges; when propagating points edges, we

only propagate edges along the first edge in this sequence. A

detailed description of a concurrent union-find data structure

implemented along these lines will appear elsewhere.



7. Experimental evaluation

Our implementation of the parallel pointer analysis is written

in Java. To provide a reasonable comparison with an existing

state-of-art analyzer, our code is structured along the lines of

the C++ serial implementation of [9], which is available at

http://www.cs.ucsb.edu/˜benh/. For the rest of this section,

we will refer to this C++ implementation as the reference

implementation.

7.1 Key data structures

The points-to algorithm uses two key data structures for the

representation of the constraint graph: the Binary Decision

Diagram [5] (BDD), used for storing the points-to edges, and

the sparse bit vector, used for storing all the other types of

edges. In addition to concurrent versions of these data struc-

tures, we implemented a thread-safe version of the work-list.

A BDD is a rooted acyclic directed graph. We represent

the graph nodes using objects, which are stored in a concur-

rent hash table. Another concurrent hash table is used for

implementing the cache that stores the results of previous

operations on the BDD, as it is done in the popular BuDDy

library [22]. Synchronization on the hash table is achieved

by protecting segments of contiguous buckets with a reen-

trant lock.

Memory space occupied by BDD nodes that are no longer

in use is reclaimed by the Java garbage collector, because the

hash table has support for weak references. In Java, objects

that are reachable only by weak references can be collected

by the GC, as opposed to objects reachable by at least one

strong reference. By relying on the automatic memory man-

agement provided by the virtual machine, our BDD imple-

mentation does not require the use of reference counts, as it

is needed in C implementations like BuDDy. Another (non

concurrent) BDD package that takes advantage of the JVM’s

memory management is SableJBDD [28].

Previous studies have highlighted the importance of vari-

able ordering in BDD implementations [4]. Suboptimal or-

derings result in a BDD with a large number of nodes, con-

suming more memory and slowing down set operations. In

this work, we used the same variable ordering as the one

used by the reference implementation.

A sparse bit vector is another standard representation

used for the compact encoding of a (sparse) set of elements.

In our case, the different sets of outgoing edges associated

with each node are represented using sparse bit vectors based

on concurrent doubly linked lists. Each node in the linked list

contains a double word that can store up to 64 elements on

it.

The work-list is represented using a concurrent vector.

We use a dual [24] work-list, which is divided into two

sections: current and next. Active nodes are selected from

the current section and pushed onto next, and the two are

swapped when current becomes empty. The divided work-

list not only results on better performance than a single

Variables Constraints

Program initial reduced initial reduced

perl 53,358 6,031 68,645 10,926

nh 97,933 21,943 114,459 38,178

gcc 120,867 20,053 156,276 32,193

vim 246,941 22,420 108,271 37,422

python 92,596 23,595 111,531 43,534

svn 107,705 30,482 139,848 59,939

gdb 232,811 51,044 241,592 84,238

pine 612,913 60,657 315,900 120,840

php 339,535 59,960 325,891 108,156

gimp 558,864 153,231 649,590 284,252

Figure 13. Benchmark suite: number of variables and con-

straints.

work-list, but also in less contention: a thread that wants

to add an element to a work-list does not have to wait for

threads that are getting elements from the work-list. In fact,

retrievals could proceed without synchronization, given that

the current work-list size is known when the two work-lists

are swapped: we could simply assign each thread to a certain

index range in the work-list. However, this approach does

not perform well in practice because it results on poor load

balancing.

As in other unordered algorithms, any order of process-

ing active nodes is legal but the amount of computation

performed by different orders may be different. Our imple-

mentation uses the same LRF (Least Recently Fired) strat-

egy as the reference implementation. This scheduling pol-

icy gives priority to nodes processed furthest back in time,

thereby promoting a breadth-first propagation of information

through the graph. Although the Java library provides con-

current sets based on skip lists, our experiments showed that

a simpler alternative performs better in practice: we keep an

atomic flag for every node in the graph to indicates whether

it is in the work-list or not (so the work-list becomes a work-

set), and the LRF order is enforced by sorting the next work-

list at swap time.

7.2 Experimental setup

Figure 13 shows the benchmark suite used in our experi-

ments. It consists of ten C programs ranging from 53K-558K

variables and 68K-649K constraints. Most of the programs

in our benchmark suite have been used by other researchers

in this area [9, 25].

