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Abstract

Due to rapid data growth, statistical analysis of massive datasets often has to be
carried out in a distributed fashion, either because several datasets stored in separate
physical locations are all relevant to a given problem, or simply to achieve faster (par-
allel) computation through a divide-and-conquer scheme. In both cases, the challenge
is to obtain valid inference that does not require processing all data at a single cen-
tral computing node. We show that for a very widely used class of spatial low-rank
models, which can be written as a linear combination of spatial basis functions plus
a fine-scale-variation component, parallel spatial inference and prediction for massive
distributed data can be carried out exactly, meaning that the results are the same as
for a traditional, non-distributed analysis. The communication cost of our distributed
algorithms does not depend on the number of data points. After extending our results
to the spatio-temporal case, we illustrate our methodology by carrying out distributed
spatio-temporal particle filtering inference on total precipitable water measured by
three different satellite sensor systems.

Keywords: Distributed computing; Gaussian process; particle filter; predictive
process; spatial random effects model; spatio-temporal statistics

1 Introduction

While data storage capacity and data generation have increased by a factor of thousands in
the past decade, the data transfer rate has increased by a factor of less than ten (Zhang,
2013). It is therefore of increasing importance to develop analysis tools that minimize the
movement of data and perform necessary computations in parallel where the data reside
(e.g., Fuller and Millett, 2011). Here we consider two situations in which distributed data
can arise:

Situation 1: Several massive datasets that are stored in separate data centers (servers) are
all relevant to a given problem, and moving them to one central computing node for
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analysis is either too costly due to their large size or not desirable for other reasons
such as unnecessary duplicated storage requirements. The goal then is to move the
analysis to the data instead of the other way around (e.g., Shoshani et al., 2010).

Situation 2: All data relevant to a given problem are originally stored in the same location,
but a “divide-and-conquer” approach with several nodes working in parallel on different
chunks of the data is necessary, to achieve sufficiently fast computation or because the
entire dataset is too large for a single machine to hold in working memory.

The goal in both of these situations is to obtain valid inference based on all data at a number
of computers or servers, without moving the individual datasets between servers. The focus
in this article is on Situation 1, but all results are also applicable to Situation 2 without
modification.

In the spatial and environmental sciences, both of the described distributed-data situ-
ations arise frequently. Because analysis of a spatial dataset of size n usually involves the
data covariance matrix that has n2 elements, Situation 2 applies to datasets of even moder-
ate size. Situation 1 arises when several datasets containing information about a particular
environmental variable are stored in different data centers throughout the US or the world,
and we aim to obtain spatial inference and prediction based on all of them. For example,
hundreds of millions of remotely sensed measurements of sea surface temperature per day
are available both from the National Oceanic and Atmospheric Administration’s (NOAA’s)
Advanced Very High Resolution Radiometer and from the National Aeronautics and Space
Administration’s (NASA’s) Moderate Resolution Imaging Spectroradiometer. Measurements
of column-integrated carbon dioxide are obtained by NASA’s Orbiting Carbon Observatory-
2 and Atmospheric InfraRed Sounder, Japan’s Greenhouse Gases Observing Satellite, and
other instruments. With such satellite data, analyzing the data where they reside is especially
important. It not only makes costly data movement and duplicate storage unnecessary, but
also avoids (re)transfers of large amounts of data after changes in the retrieval algorithms,
which occur quite regularly. In this article, we will illustrate our methodology by making on-
line spatio-temporal inference on a spatial variable called total precipitable water, based on
measurements made by three major sensor systems stored at three associated data centers.

We consider here spatial low-rank models that consist of a component that can be written
as a linear combination of spatial basis functions and a spatially independent fine-scale-
variation term. Despite some recent criticism of their ability to approximate the likelihood
of spatial processes with parametric covariances in certain low-noise situations (Stein, 2014),
low-rank models are a very widely used class of models for large spatial datasets (see Section
2 below) because of their scalability for massive data sizes, and their predictive performance
has been shown to compare favorably to other approaches in certain situations (Bradley
et al., 2014). Note that here we do not advocate for or propose a particular spatial low-rank
model — rather, we are presenting distributed algorithms for inference that are applicable
to all members of the class of spatial low-rank models.

We show that basic inference for low-rank models can be carried out exactly for massive
distributed spatial data, while only relying on (parallel) local computations at each server. In
situations where a moderate, fixed number of basis functions is sufficient, the time complexity
is linear in the number of measurements at each server, while the communication cost does
not depend on the data size at all. Based on this main algorithm, we derive further algorithms

2



for parameter inference and spatial prediction that are similarly well-suited for massive
distributed data, and we extend the results to the spatio-temporal case. The results of
our parallel distributed algorithms are exactly the same as those obtained by a traditional,
non-distributed analysis with all data on one computational node, and so we do not ignore
spatial dependence between the data at different servers.

