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ABSTRACT
Modern scientific datasets present numerous data manage-
ment and analysis challenges. State-of-the-art index and
query technologies are critical for facilitating interactive ex-
ploration of large datasets, but numerous challenges remain
in terms of designing a system for processing general scien-
tific datasets. The system needs to be able to run on dis-
tributed multi-core platforms, efficiently utilize underlying
I/O infrastructure, and scale to massive datasets.

We present FastQuery, a novel software framework that
address these challenges. FastQuery utilizes a state-of-the-
art index and query technology (FastBit) and is designed to
process massive datasets on modern supercomputing plat-
forms. We apply FastQuery to processing of a massive 50TB
dataset generated by a large scale accelerator modeling code.
We demonstrate the scalability of the tool to 11,520 cores.
Motivated by the scientific need to search for interesting par-
ticles in this dataset, we use our framework to reduce search
time from hours to tens of seconds.

General Terms
Indexing Systems, Large Scale Data Analysis, Performance

1. INTRODUCTION
Modern scientific instruments and simulations produce

vast amounts of data [12, 21]. The immense size of these
data collections makes the process of scientific exploration
unwieldy, thereby having a negative impact on the process
of scientific discovery. We observe, however, that gaining in-
sights from data typically involves interactive exploration of
smaller regions or subsets of data. Can we somehow acceler-
ate the search for smaller regions of interest? This problem
has gained much attention in the database research commu-
nity. A variety of indexing methods are used in commercial
database systems to accelerate the search process [15].

However, most scientific datasets are not stored in these
database systems; hence, they are unable to take advan-
tage of these indexing techniques. It might be too expen-
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sive to make copies of datasets for indexing purposes, and
a conversion of file formats might break downstream visu-
alization and analysis tools. We take the approach of ap-
plying state-of-the-art indexing techniques within modern
scientific data formats. This paper presents FastQuery, a
massively parallel indexing and querying system that works
with a variety of popular scientific data formats, such as
HDF5 [25] and NetCDF [26]. We present a detailed dis-
cussion of FastQuery’s design, implementation issues and
performance studies to highlight the application to modern
scientific datasets.

We need to overcome two significant design challenges in
order to build a general index and query system for scientific
data. The first challenge is to design a generic system that
can accommodate the majority of scientific data models, and
the second one is to enable high levels of concurrency in
building and using indexes. Among the known scientific
data storage formats, we see arrays as the most common
data model used. Our system, therefore, supports arbitrary
multi-dimensional arrays. In this regard, our design choice is
similar to the one made by the SciDB effort [24]. In contrast
to SciDB, however, we do not require the users to input their
data into our system. This removes the need to copy the
data into a separate data management system and avoids
the need to rewrite data analysis functions for interacting
with the new data management system.

To effectively utilize modern computing platforms, it is
necessary for the index and query system to expose high
levels of concurrency in all aspect of its operations. This
imposes a number of restrictions on the type of applicable
indexing methods. Our review of existing indexing meth-
ods shows that a compressed bitmap index is a good choice
overall [28, 29], but such methods have not been applied in
a parallel setting. FastQuery utilizes a parallel version of
compressed bitmap indexes by breaking the user input data
into non-overlapping subarrays.

We also need to tackle the challenge of sheer size (TBs-
PBs) of modern datasets. I/O devices such as disks and
SSDs, provide performance in the order of 100-500 MB/s,
which makes it infeasible to read the entire dataset from a
single device in any reasonable amount of time. It is, there-
fore, imperative that we aggregate I/O resources to both
read and write data. FastQuery utilizes parallel I/O capa-
bilities through the HDF5 layer to overcome this challenge.

Our key contributions are as follows:

• We design an index and query system that can work
with arbitrary array-based data (Section 3). In con-
trast, existing database management systems require



the data to be under their control and earlier attempts
at building similar indexing systems required strict or-
ganizations of the data hierarchy [9].

• We implement a flexible strategy to index arbitrary
subsets of the data at a time (Section 3.2). This fea-
ture reduces the memory requirement for creating the
indexes and allows a higher number of concurrent tasks
to build and use indexes.

• We parallelize the index building and query process-
ing procedures to make efficient use of large numbers
of distributed many-core processors (Section 4), and
carefully study the trade offs among the various pa-
rameters.

• We demonstrate the effectiveness of our approach us-
ing a massive, 50 TB simulation data set, and con-
duct a performance study with 11,520 cores (Section 5
and 6).

• We conduct a careful study of the interactions between
the index building and query software, and the I/O
systems. From this, we derive a set of practical recom-
mendations for index building and query processing on
parallel platforms (Section 6).

• We demonstrate the practical applicability of Fast-
Query to real-world scientific problems; we accelerate
query-based analysis of a large-scale high-resolution
simulation dataset of beam dynamics in a electron lin-
ear particle accelerator (Section 7).

2. RELATED WORK
In this section, we briefly review related work and point

out the distinct features of our current work.