The input programs are parsed using the LLVM compiler

to generate the initial variables and constraints. In Fig 13, the

numbers of variables and constraints are shown before and

after offline analysis. In our experiments, we use the three

offline algorithms available in the reference implementation:

HVN, HRU [9], and HCD. The offline phase results on a

constraint graph at least 50% smaller than the original.

The machine used in our experiments is a Sun Fire X2270

(Nehalem server) running Ubuntu Linux version 8.06. The



HCD LCD offline online total impr offline online total impr

no no 328 1,280 1,608 1.0 416 924 1,340 1.0

yes no 340 88 428 3.8 464 204 668 2.0

no yes 328 208 536 3.0 416 244 660 2.0

yes yes 340 96 436 3.7 464 240 704 1.9

HCD LCD offline online total impr offline online total impr

no no 664 224 888 1.0 420 4,444 4,864 1.0

yes no 712 108 820 1.1 489 792 1,281 3.8

no yes 664 256 920 1.0 420 808 1,228 4.0

yes yes 712 276 988 0.9 489 916 1,405 3.5

HCD LCD offline online total impr offline online total impr

no no 684 19,953 20,637 1.0 700 52,107 52,807 1.0

yes no 728 1,788 2,516 8.2 772 1,708 2,480 21.3

no yes 684 1,392 2,076 9.9 700 2,324 3,024 17.5

yes yes 728 1,152 1,880 11.0 772 1,536 2,308 22.9

HCD LCD offline online total impr offline online total impr

no no 1,896 136,909 138,805 1.0 1,748 149,193 150,941 1.0

yes no 2,020 4,084 6,104 22.7 1,904 6,428 8,332 18.1

no yes 1,896 4,884 6,780 20.5 1,748 6,752 8,500 17.8

yes yes 2,020 3,372 5,392 25.7 1,904 5,476 7,380 20.5

HCD LCD offline online total impr offline online total impr

no no 3,520 322,644 326,164 1.0 10,761 743,542 754,303 1.0

yes no 3,728 4,816 8,544 38.2 11,245 8,593 19,838 38.0

no yes 3,520 10,941 14,461 22.6 10,761 15,305 26,066 28.9

yes yes 3,728 5,392 9,120 35.8 11,245 8,477 19,722 38.2

perl nh

gcc vim

python svn

php gimp

gdb pine

Figure 14. Reference implementation: analysis times, in ms.

system contains two quad-core 2.93 GHz Intel Xeon pro-

cessors. The 8 CPUs share 24 GB of main memory. Each

core has two 32 KB L1 caches and a unified 256 KB L2

cache. Each processor has an 8 MB L3 cache that is shared

among the cores. The Java Virtual Machine is the 32-bit Sun

HotSpot server virtual machine version 1.6.0 20.

7.3 Justifying the use of HCD

Our first set of experiments evaluates the performance of the

(sequential) reference implementation using the HCD and

LCD approaches. The objective is to justify the choice of

the HCD algorithm for the parallel implementation.

The analysis times (in milliseconds) are shown in Fig-

ure 14. Each benchmark was run three times, and the av-

erage runtime is reported. For every benchmark in the input

suite, we evaluated the effect of the two online optimizations

present in the reference implementation: HCD and LCD [8].

All the four possible combinations obtained by enabling/dis-

abling these techniques are shown in the table of results.

The analysis time is divided into two columns. The offline

column refers to the time spent in the HVN, HRU, and

HCD (if applicable) offline algorithms. The online column

refers to the time consumed by constraint solving. The total

column is the sum of the offline and online runtimes. We

omitted the time spent loading the constraints from disk and

initializing the BDD (these consume less than 10% of the

total analysis time).

To facilitate the comparison between the different con-

figurations we show a impr (improvement) column, which

is the result of dividing the total runtime with no optimiza-

tions (HCD=no, LCD=no) by the total runtime for the given

configuration. Higher values of impr indicate better per-

formance. For example, in the case of the perl benchmark

we get impr = 1608/428 = 3.8 by using only HCD, and

impr = 1608/536 = 3.0 by using only LCD.

The results show the following.