General-purpose computer-science algorithms for massive distributed data are not well
suited to the distributed-spatial-data problem described above, as solving the linear systems
required for prediction and likelihood evaluation would involve considerable movement of
data or intermediary results. In the engineering literature, there has been some work on
distributed Kalman filters for spatial prediction based on measurements obtained by robotic
sensors (Cortés, 2009; Xu and Choi, 2011; Graham and Cortés, 2012), but because the sensors
are typically assumed to collect only one measurement at a time, we are not aware of any
treatment of the case where the individual datasets are massive.

In the statistics literature, we are also not aware of previous treatment of the distributed-
spatial-data problem of Situation 1, although it is possible to adapt some approaches pro-
posed for analyzing (non-distributed) massive spatial data to the distributed case — which
is what we are doing with low-rank models in this article. The most obvious other approach
is to simply approximate the likelihood for parameter estimation by dividing the data into
blocks and then treating the blocks as independent, where in the distributed context each
block would correspond to one of the distributed datasets. However, in most applications the
distributed datasets were not necessarily collected in distinct spatial regions, and therefore
block-independence approaches might ignore significant dependence between different blocks
if there is substantial overlap in spatial coverage of the blocks. While methods such as com-
posite likelihoods (e.g., Vecchia, 1988; Curriero and Lele, 1999; Stein et al., 2004; Caragea
and Smith, 2007, 2008; Bevilacqua et al., 2012; Eidsvik et al., 2014) have been proposed to
allow for some dependence between blocks, it is not clear how well these methods would work
in our context, and how spatial predictions at unobserved locations should be obtained (e.g.,
to which block does the prediction location belong?). Other efforts to implement parallel
algorithms for large spatial datasets (e.g., Lemos and Sansó, 2009) also exploit being able to
split the data by spatial subregions and hence might not be suitable to distributed data in
Situation 1.

This article is organized as follows. We begin with a brief review of low-rank spatial
models in Section 2. We then focus on the distributed-data setting, describing a basic
parallel algorithm for inference (Section 3), discussing inference on model parameters and
presenting important simplifications for fixed basis functions (Section 4), describing how to
do spatial prediction (Section 5), and extending the methodology to the spatio-temporal
setting (Section 6). We present an application to total precipitable water measured by three
sensor systems (Section 7), and a simulation study exploring the effect of parallelization on
computation time (Section 8). We conclude in Section 9.

2 Spatial Low-Rank Models

We are interested in making inference on a spatial process {y(s) : s ∈ D}, or y(·), on a
continuous (non-gridded) domain D, based on a massive number of measurements, z1:J :=
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Figure 1: An illustration of the set-up for distributed data with a central node and data stored at J servers.
The quantities to be transferred are described in Algorithm 1.

(z′1, . . . , z
′
J)

′, stored on J different servers or data centers, where zj := (z(sj,1), . . . , z(sj,nj
))′

is stored on server j (see Figure 1), and the total number of measurements at locations
{sj,i ∈ D : i = 1, . . . , nj; j = 1, . . . , J} is given by n :=

∑J

j=1 nj. Note that the ordering of
the servers is completely arbitrary and does not affect the results in any way. We assume
that we have additive and spatially independent measurement error, such that

z(sj,i) = y(sj,i) + ǫ(sj,i), (1)

for all i = 1, . . . , nj and j = 1, . . . , J , where ǫ(sj,i) ∼ N(0, vǫ(sj,i)) is independent of y(·),
and the function vǫ(·) is known. In practice, if vǫ(·) is unknown, one can set vǫ(·) ≡ σ2

ǫ , and
then estimate σ2

ǫ by extrapolating the variogram to the origin (Kang et al., 2009). Because
the measurements in (1) are at point level and not on a grid, we assume for simplicity that
no two measurement locations coincide exactly.

The true process y(·) is assumed to follow a spatial low-rank model of the form,

y(s) = b(s)′η + δ(s), s ∈ D, (2)

where b(·) is a vector of r spatial basis functions with r << n, η ∼ Nr(ν0,K0), and often
ν0 = 0. The fine-scale variation δ(s) ∼ N(0, vδ(s)) is spatially independent and independent
of η. Note that we did not include a spatial trend in (2), as any linear trend of the form
x(·)′β, where x(·) is a vector of spatial covariates, can simply be absorbed into b(·)′η if we
assign a normal prior distribution to β.