2.1 Scientific Data Formats
Scientific applications generally store their data in appli-

cation-specific data formats. Over the years, a consensus
has gradually emerged that arrays can be used to capture
the main data structures required for scientific data. Thus,
the commonly used scientific data formats are designed to
store arrays efficiently [25, 26]. For this reason, we designed
FastQuery to work with arbitrary array-type data.

A number of research database systems, such as, SciDB [24]
and MonetDB [3], are based on similar array data models.
In contrast to SciDB and MonetDB, however, our approach
does not require the user to load their data into the database
system, avoiding the need for additional data copies. This
is a significant benefit, in particular considering the massive
volume of many scientific data collections. In addition, our
approach makes it possible to integrate the indexing capa-
bility directly with the scientific data formats themselves.

2.2 Indexing Techniques
A variety of indexing techniques are available in popu-

lar database systems [17], many of which are variations of
the B-Tree [4]. These types of indexing methods are de-
signed for transaction-type applications, exemplified by in-
teractions between a bank and its customers. Typical inter-
actions with scientific data, however, are significantly differ-
ent from operations on transaction-type data.

First, a typical search operation in transactional data re-
trieves very few data records, such as a look-up of a single

customer’s banking account information. In contrast, search
operations on scientific data commonly retrieve many more
data records. For example, a scientist might be interested in
studying how the ignition progresses in a combustion simu-
lation from a spark into a flame engulfing the whole combus-
tion chamber. In this case, resolving the query of interest
might result in a few records in the beginning of the simu-
lation, but might expand to include the majority of records
towards the end.

Second, transactional data is frequently modified, one record
at a time, whereas scientific data typically stays as is af-
ter it has been generated. The B-Tree data structure is
designed to update quickly as the underlying data records
are modified. This feature is unnecessary in indexes for
the majority of scientific data sets. For such scientific data
sets, the bitmap index is a more appropriate indexing struc-
ture [16][21, Ch. 6].

2.3 Bitmap Indexing Technology
A bitmap index logically contains the same information

as a B-Tree, which consists of a set of pairs of key value
and row identifiers. However, a bitmap index replaces the
row identifiers associated with each key value with a bitmap.
Because bitmaps can be processed efficiently, this index can
answer queries efficiently as demonstrated by Patrick O’Neil
in Model 204 [16].

The basic bitmap index uses one bitmap for each distinct
key value. In the context of scientific data, the number of
distinct values can be as large as the number of rows (i.e.,
every value is distinct). In this case, the number of bits
required to represent an index may scale quadratically with
the number of rows, i.e., an index for 109 rows may require
1018 bits. Such an index is much larger than the raw data
size and is not acceptable in practice.

A number of different strategies have been proposed to
reduce the sizes of bitmap indexes and improve their overall
effectiveness. Common methods include compressing indi-
vidual bitmaps, encoding the bitmaps in different ways, and
binning the original data [21, Ch. 6]. We here choose Fast-
Bit [27] — an open-source software that implements many
of these methods — as a representative of general index-
ing methods. FastBit has been shown to perform well in a
number of different scientific applications [27] and a series of
theoretic computational complexity studies further establish
its effectiveness [28, 29].

2.4 Distributed Indexing
The benefits of performing data analyses in parallel have

been recognized since the dawn of parallel computing [10,
18]. Unlike many other high-performance computing appli-
cations, database operations are dominated by data-accesses
to disk rather than computations performed by the CPUs.
Optimal I/O performance is, hence, the most critical consid-
eration when designing parallel database systems. A number
of parallel database vendors have opted for custom hardware
to achieve this objective. Netezza uses an active storage
approach where the disk controllers are modified to carry
out certain database operations [6]. Teradata [2, 8] em-
ploys a specialized interconnect, called BYNET, to increase
the bandwidth among data access modules. Alternatively,
a number of researchers proposed to store the data in main
memory [7, 14]. Such hardware-based solutions are typically
not available to scientific users, or are unable to handle the



large data volumes required. To maximize the impact of our
index and query system, our approach is purely software-
based, using the popular message passing library MPI [11]
and requiring only commodity hardware.

Among the approaches that use commodity hardware, the
“shared-nothing” approach has been demonstrated to be the
most effective for data management applications [23]. Our
work follows this strategy by partitioning an array provided
by the user into a number of disjoint sub-arrays. We build
and use the index for each sub-array independently. This
approach minimizes the coordination required among the
parallel tasks. Since tasks can read (and process) data in
parallel, the underlying filesystem has an opportunity to
maximize data access throughput using this approach.

Many of the parallel and distributed indexing techniques
are derived from the B-Tree [1]. These parallel trees support
only limited amounts of concurrency in both index construc-
tion and use and have been shown to not perform as well as
bitmap indexes. In general, we see bitmap indexes as more
appropriate for scientific data applications and have imple-
mented our parallel indexing system based on the sequential
bitmap index software FastBit [27].