• The application of any of the cycle detection techniques

drastically reduces the overall analysis time for all the



threads offline online total offline online total offline online total offline online total offline online total

1 199 144 343 142 273 415 466 140 606 283 1,083 1,366 158 2,593 2,751

2 199 136 335 142 230 372 466 104 570 283 730 1,013 158 1,575 1,733

4 199 130 329 142 210 352 466 110 576 283 491 774 158 1,157 1,315

6 199 130 329 142 199 341 466 118 584 283 431 714 158 947 1,105

8 199 131 330 142 222 364 466 135 601 283 428 711 158 908 1,066

threads offline online total offline online total offline online total offline online total offline online total

1 480 2,490 2,970 1,144 6,153 7,297 421 8,129 8,550 1,959 7,467 9,426 6,584 13,716 20,300

2 480 1,928 2,408 1,144 4,866 6,010 421 5,752 6,173 1,959 5,559 7,518 6,584 11,752 18,336

4 480 1,409 1,889 1,144 3,392 4,536 421 4,239 4,660 1,959 3,956 5,915 6,584 8,753 15,337

6 480 1,238 1,718 1,144 2,895 4,039 421 4,019 4,440 1,959 3,654 5,613 6,584 7,745 14,329

8 480 1,153 1,633 1,144 2,683 3,827 421 3,498 3,919 1,959 3,582 5,541 6,584 7,170 13,754

perl nh gcc vim python

svn gdb pine php gimp

Figure 15. Parallel implementation: analysis times, in ms.

inputs. This effect is more evident for large benchmarks.

For instance, gimp takes 12 minutes to complete in the

absence of any optimization, but when LCD or HCD are

applied, the analysis finishes in less than 30 seconds.

• We can achieve nearly optimal runtimes just by apply-

ing HCD. The addition of Lazy Cycle Detection results

in improvements in performance for half of the bench-

marks, but the gain is very small except in the case of

python.

These results justify the choice of HCD for node coalesc-

ing in our parallel implementation.

7.4 Results of parallel implementation

Figure 15 show the analysis times (in milliseconds) for each

program in the benchmark suite, and different numbers of

threads. To account for the effects of JIT compilation, each

benchmark was run nine times, and the average runtime is

reported. We verified the output (points-to of every variable

in the original program) after the first run against the refer-

ence implementation. Finally, we minimize the influence of

garbage collection by maximizing the size of the heap used

by the JVM.

As in Figure 14, the analysis time is divided into two

phases. Because the offline phase is sequential, the time

spent on it does not change for different numbers of threads.

The online column refers to the time taken by our parallel

implementation of constraint solving, which uses HCD but

not LCD.

The first observation about the results in Figure 15 is

that the analysis times are not always proportional to the

input size. This also applies to the reference implementation.

For instance, the number of variables and constraints in the

python benchmark is similar to that of vim, but the analysis

of python takes twice as much time to complete. Clearly the

structure of the original constraint graph plays a fundamental

role in the analysis time. Sparse constraint graphs demand

little points-to propagation, so the algorithm will converge

rapidly.

Figure 15 shows the runtimes of our parallel implemen-

tation on different numbers of threads. The scaling of a par-

allel program is the execution time for one thread divided

by the execution time for x threads. The scaling achieved is

dependent on the amount of computation that needs to be

done, and tends to improve when the one-thread execution

times get bigger. For small benchmarks (perl, nh and gcc)

the performance degrades when we use many threads, since

the amount of computation to be done is so small -the online

analysis of nh finishes within 273ms with one thread- that

the overheads of parallelization dominate the total runtime.

For all the other inputs we achieve a good scaling by us-

ing two threads, although the best total runtime is achieved

with eight threads. It is interesting to see that the best scal-

ing (2.85x) is obtained for python, while for our biggest input

program (gimp) the scaling is almost 2x.

Because we only parallelized the constraint solving phase

of the analysis, the offline section now becomes a perfor-

mance bottleneck. For example, the offline phase of php rep-

resents the 20% of the total runtime if we use one thread, but

the ratio increases to 35% with eight threads. We leave the

parallelization of the offline phase as future work.