Low-rank models of the form (2) are popular because they do not assume stationarity,
and, for a fixed number of basis functions, the time complexity to obtain exact spatial
predictions is linear in the number of measurements, hence offering excellent scalability for
massive datasets. Many widely used classes of spatial models are of the form (2), such as
the spatial random effects model (Cressie and Johannesson, 2008), discretized convolution
models (e.g., Higdon, 1998; Calder, 2007; Lemos and Sansó, 2009), and the predictive process
(Banerjee et al., 2008; Finley et al., 2009). Basis functions that have been used in (2) include
empirical orthogonal functions (e.g. Mardia et al., 1998; Wikle and Cressie, 1999), Fourier
basis functions (e.g., Xu et al., 2005), W-wavelets (e.g., Shi and Cressie, 2007; Cressie et al.,
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2010; Kang and Cressie, 2011), and bisquare functions (e.g., Cressie and Johannesson, 2008;
Katzfuss and Cressie, 2011, 2012).

Note that our methodology described in the following sections is applicable to any of
these parameterizations of (2), and we do not advocate for a particular model over others.
Hence, we work with the general class of spatial low-rank models in (2), and we only assume
that there is some parameter vector, θ, that determines b(·), K0, and vδ(·).

3 Distributed Spatial Inference — Main Algorithm

We will now discuss how to obtain the posterior distribution, [η|z1:J ], of the random-effects
vector of basis-function weights, η, by performing parallel computations at each server j
that use only the local data zj. Throughout this section, we will treat the parameter vector
θ as fixed and known, with parameter inference to be discussed in Section 4.

First, define B1:J = (B′
1, . . . ,B

′
J)

′ and V1:J = blockdiag(V1, . . . ,VJ), where zj, Bj :=
(b(sj,1), . . . ,b(sj,nj

))′, and Vj := diag(vδ(sj,1)+vǫ(sj,1), . . . , vδ(sj,nj
)+vǫ(sj,nj

)) are the local
quantities at server j. Viewing the random-effects vector η as a Bayesian parameter with
prior η ∼ Nr(ν0,K0) and linear Gaussian “likelihood” z1:J |η ∼ Nn(B1:Jη,V1:J), it is easy
to see that the posterior distribution of η given the data at all servers is also multivariate
normal, η|z1:J ∼ Nr(νz,Kz), where

K−1
z = K−1

0 +R, R := B′
1:JV

−1
1:JB1:J

νz = Kz(K
−1
0 ν0 + γ), γ := B′

1:JV
−1
1:Jz1:J .

The key to our distributed algorithms is that, due to the diagonal block structure of V1:J ,
we have

R =
∑J

j=1 B
′
jV

−1
j Bj =:

∑J

j=1 Rj

γ =
∑J

j=1 B
′
jV

−1
j zj =:

∑J

j=1 γj.
(3)

Thus, the posterior distribution of η can be obtained by properly combining quantities that
each only depend on the data and their spatial locations at one of the servers. This implies
the following parallel algorithm to obtain the posterior distribution of η:

Algorithm 1: Distributed Spatial Inference

1. Do the following in parallel for j = 1, . . . , J :

(a) Move θ to server j (where data zj is stored) and create the matrices Bj and
Vj there.

(b) At server j, calculate Rj = B′
jV

−1
j Bj and γj = B′

jV
−1
j zj.

(c) Transfer the r× r matrix Rj and the r× 1 vector γj back to the central node.

2. At the central node, calculate K−1
z = K−1

0 +
∑J

j=1 Rj and νz = Kz(K
−1
0 ν0 +∑J

j=1 γj). The posterior distribution of η is given by η|z1:J ∼ Nr(νz,Kz).
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Algorithm 1 is illustrated in Figure 1. The overall time complexity is O(r3 + r2maxjnj)
(specifically, O(r3) at the central node and O(r2nj) at server j), the memory complexity is
O(r2) at the central node and O(rnj) at server j, and we need to move only the r(r/2+3/2)
unique elements in Rj and γj from each server. Compare this to a non-distributed algorithm
that has time complexity O(r3+ r2

∑
j nj), memory complexity O(rn), and requires moving

the n measurements (plus their spatial coordinates) to the central node. In summary, if r
remains fixed as the data size increases, Algorithm 1 has computational cost that is linear
in each nj, the communication cost does not depend on n at all, and hence it is scalable for
massive distributed datasets.

3.1 Reducing Communication Via Sparsity

The required amount of communication and computation for Algorithm 1 can be reduced fur-
ther if the basis-function matrices Bj are sparse, resulting in sparse Rj. Several approaches
that impose sparsity in basis-function models have recently been proposed (e.g., Lindgren
et al., 2011; Nychka et al., 2015). While sparsity in principle allows fast computation even
for large r, having r = O(n) does not allow the reduction in communication desired in our
Situation 1 from Section 1. Large r also creates problems in the spatio-temporal filtering
context described below in Section 6, as sparsity in the precision matrix K−1

z can generally
not be maintained after propagation through time.