3. FASTQUERY
The goal of FastQuery is to provide a query selection

mechanism for arbitrary scientific data formats that are ar-
ray oriented. To achieve this objective, FastQuery utilizes
the FastBit indexing and query technology to allow data se-
lection based on arbitrary range conditions defined on the
available data values, e.g., “energy > 105 and temperature
> 106”. Furthermore, we support subarray data operations
to allow data querying and indexing of arbitrary subarray
coordinates within a dataset to find, for example, the data
satisfying the condition “vapor > 105” in the 5th row of the
dataset. We now briefly introduce the overall design and
features of FastQuery.

3.1 Architecture
Figure 1 illustrates the FastQuery system architecture.

The main system components are as follows:
The Query Processor and Index Builder are initi-

ated by the user to perform index building and querying.
The index builder builds the indexes for a whole or a sub-
set of a dataset and stores the indexes in a file. The query
processor accepts text-string queries from the user, then per-
forms data selection using the stored indexes and returns the
selection results to the users.

The FastQuery Parser is an internal component of
FastQuery responsible for parsing user information given by
the query processor and index builder. It defines and imple-
ments a simple, yet flexible, naming convention and query
syntax for users to describe their requested variables and
query constraints through the FastQuery API.

The array I/O Interface defines an I/O API for Fast-
Query to access data and bitmap indexes stored in an array
model file. The primary functions of the interface are to
read data, and load and write indexes. We expect the user
to implement file format (e.g. HDF5 or NetCDF) specific
calls to implement the API. Once the interface for the data
format has been implemented, FastQuery can provide the
data query and indexing functionality for the data format.
This extensible design choice greatly increases the applica-
bility of FastQuery to a wide range of present (and future)
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Figure 1: FastQuery architecture

file formats. All of the functionality and performance fea-
tures presented in this paper use an HDF5 implementation
of the I/O interface. We have, in addition, implemented a
NetCDF interface, but we will not discuss that in this paper.

The Variable Table represents the relational data model
used by FastQuery and other indexing and query technol-
ogy [27, 4]. A variable table contains a list of columns, each
of which maps to a variable (i.e. a dataset in HDF5 termi-
nology), and each row maps to a record of a variable (i.e.
data at a mesh point). FastQuery applies FastBit to build
and query indexes by reading the data and bitmaps associ-
ated with each record in the table.

3.2 Subarray Indexing and Query
FastQuery deploys subarrays as means to partition data

for indexing and querying in a parallel context. Since sub-
arrays, by definition, are smaller than the complete dataset,
the time for creating indexes and executing queries can be
greatly reduced as compared to an approach which is con-
strained to processing the entire dataset as a whole. The
usage of subarrays, furthermore, has the advantage that it
allows for greater flexibility in the data analysis.

FastQuery adopts a subarray specification similar to the
one used by Fortran and other programming languages. Here
a subarray is specified by the general form “[lower : upper :
stride]”. The lower and upper indicate the first and last
record position of the subarray in a dataset. The stride is
the step size between lower and upper (default is stride =
1). For a n-dimensional dataset, the subarray range of each
dimension must also be specified and separated by comma
in the bracket.

4. APPROACH
In this section, we describe the parallel design and imple-

mentation of FastQuery.

4.1 Parallel Processing and Design
The fundamental goal of our parallel FastQuery design is

to enable building and querying of indexes for subsets of
data independently and concurrently. We achieve this goal
by utilizing the subarray feature provided by the FastQuery
design architecture. As described in Section 3.2, a subar-
ray is a subset of data within a variable, and the size of a
subarray can be specified with arbitrary length. Therefore,
a single variable in a dataset can be divided into multiple
subsets by specifying the subarray size. Then the bitmap
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Figure 2: FastQuery exploits parallelism at three different levels: files, variables and subarrays. The degree
of parallelism can be configured by specifying the number of cores to be used per file, per variable, and the
size of subarrays.

indexes for each subarray can be built and queried indepen-
dently for parallel processing. It is important to note that
we can support query resolution at a different concurrency
than what was used for creating the subarrays in the first
place.

For example, a variable “x” with 1,000 records, could be
treated as 10 subarrays, such as x[1:100], x[101:200], ...,
x[901:1000]. The indexes of “x” could be built in parallel
with 10 cores by using one core per subarray. Once the in-
dexes are built, a query, such as “x>0”, can be answered
in parallel by dividing the query into 10 subarray queries
(matching the indexed range). The subarray queries are
then iteratively assigned to the cores. For instance, if we
run the query on 5 cores, core 1 processes the subarray query
“x[1:100]>0” and “x[501:600]”, core 2 processed “x[101:200]”
and x[601:700]”, and so on. Needless to say, the 5 cores will
process their subarray queries in parallel.

Moreover, as illustrated in Figure 2, we exploit the paral-
lelism within FastQuery at three levels: files, variables and
subarrays. At the topmost level, each FastQuery instance is
associated with a file. Our parallel implementation allows
a group of cores to collectively create a FastQuery instance
and process the same file. Hence, we can easily create mul-
tiple FastQuery instances with different groups of cores to
process files in parallel. Within a file, the group of cores for
the file can be divided into sub-groups, and each sub-group
can be responsible for the indexing and/or querying of one
variable at a time. Finally, we divide the data of a variable
into a set of subarrays, so that each core can index and/or
query these subarrays in parallel.