7.5 Comparative study

We now describe a comparative study of the results obtained

for the parallel and reference implementations, using only

HCD. While we configured the two implementations so they

use the same online and offline techniques, our analysis (as

the rest of the Galois framework) is written in Java, while

Hardekopf’s implementation is written in C++. Therefore,

establishing a completely fair comparison is extremely dif-

ficult: one language is interpreted, the other is compiled;

the reference implementation uses the BuDDy BDD library,

while we implemented a pure Java BDD package that re-

lies on the garbage collector for eliminating dead nodes, etc.
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Figure 16. Online analysis times, in seconds: parallel (N) vs. reference (�) implementation.



input offline online total offline online total

perl 340 88 428 199 130 329

nh 464 204 668 142 199 341

gcc 712 108 820 466 104 570

vim 489 792 1,281 283 428 711

python 728 1,788 2,516 158 908 1,066

svn 772 1,708 2,480 480 1,153 1,633

gdb 2,020 4,084 6,104 1,144 2,683 3,827

pine 1,904 6,428 8,332 421 3,498 3,919

php 3,728 4,816 8,544 1,959 3,582 5,541

gimp 11,245 8,593 19,838 6,584 7,170 13,754

PARALLELREFERENCE

Figure 17. Best total analysis times, in ms.

Nevertheless, the value of comparing the runtimes of the two

analyses lies then in showing that our parallel implementa-

tion is competitive with a highly tuned, state-of-the-art C++

implementation; in most cases, our parallel Java implemen-

tation achieves a speed-up over the optimized C++ sequen-

tial implementation.

We plotted the overall runtime for the two analyses in

Figure 16. Each dark triangle marker (N) in a plot corre-

sponds to the online runtime of our analysis for that partic-

ular combination of benchmark and number of threads (on-

line column in Figure 15). Each bright square marker (�) in

a plot corresponds to the online runtime of the reference im-

plementation for that particular benchmark in the HCD=yes,

LCD=no row of Figure 14.

The overheads of the parallel analyzer can be observed

when only one thread is used: our implementation can be

twice as slow as the reference program, even though our (se-

quential) offline phase usually takes less time to complete.

The benefits of using a parallel implementation become clear

for larger thread counts since we usually achieve a signifi-

cant speedup over the C++ implementation.

Figure 17 provides a comparison between the total analy-

sis times for the parallel and reference implementations. The

times shown for the parallel version correspond to the fastest

execution. The best speedup achieved for the whole analysis

is 2.5x for the python benchmark (note that Figure 16 shows

only the online analysis times).

7.6 Memory consumption

Figure 18 shows the memory consumption (in megabytes) of

the parallel and reference implementations among the ten in-

put benchmarks. The numbers in the table correspond to the

maximum amount of memory required by each analyzer. We

measured the memory usage of the Java (parallel) program

using the tools provided by the Hot Spot virtual machine;

the reference implementation uses the profiler available in

the Google Performance Tools [31].

The memory consumption of our code is significantly

higher (a factor of 1.5-2.5x). The BDD and the sparse bit

input REF PAR

perl 309 340

nh 356 320

gcc 356 280

vim 368 520

python 356 550

svn 347 542

gdb 439 730

pine 972 1,167

php 529 1,120

gimp 732 1,750

Figure 18. Memory usage, in megabytes.

vectors dominate the memory usage of both applications.

Since we are using the same data structures (but concurrent

versions) and cache policies as the reference implementa-

tion, we believe these differences might arise from the fact

that our implementation is in Java, while the reference im-

plementation is in C++.

8. Conclusions and future work

This paper describes the first parallel implementation of a

state of the art inclusion-based points-to analysis. Irregular

algorithms of this kind are very difficult to parallelize be-

cause dependences between computations are functions of

runtime data, so speculation is needed in general to exploit

the parallelism. However, the overheads of speculation can

be reduced dramatically by exploiting algorithmic structure.

In our experience, reasoning about parallelism in terms of

the operator formulation of algorithms greatly simplifies the

task of devising an efficient version of the algorithm. The

operator formulation exposed algorithmic structure that we

exploited in optimizations to reduce the overheads of specu-

lative execution.

Our parallelization of Andersen’s algorithm exploits the

fact that the state of the analysis grows monotonically during

the execution of the algorithm; tree-building algorithms such

as Prim’s MST algorithm and n-body simulation algorithms

also have this structure, which can be exploited for efficient

parallel implementation.

The experimental results in Section 7 confirm that our ap-

proach is not only feasible, but can also be competitive with

highly tuned sequential implementations of pointer analysis.

Further improvements require attention to parallelizing the

offline component of the analysis.

Our implementation depends on two data structures: the

hash table used for representing the BDD, and the doubly

linked list used for representing a sparse bit vector. The con-

current versions of these two popular data types use locking

(mutexes). It would be interesting to study the performance

of the analysis when lock-free implementations [11, 33] of

the two data structures are used.
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