Returning to the low-rank case with small to moderate r, sparsity can be achieved, for
example, by taking the predictive-process approach (see Banerjee et al., 2008, for a detailed
definition) with a compactly supported parent covariance function, as follows. Assume a set
of knots, W := {w1, . . . ,wr}, and a parent covariance function

C(s1, s2) = σ(s1)σ(s2)ρ(s1, s2), s1, s2 ∈ D,

where ρ is a correlation function. Then the predictive process can be written in the form (2)
with

b(s) := σ(s)
(
ρ(s,w1), . . . , ρ(s,wr)

)′
, s ∈ D, (4)

and the (i, j)th element of K−1
0 given by ρ(wi,wj) (see, e.g., Katzfuss, 2013).

Now, if C is compactly supported with range h, then the (l,m)th element of the matrix
Rj = B′

jV
−1
j Bj in (3) can only be nonzero if ||wl − wm|| < 2h. Hence, if for a given set

of knots, at most v other knots are within a distance of 2h of any knot, at most r(v/2 + 2)
numbers (including γj) need to be transferred from each server.

4 Parameter Inference

So far, we have treated the parameter vector θ (containing the parameters determining
b(·), K0, and vδ(·)) as fixed and known. In practice, of course, this is usually not the
case. Fortunately, several commonly used inference approaches can be implemented in a
distributed and parallel fashion by extending Algorithm 1 (while still producing the same
results as in the traditional, non-distributed setting).
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4.1 Parsimonious Parameterizations

If the parameter vector θ is of low dimension (e.g., there are only three parameters in the
predictive-process model in (4) with a Matérn parent covariance function), and estimates or
posterior distributions of the parameters are not available in closed form, standard numerical
likelihood-based inference is one possibility for parameter inference.

As shown in Appendix A, the likelihood (up to a normalization constant) for the spatial
low-rank model in Section 2 can be written as,

−2 logL(θ) := −2 log[z1:J |θ] = − log |K−1
0 |+ν ′

0K
−1
0 ν0+log |K−1

z |−ν ′
zK

−1
z νz+

∑J

j=1 aj, (5)

where aj := log |Vj| + z′jV
−1
j zj. This allows carrying out both frequentist and Bayesian

inference for distributed data (e.g., by numerical maximization of the likelihood, Metropolis-
Hasting sampling, or other approaches). Each iteration of such a parameter-inference pro-
cedure consists of carrying out Algorithm 1 (with the addition of calculating aj at server j
and moving this scalar quantity to the central node), combining the results to evaluate the
likelihood (5) at the central node, updating the parameters θ, and sending out the new value
of θ to the servers. This results in a sequential algorithm, for which the (major) calculations
at each iteration can be carried out in parallel.

To avoid servers being idle in such a sequential algorithm, we recommend instead the
use of an importance or particle sampler. Any of the various such algorithms proposed in
the literature can be carried out in the distributed context (with the exact same results), by
evaluating the likelihood as in (5). Here is an example of such an algorithm:

Algorithm 2: Distributed Importance Sampler

1. Generate a number of parameter vectors or particles, θ(1), . . . ,θ(M), from a suitably
chosen proposal distribution, q(θ).

2. Do the following in parallel for j = 1, . . . , J and m = 1, . . . ,M :

(a) Move θ(m) to server j and create the matrices B
(m)
j and V

(m)
j .

(b) Calculate

R
(m)
j = B

(m)
j

′(V
(m)
j )−1B

(m)
j

γ
(m)
j = B

(m)
j

′(V
(m)
j )−1zj

a
(m)
j = log |V(m)

j |+ z′j(V
(m)
j )−1zj.

(c) Transfer R
(m)
j , γ

(m)
j , and a

(m)
j back to the central node.

3. At the central node, form = 1, . . . ,M , calculate (K
(m)
z )−1 = (K

(m)
0 )−1+

∑J

j=1 R
(m)
j ,

ν
(m)
z = K

(m)
z ((K

(m)
0 )−1ν

(m)
0 +

∑J

j=1 γ
(m)
j ), and

−2 logL(θ(m)) = − log |(K(m)
0 )−1|+ ν

(m)
0

′(K
(m)
0 )−1ν

(m)
0

+ log |(K(m)
z )−1| − ν(m)

z
′(K(m)

z )−1ν(m)
z +

∑J

j=1 a
(m)
j .
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4. The particle approximation of the posterior distribution of θ takes on the value
θ(m) with probability w(m) ∝ p(θ(m))L(θ(m))/q(θ(m)) for m = 1, . . . ,M , where p(θ)
is the prior distribution of the parameters.