At each level (i.e. files, variables, subarray), the degree
of parallelism can be configured by specifying the group size
per file, the sub-group size per variable, and the subarray
size. Then during processing, the groups iterate through the
files, the sub-groups iterate through the variables, and the
cores iterate through the subarrays. Since the size of subar-
rays can be specified arbitrarily, the parallelism of FastQuery
is only limited by the number records in the dataset. In other
words, when the subarray size is 1, we could achieve the max-
imum parallelism by using the same amount of cores as the
number of records in a dataset, and each core only processes
one record. However, the advantage of using bitmap index-
ing for querying is to evaluate bitmaps instead of scanning
through individual data values. As shown by our evalua-
tion in Section 6, the subarray size should be chosen with a
relatively large number, such as millions of records.

4.2 Parallel I/O and Implementation
While the computations of querying and indexing described

in the previous subsection are independent across subarrays,
the I/O operations of reading/writing indexes on a file could
require coordinations that are imposed by the underlying
I/O library, such as NetCDF or HDF5. For instance, a file li-
brary may require data to be read or write collectively by all
the processors participating in the file. However, as shown
in Figure 1, these parallel I/O issues are handled by the
corresponding implementation of FastQuery array I/O in-
terface rather than by the FastQuery itself. This is because
the interface implementation is responsible for performing
all the I/O operations. Therefore, in the following section,
we use our current implementation on the HDF5 file library
to describe our parallel I/O approaches in more details.

Our implementation is illustrated by the example in Fig-
ure 3. In the example, we attempt to use 4 cores to build
the indexes of a variable divided into 10 subarrays. As men-
tioned in the previous subsection, these four cores would
iteratively build the bitmap indexes of each subarray in 3
iterations. Once the indexes built, they would have to be
stored in file as new variables (HDF5 dataset) for query pro-
cessing in the future.

However, due to the parallel I/O requirement from HDF5,
all the processors have to create new variables collectively.
As a result, the indexes for each of the subarray cannot
simply be stored in separated HDF5 dataset. Therefore, in
our implementation, we compact all the built indexes of a
variable into a single array and store to one bitmap variable.
Thus, all processors could create and operate on the same
HDF5 variable collectively.

Another challenge to our implementation is that although
the data subarray size is fixed, their corresponding com-
pressed bitmaps generated from FastBit could still have var-
ied length. As shown in the figure, the bitmaps of the first
subarray is 100, and the the bitmaps of the second subarray
is 80, and so on so forth. Therefore, we use an additional
variable “offset table” to record the position of the bitmaps
for each subarray. When processing a query, each core can
then find the corresponding bitmaps for its subarray based
on the information available in the offset table.

Based on our implementation Figure 4 shows the steps of
building and querying indexes in FastQuery. For building in-
dexes, each processor could independently reading data and
building indexes for its own subarray. But, processors would
have to collectively create the variable to store bitmaps and
the offset table. In particular, because bitmaps of subarrays
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Figure 4: parallel indexes building and querying process.

are generated iteratively, the final length of all the bitmaps
is not known. Therefore, the dataset for storing the bitmaps
has to be extended iteratively after indexes are built for the
iteration. On the other hand, the dataset for storing the off-
set is fixed and the same as the total number of subarrays.
So, it could only be created as the fixed size and need not
be changed in each iteration. Once the dataset for bitmap
is created or extended collectively by all the processors, the
bitmaps can then be written to file independently.

For the querying process, since processors only read bitmaps
information from files, each processor could independently
read its bitmap position from the offset table, then load the
necessary bitmaps to memory to evaluate the query. Hence,
query processing does not require any collectively file library
call, but there still could be contention among processors
when they attempt to access the file at the same time.

5. EXPERIMENTAL METHODOLOGY

5.1 Research Questions
Our FastQuery implementation has two major functions:

creating indexes and resolving queries. We are interested in
addressing the following questions for both of these tasks:

• Does the implementation scale as we increase the num-
ber of cores (strong scaling)?

• What is the optimal subarray size for this task?

• What is the optimal group size for this task?

In order to address these questions, we performed a num-
ber of detailed performance studies which are listed in Sec-
tion 6. But first, we describe the hardware platform and the
datasets used in the study.

5.2 Testbed
We conducted our experiments on the NERSC Cray XE6

supercomputing system Hopper 1. The system has ≈6,500
compute nodes, with 24 cores and 32GB memory per node.
Hopper uses Lustre as its filesystem, with a peak theoreti-
cal I/O bandwidth over 25GB/s. For each experiment, we
launch FastQuery as a set of MPI tasks with one core per
task. To prevent memory contention between MPI tasks on
the same node, we limited the memory usage of each Fast-
Query process to 2GB, using 12 cores per node; the rest of
memory space is reserved for system usage, such as initiat-
ing MPI tasks, etc. To achieve better I/O performance, we
applied several I/O optimization strategies to tune HDF5
for Luster. As suggested in [13], we disable metadata cache
evictions, use POSIX mode and increase Luster stripe count.

