
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1986 

Parallel Independent Set Algorithms for Sparse Graphs Parallel Independent Set Algorithms for Sparse Graphs 

Gregory Shannon 

Report Number: 
86-634 

Shannon, Gregory, "Parallel Independent Set Algorithms for Sparse Graphs" (1986). Department of 
Computer Science Technical Reports. Paper 551. 
https://docs.lib.purdue.edu/cstech/551 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


PARALLEL INDEPENDENT SET ALGORITHMS
FOR SPARSE GRAPHS

Gregory Shannon

CSD-TR-634
October 1986



Parallel Independent Set Algorithms for Sparse Graphs

Gregory Shannon"

Department of Computer Sciences

Purdue University

West Lafayette, Indiana 47907

October 23, 1986, Version 18

Abstract

In this paper we present algorithms for the independent set problem on n-vertex

m-edge graphs using n + m proceBBors and O(n + m) space on the concurrent-read

concurrent-write parallel RAM model of computation. If the graph is planar, a maximal

independent set with at least niH vertices can be found in O(log'"nlogn) time. If!:i.

is a graph's maximum degree, we show how to find in O(2.6.1og· n) time a maximal

independent set with at least n/(.6.+1) vertices. All previous work on parallel algorithms

for the maximal independent set problem has dealt with showing that the problem is

in the class Ne and has produced algorithms which use at least nS / log3 n processors.

·Supported in part by Hewlett-Packard's Faculty Development Program and by the National Science

Foundation under grant DCR-8320124.



1 Introduction

Good algorithms for planar graph problems are important since many problems in the com

puter sciences can be formulated as planar graph problems. Previous work has concentrated

on developing efficient planar graph algorithms for sequential models of computation which

characterize uniprocessor machines. Multiprocessor machines now feasible are fundamen

tally different from uniprocessor machines and imply new models of computation, therefore,

we need to find good planar graph algorithms for parallel models of computation.

In this paper we discuss parallel algorithms for finding independent subsets of a graph's

vertices. A subset of a graph's vertices is independent if no pair of vertices in the set are

adjacent. An independent set is maximal if each of the graph's vertices is independent or

adjacent to an independent vertex. An independent set of n-vertex graph is large if it has

O(n) vertices.

Previous work on finding independent sets in parallel by Karp and Wigderson [KW85J

and Luby !Lub85] showed that the maximal independent set problem for general graphs is

in the class NC. Their algorithms both use at least n 3JlogS n processors for planar graphs.

In this paper we utilize the sparsity of planar graphs to create independent set algorithms

which use only n processors. That is, we present parallel algorithms which use a number of

processors proportional to the size of the input. We know of no past work on n processor

algorithms for finding independent sets of planar graphs in polylog time.

Our algorithms are for the parallel RAM (PRAM) model of computation which consists

of a common memory and a collection of synchronous processors. Any processor can read

from or write to any location in the common memory at any time. When more than one

processor writes to the same memory location at the same time, the conflict is resolved

arbitrarily. That is, one of the processors arbitrarily succeeds in writing to that location.

(This model is also known as the CRCW-arbitrary PRAM, see [SV82,BH85].)

1



Given an n-vertex m-edge graph, we present n+m processor and O(n+m) space PRAM

algorithms which can find:

• A large (~ n/14 vertices) independent set of a planar graph in O(logt n) time.

• A large maximal independent set of a planar graph in O(Iogtn log n) time.

• A maximal independent set of a graph with maximum degree l:J.. in O(2l1.logt n) time.

2 Independent Set Algorithm.

We assume that graphs are represented as adjacency lists !AHU74] in the PRAM's common

memory. An independent set of a graph is represented by marking only the independent

vertices as independent. It will be clear from the discussion that our parallel algorithms

only use n + m processors and O(n + m) space; therefore time complexity will be the only

complexity measure discussed. We first solve the problem of finding a large maximum

independent set I of an n-vertex planar graph G = (V. E).

Let Ve be G's vertices which are of degree 6 or less. Matula, Shiloach, and Tarjan

[MST80] and others demonstrate that Va contains at least half of G's vertices. Boyar and

Karloff [BK86] record that any maximal independent set ofa graph with maximum degree a
has contains at least 1/(..6..+1) ofthe graph's vertices. Therefore, any maximal independent

set Is of G[Ve] contains at least n/14 of G's vertices.

Given Ia we can recurse and find a. maximal independent set I' of G' = G -Ie - N(Ie).

N(Ia) is the set of vertices in G adjacent (Neighbors) to some vertex in Ie. The maximal

independent set I of G is then leU I' and is also large (~ n/14). Since Va ~ leU N(Ie) and

IVai ~ n/2, there are O(Iogn) levels of recursion. In our description of how to compute Is,

it will be clear that we need not directly compute G' . Since it will take O(logtn) time to

compute Ie, our algorithm's time complexity will be O(Iogtnlogn). The linear space and

n processor complexities will be obvious.