The advantage of this parameter-inference approach is that we can carry out calculations
for the likelihood evaluations for all particles completely in parallel at all servers (while
getting the same results as in the traditional, non-distributed setting).

4.2 Spatial Random Effects Model

The spatial random effects model (Cressie and Johannesson, 2008; Katzfuss and Cressie,
2009; Kang and Cressie, 2011) is a low-rank model of the form (1)–(2), for which the basis
functions are known functions (e.g., bisquare functions) that do not depend on unknown
parameters, K0 is a general covariance matrix (i.e., it contains r(r + 1)/2 parameters),
and often vδ(·) ≡ σ2

δ . If we also assume vǫ(·) ≡ σ2
ǫ (or we have transformed the data

such that these assumptions hold), we have V−1
j = 1

σ2

δ
+σ2

ǫ
Inj

, and so Rj = 1
σ2

δ
+σ2

ǫ
B′

jBj and

γj = 1
σ2

δ
+σ2

ǫ
B′

jzj. Since the Bj in the spatial random effects model are fixed, all that is

required for inference on η in Algorithm 1 from server j are the fixed quantities B′
jzj and

B′
jBj, making multiple passes over the servers for parameter inference unnecessary. The

only additional information required from server j for evaluating the likelihood (5) is nj and
z′jzj.

If the basis functions do contain unknown parameters, or vǫ(·) is not constant, maximum
likelihood estimates can be obtained by deriving a distributed version of the expectation-
maximization algorithm of Katzfuss and Cressie (2009, 2011). Each step of the resulting
algorithm consists of carrying out Algorithm 1, and then updating the estimates of K−1

0 and
σ2
δ as

K̂−1
0 = (Kz + νzν

′
z)

−1 = K−1
z − qq′/(1 + ν ′

zq)

σ̂2
δ = σ2

δ +
J∑

j=1

σ4
δ

nj

(
||V−1

j (zj −Bjνz)||2 − tr(Ω−1
j )

)
,

where q := K−1
0 ν0+γ and Ωj := BjKzB

′
j +Vj. The expression for σ̂2

δ above can be derived
by obtaining [δj|η, z1:J ] and then applying the laws of total expectation and total variance.

By assuming conjugate prior distributions (i.e., an inverse-Wishart distribution for K0

and an inverse-Gamma distribution for σ2
δ ), Bayesian inference using a Gibbs sampler is also

possible.

5 Spatial Prediction

The goal in spatial statistics is typically to make spatial predictions of y(·) at a set of
prediction locations, sP1 , . . . , s

P
nP
, based on all data z1:J , which in technical terms amounts to
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finding the posterior predictive distribution [yP |z1:J ], where yP := (y(sP1 ), . . . , y(s
P
nP
))′. Note

that prediction can be carried out separately, after parameter inference has been completed,
and so it suffices to obtain the predictive distribution for the final parameter estimates in a
frequentist procedure, or for thinned MCMC samples or for particles with nonzero weight in
a Bayesian context.

Because we can write
yP = BPη + δP , (6)

where BP := (b(sP1 ), . . . ,b(s
P
nP
))′ and δP := (δ(sP1 ), . . . , δ(s

P
nP
))′, the desired predictive

distribution is determined by the joint posterior distribution [η, δP |z1:J ].
First, assume that none of the prediction locations exactly coincide with any of the ob-

served locations. This is a reasonable assumption when measurements have point support
on a continuous spatial domain, as we have assumed throughout this manuscript. Then it is
easy to see that δP |z1:J ∼ NnP

(0,VP
δ ), with VP

δ := diag{vδ(sP1 ), . . . , vδ(sPnP
)}, is condition-

ally independent of η given z1:J . Therefore, spatial prediction reduces to obtaining νz and
Kz using Algorithm 1, and then calculating

yP |z1:J ∼ NnP
(BPνz,B

PKzB
P ′ +VP

δ ) (7)

at the central node.
Appendix B describes how to do spatial prediction when a small number of the observed

locations coincide with the desired prediction locations.