5.3 Dataset
For our evaluation we use a large-scale, high resolution

physics simulation dataset generated by the IMPACT-T [19]
code. The data set consists of 720 time steps with 1 billion
particles per time step. Each time step is stored in a sin-
gle HDF5 scientific data format file and contains measure-
ments of each particle over 9 variables, such as the physical
coordinates and particle momentum. The size of each file
is around 68GB, and the total size of the whole dataset is
around 50TB (=68*720). Section 7 discusses the simulation
and application problem in more detail.

5.4 Performance Measurements
In our experiments, we measure the wall-clock time taken

by FastQuery to perform two main functions: building and
querying indexes. As shown in Figure 4, the process of build-
ing indexes of a file includes three steps: reading data, build-

1http://www.nersc.gov/nusers/systems/hopper2/



ing index and writing index. Although cores can read/write
data and build indexes independently in each iteration, they
do share a limited number of I/O servers and require collec-
tive I/O calls when modifying the metadata of a file. As a
result, there is a certain amount of waiting time associated
with each step from each core. To ease interpretation of the
performance measurements we let all cores that participate
in a single file, start each step simultaneously, and wait un-
til all of them complete the step. For each step, we record
the completion time and the average wait time of processors
in each iteration. We report the aggregated numbers over
several iterations for each step of the file. When indexes are
built for multiple files and using different groups of proces-
sors, we report the average time among groups as well as the
final completion time after all indexes are built and stored
to files.

Similarly, the process of querying indexes consists of two
iterative steps: reading index (or data if no index is avail-
able) and evaluating index/data. In contrast to the build
index process, these two step do not require collective I/O
calls from the HDF5 library. We, therefore, record the time
of these two steps independently for each processor, and ag-
gregate the numbers over several iterations. We report the
average values among processors as well as the final comple-
tion time after the query is processed on all files.

6. PERFORMANCE EVALUATION
In this section, we present a variety of performance results

for the steps of creating indexes and resolving queries. For
both of these tasks, we vary three parameters (total number
of cores, size of the subarray and the group size) and report
on the observed performance characteristics.

While the FastQuery implementation allows us to specify
arbitrary values for each of the three parameters, we chose
a reasonable configuration space to simplify the discussion
of results. For instance, we chose configurations wherein we
have even load balancing across cores. In other words, each
core processes the same or a similar number of subarrays.
In almost all cases, we also constrain all the cores (12 in our
case) on a single node to process a single file (at a time).
Hence the group size (i.e. the number of cores assigned to
a file) is a factor of 12. Again, the FastQuery implemen-
tation will entertain suboptimal configurations such as load
imbalance across cores, and different cores on a single node
processing different files, but we will not analyze those prob-
lem configurations for the ease of analysis.

6.1 Building Indexes
Here, we evaluate the performance of the task of building

indexes. We specify a 3-digit precision binning option for
the FastBit indexes [29]. The resulting indexes of each file is
45GB which is about 66% of the original data size of 68GB.
Building indexes is an expensive operations, involving large
amounts of time for doing file I/O, for reading the entire
dataset and writing indexes. In a production setting, build-
ing indexes is a one-time preprocessing operation, but since
we need to explore a multi-dimensional configuration space,
we conducted our experiments using a smaller 4TB subset
of the data (corresponding to 60). For the whole dataset, we
present the scalability results under varied number of cores
later on in Figure 15.
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6.1.1 Does the implementation scale with number of
cores?

For this set of experiments, we fixed the size of subarrays
to 10 millions records, because it produced the best perfor-
mance (as we will show in the next subsection). Since each
variable in our dataset has 1 billion records, it results in 100
subarrays per variable under the given subarray size. Ac-
cordingly, we fixed the number of cores assigned to a file to
be 96, so that the indexes of each variable can be built in
one iteration (i.e. only the first 4 cores have to build indexes
in the second iteration).

In Figure 5, we plot the results when the number of cores
increases from 480 to 5760. The maximum number of cores
used in this experiments is 5760 (=60*96) because each file
is assigned to 96 cores and we only have 60 files. The other
numbers are chosen to ensure all cores participate with the
same number of files and are roughly load balanced. For
instance, with 2880 cores, 30 (=2880/96) files could be built
simultaneously, and the whole dataset (i.e. 60 files) would
be built in 2 iterations. Accordingly, the indexes can be
built in 3 iterations with 1920 cores, 4 iterations with 1440
cores, and so on.

As expected, from Figure 5 we observe that the total time
to create indexes decreases as we add more concurrency.
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Figure 7: Building index time for 60 time steps
(4TB) as the subarray size increases from 1 million
records to 20 million records.

More specifically, we find that the time for constructing in-
dex perfectly scales with the number of cores, as the time
is reduced from 48min at 480 cores to 24min at 960 cores
to 12min at 1920 cores. On the other hand, the I/O time,
including read/write data, bitmap and bitmap metadata, re-
duces at at a sub-linear rate as the number of cores increases.
Therefore, the total time also decreases at a sub-linear rate
as compared to the ideal linear scaling results indicated in
the figure by a solid line.