Before the whole algorithm starts, we make some assumptions. Initially, all vertices

are unmarked (free). Using recursive doubling, each edge in a. vertex's adjacency list knows

2



exactly where that vertex is represented in the common memory. Using sorting ifnecessary,

we assume that each edge in a vertex's adjacency list knows where in the common memory

its opposite edge and therefore other endpoint are.

We now show how to find Ia of a graph G = (V) E} assuming that all vertices are marked

either free, independent, or dead. The markings are needed so that all the Bubgraphs that

this algorithm produces can be represented implicitly and accessed in constant time.

We determine which vertices are in Va by staging 7 edge elections among edges pointing

to free vertices in each free vertex's adjacency list. An edge election is when a set of edges

all write their ids to the same location in the common memory and the winning edge is the

one whose id is the value that actually gets written to the memory location. H an edge wins

an election, then it does not vote in any of the few remaining elections. A vertex is in VB jf

none of its edges pointing to free neighboring vertices vote in the seventh election. An edge

is in G[Va] if its two endpoints are in Va. All of this is straightforward since concurrent-reads

and concurrent-writes are allowed. Mter constant time, each vertex and edge now knows if

it is in GIVa].

Without loss of generality. we assume that G[Va] has no isolated vertices. H there are

any isolated vertices in G[Va] they then are in Is and can be ignored. A small tree forest

(STF) of a graph is a subset of the graphs edges such that each connected component of the

edges is a rooted tree with height 1. Clearly, there exist 6 edge-disjoint STF's Fl•...• Fa of

G[Vs] such that each of G[Va]'s undirected edges is some Fj. Later we show how to construct

these 6 STF's in O(Iog-n) time. These forests are represented by assigning a label between

1 and 6 to one of each pair of opposite directed edges in G[Va].

For now, we assume that we have decomposed G[Va) into the 6 forests. By computing a

64 coloring of G[Va] in constant time and then successively adding still independent vertices

of the same color to Is, we can finish finding a maximal independent set of GIVs] in constant

time.

A vertex's color is represented in binary with six bits, bob,b3b2b1bo. IT the vertex is a leaf

in STF Fi. then bit bi - 1 = 1 and 0 if is a root. A vertex knows if is a leaf a tree in STF F j if

3



any of its edges in G[Va] are labeled with i. From color c = 0 to 63, mark independent each

c colored vertex which is not currently connected by an edge in G[Va] to aome other vertex

in G[Ve]already marked independent. Since the vertices of the same color are independent,

l a is a maximal independent of G[Ve] after all vertices are processed.

In order to recurse and compute f , we need only mark each vertex as dead which is

adjacent to an independent vertex. Again, this can be done in constant time by using

concurrent reads.

We now show how to decompose G[Va] into at most 6 STF's F 1, •.. I Fe.

Our approach is to build successive STF's of G[Vs} which are maximal. That is, for the

forest Fil any vertex with an edge that was not used by a. previous forest is the endpoint of

some edge in forest Fj. Since each vertex is of at most degree 6, this approach guarantees

that only at most 6 forests are needed or even possible.

Let H be any graph with no isolated vertices for which we need to construct a maximal

STF F.

We first construct an arbitrary spanning forest F of H in constant time. Each vertex

adds to F an edge pointing to a neighbor with a larger id. Now a vertex in H may be

isolated in H[Fj since it has no neighbor with a larger id and it is not the large neighbor

pointed to by any of its neighbors. Therefore, any vertex isolated in H[FJ arbitrarily adds

to F one of its adjacent edges pointing to a neighbor. F is now a spanning forest of H 

there are no isolated vertices or cycles, and each vertex is in F. The trees in F are oriented;

a vertex is a root if is larger than all of its neighbors and is pointed to by a neighbor. F

takes constant time to construct.

Let us now concentrate on a specific tree T in F. We want to remove edges from T so

that each vertex in T is finally in some tree of height one.

In constant time each internal vertex in T marks one of its children's edges pointing to

it. M is the set of of all marked edges, and (ignoring isolated vertices) H[M] is a collection

of disjoint directed chains. Some leaves of F are not represented in H[M]'

A 2-ruling R of a chain C is a subset of C's vertices such that all vertices in R are least

4



two edges apart and each vertex in C but not R is at most two edges away from some vertex

in R. Vertices in a 2-ruling are between two and five links away from the closest vertex also

in the ruling.

For each chain in T!M] find a 2-ruling which contains that chain's head. R is all the

vertices in the 2-rulings of the chains in T[MJ. Cole and Vishkin [CV86] have shown how

to compute a 2-ruling on an n-vertex chain in O(Iog'n) time with n processors and linear

space on any of the PRAM models. Since processors are already assigned to the vertices

and the sum of the lengths of all chains in F is at most n, clearly at most O(log 'n) time is

needed to find a 2-ruling.

In T, remove any edge which connects a vertex and one its children which is in R but

not a leaf of T. In constant time we have then split T into a forest of constant height trees.