6 Spatio-Temporal Inference

To extend our results to the spatio-temporal case, we consider a spatio-temporal low-rank
model in discrete time. In our hierarchical state-space model, the process of interest is given
by,

yt(s) = bt(s)
′ηt + δt(s), s ∈ D; t = 1, 2, . . . ,

where δt(·) is assumed to be independent over space and time with variance function vδ,t(·),
and the temporal evolution of the low-rank component is given by,

ηt|θt,ηt−1,ηt−2, . . . ∼ Nr(Htηt−1,Ut), t = 1, 2, . . . ,

where η0 ∼ Nr(ν0,0,K0,0) is the initial state, and θt is a time-varying parameter vector with
generic transition equation p(θt|θt−1) and initial value θ0. The data at server j at time t are
given by zj,t := (zt(s1,j,t), . . . , zt(snj,t,j,t))

′, with

zt(si,j,t) = yt(si,j,t) + ǫt(si,j,t),

for all i = 1, . . . , nj,t, j = 1, . . . , J , and t = 1, 2, . . ., where ǫt(si,j,t) ∼ N(0, vǫ(si,j,t)) is
independent in space, time, and of y(·). Cressie et al. (2010) called this the spatio-temporal
random effects model, but as in the spatial-only case, many different ways of parameterizing
such a spatio-temporal low-rank model are possible (see Section 7 for an example). We again
merely assume that Ht, Ut, bt(·), and vδ,t(·) are known up to the parameter vector θt.
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6.1 Filtering and Smoothing for Known Parameters

We temporarily assume the parameters θ1,θ2, . . . to be known, or held at a particular set of
values at one step of a parameter-inference procedure (see Section 6.2 below). We first take
an on-line, filtering perspective in time, which means that we are interested at time point
t in obtaining the filtering distribution ηt|z1:t ∼ Nr(νt|t,Kt|t), where z1:t denotes the vector
of all data collected at the first t time points. We can obtain νt|t and Kt|t using a Kalman
filter, for which each update step essentially requires carrying out Algorithm 1:

Algorithm 3: Distributed Spatio-Temporal Filtering

1. For t = 0, initialize the algorithm by calculating ν0|0 and K0|0 based on θ0.

2. At time t = 1, 2, . . ., once the new data z1,t, . . . , zJ,t become available:

(a) Do the following in parallel for j = 1, . . . , J :

i. Move θt to server j and create the matrices Bj,t and Vj,t based on the
observed locations at time t.

ii. At server j, calculate Rj,t = B′
j,tV

−1
j,t Bj,t and γj,t = B′

j,tV
−1
j,t zj,t.

iii. Transfer Rj,t and γj,t back to the central node.

(b) At the central node, calculate the forecast quantities νt|t−1 := Htνt−1|t−1,
Kt|t−1 := HtKt−1|t−1H

′
t + Ut, and then the filtering quantities K−1

t|t =

K−1
t|t−1 +

∑J

j=1 Rj,t and νt|t = Kt|t(K
−1
t|t−1νt|t−1 +

∑J

j=1 γj,t). We have ηt|z1:t ∼
Nr(νt|t,Kt|t).

It is interesting to note that Algorithm 1 in Section 3 can itself be viewed as a decen-
tralized Kalman filter (Rao et al., 1993) over servers applied to our spatial low-rank model
written as a state-space model with an identity evolution equation. Thus, Algorithm 3 is
actually the combination of two nested filters, where each “outer” filtering step over time
essentially consists of an “inner” filter over servers as in (3).

In some applications, retrospective smoothing inference based on data collected at T time
points might be of interest. Obtaining the smoothing distribution ηt|z1:T ∼ Nr(νt|T ,Kt|T )
for t = 1, . . . , T , requires forward-filtering using Algorithm 3 and then backward-smoothing
at the central node by calculating iteratively for t = T − 1, T − 2, . . . , 1:

νt|T = νt|t + Jt(νt+1|T − νt+1|t),

Kt|T = Kt|t + Jt(Kt+1|T −Kt+1|t)J
′
t,

where Jt := Kt|tH
′
t+1K

−1
t+1|t (see, e.g., Cressie et al., 2010, p. 732, for more details). Also, note

that in the smoothing context, it is not actually necessary to “consolidate” the information
at the end of each time point as in Step 2(b) of Algorithm 3 before moving on to the next
time point; instead, we can calculate Rj,1, . . . ,Rj,T and γj,1, . . . ,γj,T at each server j, and
then directly calculate KT |T and νT |T at the central node.
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Because δt(·) is a priori independent over time, spatial prediction for each t in the filtering
and smoothing context can be carried out as described in Section 5 using the filtering or
smoothing distribution of ηt (i.e., νt|t,Kt|t or νt|T ,Kt|T , respectively).