In Figure 6, we plot the corresponding I/O rate from the
above results. The read rate is computed from dividing the
total size of data files by the data read time observed, while
the write rate is computed from dividing the total size of gen-
erated indexing files by the bitmap and bitmap metadata
write time observed. We found reads (10-35GB/s) clearly
have much better performance than writes (5-20 GB/s). We
postulate a couple of possible explanations: Reads require
less synchronization and coordinations among cores, and
I/O is more efficient when data is accessed in big chunks.
The raw data is read in subarrays of 10 million entries,
while the generated bitmaps and bitmap metadata are much
smaller in size. As observed for each file, the overall size
of data, bitmap and bitmap metadata is 68GB, 44GB and
1GB, respectively. We also observe fairly poor performance
for writing bitmap metadata.

6.1.2 What is the optimal subarray size?
Next, we vary the size of the subarray used in creat-

ing indexes. Figure 7 plots the results of subarray size
across 1M, 3M, 5M, 10M, 15M and 20M entries. In these
sets of experiments, the total number of cores was fixed to
2,880 (=60*48), and the number of cores assigned to each
file was fixed at 48. Hence, all 60 files were built at the same
time in one iteration.

From Figure 7, we observe that the performance improves
as we move towards 10M entries, and then becomes worse
as we further increase the subarray size. The detailed time
breakdown indicates that the time for writing bitmap and
bitmap metadata is greatly reduced as the subarray size in-
creases from 1M to 20M. This is because a larger subarray
size implies that a fewer number (but larger in size) bitmaps
are constructed and written to file. But the difference does
become negligible after the subarray size is larger than 5M.

On the other hand, the time for reading data reaches its
minimum value, 2 minutes, at a subarray size of 5M, then
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Figure 8: Building index time for 60 time steps
(4TB) as the number of cores per file increases from
48 to 288.

the time actually becomes larger as the subarray size in-
creases. In fact, we also observed the same minimum read
time in Figure 5 at different parameter setting. We hy-
pothesize that the reads have reached the maximum rate of
35GB/s (=60*68/120) that the system can sustain. Thus,
the increasing subarray size would not improve read times
after saturation.

Finally, the time for constructing indexes remains the
same because similar amounts of indexes were built for the
dataset regardless of the choice of subarray size.

6.1.3 What is the optimal group size?
Finally, we varied the group size (i.e. number of cores

assigned to a file) from 48 to 288. This corresponds to a
fixed total number of cores of 2,880 and a subarray size of 3
million records. The minimum group size is 48 because we
would like to utilize all cores for processing 60 files. For in-
stance, using 24 cores per file will only utilize 1440 (=60*24)
cores. The results plotted in Figure 8 show that increasing
the group size is detrimental to overall performance. In par-
ticular, we find the time for creating dataset and writing
bitmap both increase as more cores participate in a file, be-
cause more cores have to be coordinated and synchronized
to perform these operations. However, we did find that the
time for writing bitmap metadata decreases. It is likely be-
cause more metadata can be aggregated from different cores
and written into file at the same time.

6.1.4 Summary of Results
In summary, for the task of building indexes, we observe

that our implementation scales well to 5670 cores, we find
that the optimal subarray size is 10M, and that 48 is a rea-
sonable choice for group size.

6.2 Querying Indexes
We now consider the important task of resolving queries in

parallel. We evaluate our system performance by resolving
a query “r > 4σ(r)” on each of the 720 files from our 50TB
dataset. As we will describe in more details in Section 7, the
query is formulated by our particle physics collaborators to
find the halo particles from the dataset. We resolve this
query using the FastQuery implementation and present our
performance results.
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Figure 9: Query time percentage breakdown: 9(a) using indexing on 2880 cores and subarray size 10M, 9(b)
without indexing on 2880 cores, 9(d) using indexing on 240 cores and subarray size 10M, and 9(d) using
indexing on 2880 cores and subarray size 1M.

6.2.1 Does the implementation scale with number of
cores?

Figure 10 shows performance results for the aforemen-
tioned query as we increase the number of cores from 240
to 2880. We also plot the results for a baseline technique
which does not have access to index information, hence, is
constrained to load and scan through the entire dataset. The
results show that we achieve almost an order of magnitude
faster performance across the board. On 2880 cores, the
baseline techniques takes nearly 7 minutes, while FastBit in-
dexing (with 10M subarray size) takes only 35 seconds. This
corresponds to a performance improvement of over 93% and
demonstrates the power of FastQuery accelerated analysis.

We now examine detailed timing information pertaining
to these two cases for 2880 cores. Figure 9(a) and Fig-
ure 9(b) show the times taken by different stages of the query
resolution task. We clearly see the majority of time is spent
on reading the data from file in the non-indexed case (see
Figure 9(b)). In contrast, FastQuery takes less than 10 sec-
onds to load the indexes for evaluating the query. The “init”
step shown in these figures corresponds to a one-time over-
head cost of opening files and loading file metadata informa-
tion. As a result, the high percentage of init time observed in
Figure 9(b) is due to the fact that we only evaluate a single
query per file. But, this overhead would become negligible
as more queries are evaluated per file.