Each tree now has a height of at most 5 and at least 1.

Again in constant time we ca.n handle each tree as a special case and remove a few more

edges to finally produce a break down of T into a maximal forest of small trees. Therefore

F has been broken up into a maximal forest of height 1 trees.

Though we have not given the PRAM implementation details of how to find either the

STF decomposition or a maximal STF, an implementation within the given complexity

bounds is straightforward given the PRAM model and graph representation that we use.

Therefore, in O(log'n) time we can produce a maximal STF of any graph and decompose

G[V,] into 6 STF's.

We have now shown how to compute Ie in O(Iog'n) time and a maximal independent

set ofG in O(log'nlogn) time. Our discussion of how to compute Ie immediately implies

that we can find an independent set of G with at least n/14 vertices in O(Iog'n) time.

Given how we find Ie with a2e coloring orG[Ve] based on the the STF's Fl, ... ,Fe, it easy

to see how 1;0 2.6. color any graph with maximum degree a. Clea.rly only O(..6.log'n) time

is needed. Therefore, we can find a mazimal independent set of the graph in O(2.o.log'n)

time. The set would have at least nl(a + 1) vertices as discussed earlier in the section.

We can find an independent aet with at least n/2.6. vertices of an arbitrary graph with

5



maximum degree.6. in O(.6.log""n) time if we slightly modify the coloring scheme. Given a

tree in STF Fj of the graph's STF decomposition, the leaves' color bit bj_l is a I if one of

the leaves haa bits bo to bj _ 2 set to 1. Otherwise, that bit is set to 0 for all those leaves.

The bi_l color bit of the root of that tree is the opposite of its leaves. Therefore, at least

n/2l::.. vertices have color 63 and are independent.

3 Conclusion

In this paper we have shown how to find independent sets on the strong PRAM model

of parallel computation. For an n-vertex graph, all of our algorithms for planar graphs

use only n processors and linear space. Our algorithms for arbitrary sparse graphs use

processors and space proportional to the number of edges in the graph.

There are other weaker PRAM models of computation upon which we can implement

our algorithms. Borodin and Hoptcroft [BH85] describe theBe additional PRAM models:

CRCW-common, CREW, and EREW. Note that Cole and Vishkinls 2-ruling algorithm

works the same even on the weakest PRAM modell EREW. On CRCW-common PRAM

any log-n factor can be replaced with a log log n factor since we can hold the elections

using min operations as described by Shiloach and Vishkin [SY8IJ. On both the CREW

and EREW PRAMs, the log""n factor is replaced with a log n factor in order to hold the

elections. Cole and Vishkin point out that their 2-ruling algorithm can also use n/ log n

processors and O(logn) time. Also, Cole [Co186J has shown that ranking on linked lists

can be done with n/logn processors in O(logn) time on any PRAM model. Thereforel

only n/ log n processors on the CREW and EREW PRAMs are needed for the planar graph

problems when we are replacing the log""n factor with log n factor.

Maximal independent set algorithms for planar graphs have direct applications to the

vertex and edge coloring of planar graphs. In [Sha86J we show that both of these problems

have n processorl polylog time, and linear space algorithms on the PRAM model.

References

!AHU74) A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis 01 Computer

6



Algorithms. Addison-Wesley, 1974.

[BH85] A. Borodin and J. E. Hoptcroft. Routing, merging, and sorting on parallel models
of computation. Journal 01 Computer and System Sciences, 30:130-145, 1985.

[BK86] J. Boyar and H. Karloff. Coloring planar graphs in prallel. July 1986. Unpub
lished Manuscript.

[CV86]

[KW85]

[Lub85]

[MST80]

[Sh.86]

[SV81]

[SV82]

R. Cole and U. Visbkin. Deterministic coin tossing and accelerating cascades:
micro and macro techniques for designing parallel algorithms. In Proceedings of
the 18th Annual ACM Symposium on Theory 01 Computing, pages 206-219, 1986.

R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal inde
pendent set problem. Journal of the ACM, 32(4):762-773, October 1985.

M. Luby. A simple parallel algorithm for the maximal independent set problem.
In Proceedings of the 11th Annual ACM Symposium on Theory 01 Computing,
pages 1-10, 1985.

D. Matula, Y. Shiloach, and R. Tarjan. Two Linear-time Algorithms for Five
coloring a Planar Graph. Technical Report STAN-CS-80-830, Department of
Computer Science, Stanford University, Palo Alto, California, November 1980.

G. Shannon. Coloring planar graphs in parallel. 1986. Unpublished manuscript.

Y. Shiloach and U. Vishkin. Finding the maximum, merging, and Boding in a
parallel compuation model. Journal of Algorithms, 2:88-102, 1981.

Y. Shiloach and U. Vishkin. An O(log n) para.llel connectivity algorithm. Journal
of Algorithms, 3:57--67,1982.

7


	Parallel Independent Set Algorithms for Sparse Graphs
	Report Number:
	

	tmp.1307986960.pdf.CBKUy