6.2 Spatio-Temporal Parameter Inference

In the filtering context, inference on the parameter vector θt at time point t is typically
based on the filtering likelihood,

−2 logLt(θt) := −2 log[zt|z1:t−1,θt]

= − log |K−1
t|t−1|+ ν ′

t|t−1K
−1
t|t−1νt|t−1 + log |K−1

t|t | − ν ′
t|tK

−1
t|t νt|t +

∑J

j=1 aj,t,
(8)

where aj,t := log |Vj,t| + z′j,tV
−1
j,t zj,t. This expression of the likelihood can be derived sim-

ilarly as in the spatial-only case described in Appendix A. If there are a small number of
unknown parameters in the spatio-temporal low-rank model, we again advocate the use of a
particle-filtering approach for parameter estimation. Sequential importance sampling with
resampling (Gordon et al., 1993) is a natural inference procedure for on-line inference over
time. With distributed data, it can be carried out using a straightforward combination of
Algorithms 2 and 3:

Algorithm 4: Distributed Spatio-Temporal Particle Filter

1. For t = 0, calculate ν0|0 and K0|0 based on initial parameter value θ0. Then sample

M particles θ
(1)
1 , . . . ,θ

(M)
1 from a suitably chosen proposal distribution q(θ1|θ0).

2. At time t = 1, 2, . . ., once new data z1,t, . . . , zJ,t become available:

(a) Do the following in parallel for j = 1, . . . , J and m = 1, . . . ,M :

i. Move θ
(m)
t to server j and create the matrices B

(m)
j,t and V

(m)
j,t based on

the observed locations at time t.

ii. At server j, calculate

R
(m)
j,t = B

(m)
j,t

′(V
(m)
j,t )−1B

(m)
j,t

γj,t = B
(m)
j,t

′(V
(m)
j,t )−1zj,t

a
(m)
j,t = log |V(m)

j,t |+ z′j,t(V
(m)
j,t )−1zj,t.

iii. Transfer R
(m)
j,t , γ

(m)
j,t , a

(m)
j,t and back to the central node.

(b) At the central node, do the following in parallel for m = 1, . . . ,M :

i. Based on θ(m), calculate ν
(m)
t|t−1

:= H
(m)
t ν

(m)
t−1|t−1,

K
(m)
t|t−1

:= H
(m)
t K

(m)
t−1|t−1H

(m)
t

′ +U
(m)
t , (K

(m)
t|t )−1 = (K

(m)
t|t−1)

−1 +
∑J

j=1 R
(m)
j,t ,

ν
(m)
t|t = K

(m)
t|t ((K

(m)
t|t−1)

−1ν
(m)
t|t−1 +

∑J

j=1 γ
(m)
j,t ), and the filtering likelihood

Lt(θ
(m)
t ) as in (8).
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(c) The particle-filter approximation of the filtering distribution of θt takes on

the value θ
(m)
t with probability w

(m)
t ∝ p(θ

(m)
t |θ(m)

t−1)Lt(θ
(m)
t )/q(θ

(m)
t |θ(m)

t−1).

(d) Using a resampling scheme (see, e.g., Douc et al., 2005), generate resampled

particles θ̃
(1)
t , . . . , θ̃

(M)
t (and the associatedK

(m)
t|t and ν

(m)
t|t ) from θ

(1)
t , . . . ,θ

(M)
t ,

and obtain M particles for time t + 1 using a suitable proposal distribution
q(θt+1|θ̃(m)

t ).

In a smoothing context, parameter inference is based on the likelihood, [z1:T |θ1:T ] =∏T

t=1[zt|z1:t−1,θt], of all data in a specific time window {1, . . . , T}, where [zt|z1:t−1,θt] is
given in (8).

7 Application: Total Precipitable Water Measured by

Three Sensor Systems

We applied our methodology to hourly measurements from three sensor systems to obtain
spatio-temporal filtering inference on an atmospheric variable called total precipitable wa-
ter. Total precipitable water is the integrated amount of water vapor in a column from the
surface of the earth to space in kilograms per square meter or, equivalently, in millimeters of
condensate. The sensor systems are ground-based GPS, the Geostationary Operational En-
vironmental Satellite (GOES) infrared sounders, and Microwave Integrated Retrieval System
(MIRS) satellites. These data products are retrieved and stored at different data centers, and
so our Situation 1 described in Section 1 applies. The sensor systems also feature varying
spatial coverage and precision. The measurement-error standard deviations are 0.75 mm,
2 mm, and 4.5 mm, respectively, and so the function vǫ(·) from (1) varies by server (i.e., by
j) but not over space.

Since March 2009, an operational blended multisensor water vapor product based on these
three sensor systems has been produced by the National Environmental Satellite, Data, and
Information Service of NOAA (Kidder and Jones, 2007; Forsythe et al., 2012). This product
is sent to National Weather Service offices, where it is used by forecasters to track the
movement of water vapor in the atmosphere and to detect antecedent conditions for heavy
precipitation. The operational product is created by overlaying the existing field with the
latest available data, which can lead to unphysical features in the form of abrupt boundaries.
The goal of our analysis was to illustrate our methodology using a simple version of a
spatio-temporal low-rank model, and to create spatially more coherent predictive maps with
associated uncertainties based on data from all three systems, without having to transfer the
data to a central processor.