From Figure 10, we also see FastQuery scales well with in-
creasing numbers of cores. As we go from 240 to 2880 cores,
the absolute time (with 10M subarray size) reduces from 173
to 37s and from 816s to 166s (with 1M subarray size). If we
compare the time percentage breakdown at 2880 cores and
240 cores in Figure 9(a) and Figure 9(d), we see the percent-
ages are almost identical; this implies that all components in
the FastQuery query resolution step are scaling at the same
rate.

6.2.2 What is the optimal subarray size?
We build indexes for the 50TB dataset with subarray sizes

of 1M, 10M and 20M and explore the performance implica-
tions for parallel query resolution. We fix the group size at
48 for all cases. The results are presented in Figure 10.

As indicated earlier, the strength of bitmap index based
techniques lies in taking large datasets, and compressing
them into smaller bitmaps. Hence using smaller “subarrays”
is suboptimal from the point of view of query resolution.
We can see this in Figure 10, where the 10M subarray con-
sistently outperforms the 1M subarray. Examining detailed
time breakdown in Figure 9(a) and Figure 9(d) indicates
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Figure 10: Query performance comparison for dif-
ferent subarray sizes.
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Figure 11: Query performance for different group
sizes.

that FastBit appears to be taking the same amount of time
to process a subarray. The 1M case (compared to the 10M
case) results in 10 times more subarrays, hence FastQuery
takes a proportionally longer time in loading bitmaps and
bitmap metadata.

The open question at this stage is: will increasing subar-
ray sizes further help improve performance? We tried using
subarrays sized 20M, and observe comparable performance
results. We are still conducting tests to better understand
this behavior. It is important to note that we need to de-
cide on a subarray size during the index creation process. It
appears that in this case, both the index creation task, and
query resolution task seem to hint at 10M entries as being
a reasonable choice for subarray size.



6.2.3 What is the optimal group size?
We varied the group size (i.e. number of cores processing a

file) across 4, 12, 24 and 48. We hold the subarray size fixed
at 10M. The results are shown in Figure 11. We observe that
the query time improves as we reduce the group size. The
best performance is obtained for a group size of 4. We pos-
tulate that as we decrease the number of cores processing a
file, we are decreasing the synchronization requirements (as
far as the HDF5 and filesystem is concerned). This raises
the issue of whether reducing the group size to 1 (essentially
file per proc) would give the best performance. We hypoth-
esize that this might be the case, modulo I/O contention
on a per-core basis. We were not able to test this particu-
lar configuration in our setup because we only had 700 files
overall, and we were testing at higher concurrencies.

6.2.4 Summary of Results
To summarize our results from parallel query resolution,

we observe that our implementation scales well to 2880 cores,
we found that using a subarray size of 10M entries gives good
performance, and that the group size should be as small as
possible (at a reasonable concurrency) for best performance.

7. APPLICATIONS
Query-based data analysis as a general analysis tool has a

wide range of applications. The index/query system FastBit
has been used, e.g., to analyze extremely large computer net-
work traffic data [22] and data from laser wakefield particle
accelerator simulations [20]. Here we will focus on another
example involving electron linear particle accelerators.

Particle accelerators are among the most versatile and im-
portant tools of scientific discovery. They are essential to a
wealth of advances in material science, chemistry, bioscience,
particle physics, and nuclear physics. They also have impor-
tant applications to the environment, energy, and national
security. Given the importance of particle accelerators, it is
essential that the most advanced high performance comput-
ing tools be brought to bear on accelerator R&D, and on the
design, commissioning, and operation of future accelerator
facilities.

Here we focus on the analysis of data from large-scale,
high resolution simulations of beam dynamics in electron
linacs for a proposed next-generation x-ray free electron laser
(FEL) at Lawrence Berkeley National Laboratory (LBNL) [5].
Particle-in-cell-based simulations of this type of accelerator
require large numbers of macroparticles (> 108) to control
the numerical macroparticle shot noise and avoid overesti-
mation of the microbunching instability, resulting in massive
particle datasets [19]. In the following we will demonstrate
how our parallel index/query system can be used to enable
fast, query-driven analysis of this type of data.

7.1 Experiment
For the purpose of this case study we focus on the analysis

of characteristic subparts of a particle beam, in particular
the transverse halo and core of the beam.

Transverse Halo: The transverse halo of a particle beam
is a low density portion of the beam usually defined as those
particles beyond some specified radius or transverse ampli-
tude in physical space (Figure 12). Particles in the halo have
the potential to reach very large transverse amplitude, even-
tually striking the beam pipe and causing radioactivation
of accelerator components and possibly causing component

Figure 12: Particle density plot (gray) and particles
selected (red) by the halo query for timestep 20 of
the simulation.

Figure 13: Scatter plot of all particles in x, t, pt space
with particle color indicating the momentum in x di-
rection px (red=positive, blue=negative). The axes
of the plot have been normalized for display pur-
poses. The gray plots on the side and bottom show
the two-dimensional particle density in x/t, x/pt and
t/pt, respectively.

damage. Controlling the beam halo is critical to many accel-
erator facilities and is often the limiting factor to increasing
the beam intensity to support scientific experiments. In or-
der to better understand this phenomenon, physicists need
to be able to efficiently identify and extract the halo par-
ticles for subsequent analysis, e.g., to determine the origin
of halo particles, to provide insight to help prevent the halo
from forming, and to provide information to help develop
halo mitigation strategies. To identify halo particles we use
the query r > 4σr, with r = 2

p
x2 + y2 and σr = 2

p
σ2

x + σ2
y,

and where σx and σy denote the rms beam sizes in x and y,
respectively. We here create an additional index for the de-
rived quantity r in order to accelerate the query. The query
as defined above is based on the assumption of an idealized
circular beam cross section. To ensure that the query adapts
more closely to the transverse shape of the beam one may
consider scaling the x and y coordinates, using, e.g., a query
of the form r2

s(x, y) > 16 with r2
s(x, y) = ( x

σx
)2 + ( y

σy
)2.

Core: Creating beams with good longitudinal beam qual-
ity (defined in terms of a quantity called the longitudinal rms
emittance), and maintaining that beam quality during the
acceleration process, is critical in certain types of accelera-
tors involving intense electron beams. Frequently the“head”
and “tail” of an electron bunch will be very different from
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Figure 14: Plot showing the number of halo particles
versus timestep.
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Figure 15: Build index time for 720 time steps
(50TB) as the number of cores increases from 2304
to 11,520.

its “center” region, the longitudinal “core.” As can be seen
in Figure 13, focusing on the longitudinal core of a bunch
eliminates strong variations at the head and tail which would
otherwise distort analysis results. The longitudinal particle
motion can be described by a longitudinal coordinate, z, or
equivalently, by a particle’s arrival time, t, at the location
z. We here define the core of the beam using the query
t̄− 200δ ≤ t ≤ t̄ + 200δ, with t̄ being the longitudinal bunch

centroid and δ = 10−9

0.036728
. The parameter δ has been pro-

vided by domain scientists and corresponds to ≈ 1nm (i.e.
the time it takes an electron to travel 1nm). For analy-
sis purposes, physicists typically further subdivide the core
into slices to identify within-core differences in particle den-
sity, uncorrelated energy spread and transverse emittance.
In order to divide the core into, e.g., 400 1nm wide slices,
we could evaluate at each timestep multiple queries of the
form tmin(i) ≤ t ≤ tmax(i) with tmin = t̄ − (i − 201)δ ,
tmax(i) = t̄ − (i − 200)δ and i ∈ [1, 400]. Such an analysis
of all 720 timesteps of our example dataset, hence, would
require 288, 000 queries, further highlighting the need for
efficient query methods.

7.2 Results
Figure 14 shows for each timestep the number of particles

selected by the halo query. For the halo query we observe
large variations in the number of particles that satisfy the
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Figure 16: I/O rate for building indexes for 720 time
steps (50TB) as the number of cores increases from
2304 to 11,520 (also see Figure 15).

query. The larger numbers of halo particles at late timesteps
provide impetus to explore the source of the halo. In this
case the halo particles and observation of an increase in
the maximum particle amplitude were found to be due to
a mismatch in the beam as it travels from one section of
the accelerator to the next. These diagnostics provide accel-
erator designers with evidence that further improvement of
the design may be possible, and they provide quantitative
information useful for optimizing the design to reduce halo
formation and beam interception with the beam pipe, and
ultimately to improve accelerator performance.

As shown in Figure 15, FastQuery requires approximately
2 hours of preprocessing time to build all indexes for all
timesteps of the 50TB datasets. Based on the bitmap in-
dexes, FastQuery is then able to evaluate data queries very
efficiently. FastQuery was able to process both the halo and
core query in 12 seconds. For the halo query we observe
speed-ups of one order of magnitude compared to the se-
quential scan (see Figure 10). Notably, FastQuery requires
only ≈ 500 compute cores to process all queries in times
that would be reasonable in practice. FastQuery enables in
this way repeated, complex, large-scale query-based analysis
of massive datasets, which would otherwise not be practical
with respect to both time as well as computational cost.

8. CONCLUSIONS
We have presented FastQuery, a system for applying state-

of-the-art index and query technology to massive datasets.
The FastQuery framework allows us to utilize parallel I/O
resources and distributed multi-core resources available on
modern supercomputing platforms. We presented in-depth
study of various design decisions and parameters choices
that went into implementing the system. We have demon-
strated the strong scalability of FastQuery upto 11,520 cores.
We have successfully applied FastQuery to a massive 50TB
dataset from a particle physics simulation, providing new
insights and results for our science collaborators.
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