We consider here a dataset consisting of a total of 3,351,860 measurements assumed to be
collected at point-level support in January 2011 over a period of 47 hours by the three sensor
systems over a spatial domain covering the United States. The top three rows of Figure 2
show the three sensor data products at time points (hours) 7, 8 and 9. As is evident from
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these plots, total precipitable water exhibits considerable variability at the considered spatial
and temporal scales.

We made filtering inference based on a spatio-temporal low-rank model, parameterized
by a predictive-process approach inspired by Finley et al. (2012). Specifically, we assumed
the model in Section 6 with vδ,t(·) ≡ σ2

δ,t, Ht = αtIr,

K−1
0,0 = (ρ(wi,wj|θ0))i,j=1,...,r

U−1
t = (1− α2

t )
−1(ρ(wi,wj|θt))i,j=1,...,r

bt(s) = σt(s)
(
ρ(s,w1|θt), . . . , ρ(s,wr|θt)

)′
, s ∈ D.

The parent correlation function was chosen to be

ρ(s1, s2|θt) = M(‖s1 − s2‖/κt) · T (‖s1 − s2‖/10),

where M is the Matérn correlation function (e.g., Stein, 1999, p. 50) with smoothness υ =
1.25,

M(h) = (2h
√
υ)υKυ(2h

√
υ)21−υ/Γ(υ)

and multiplication by the compactly supported Kanter’s function T (Kanter, 1997) led to
considerable sparsity in the matrices Rj,t, as described in Section 3.1. The set of knots,
W := {w1, . . . ,w84}, was a regular 5◦ × 5◦ latitude/longitude grid over the domain. The
trend consisted of an intercept term with a Gaussian random-walk prior with initial value
13.2 and variance 15.9 and was absorbed into the basis-function vector. While we chose
this relatively simple model here for illustration, we would like to reiterate that neither the
communication cost nor the computational complexity of the algorithm changes if a more
elaborate parameterization of the general spatio-temporal low-rank model in Section 6 is
chosen.

The transition distribution of the parameter vector

θt = (Φ−1(αt), log(σt), log(κt), log(σ
2
δ,t))

′

was taken to be a Gaussian random walk with θt|θt−1 ∼ N4(θt−1, 0.01×I4), for t = 1, . . . , T =
47. The initial parameter vector θ0 was specified as α0 = 0.8, σ0 = 5, κ0 = 15, and σ2

δ,0 = 0.5.
Here, αt determines the strength of the temporal dependence, while the scale parameter κt

determines the strength of the spatial dependence.
We implemented the sequential importance sampling algorithm with residual resampling

as described in Algorithm 4 with M = 6000 particles, using the prior distribution as the
proposal distribution for simplicity. The resulting filtering posterior means and posterior
standard deviations for total precipitable water for time periods 7, 8, and 9 (i.e., t ∈ {7, 8, 9})
on a regular 0.5◦ × 0.5◦ latitude/longitude grid of size 6,283 are shown in the bottom two
rows of Figure 2. We were able to calculate the filtering distribution based on the 3,351,860
measurements collected over 47 hours by the three sensor systems in about 7 hours using
parallel computations on the Geyser data analysis cluster on the high-performance computing
facility Yellowstone at the National Center for Atmospheric Research. Geyser uses 10-core
2.4-GHz Intel Xeon E7-4870 (Westmere EX) processors and has 25GB of memory/core.
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t = 7 t = 8 t = 9

Figure 2: Top three rows: Hourly observations of total precipitable water by the GPS system, GOES infrared
sounders, and MIRS, respectively, over the larger continental United States in January 2011. Bottom two
rows: Corresponding filtering posterior means and posterior standard deviations, respectively, of total pre-
cipitable water based on all three data products. The columns represent time points 7, 8, and 9, respectively.
The scale for the posterior standard deviation plots varies between time periods. All units are in millimeters.
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Figure 3: Computation time for one likelihood evaluation for simulated spatial data with a varying number
of observations and different numbers of computational nodes (J), for r = 49 (left) and r = 121 (right) knots

8 Timing Study

While the focus of this article is on avoiding data movement and duplicate storage for
distributed data (Situation 1 from Section 1), the outlined methodology is also applicable
without modification to a divide-and-conquer inference scheme in the case of centrally stored
data (Situation 2). We briefly investigated the benefits in terms of computational speed by
parallelizing one spatial-only likelihood evaluation for a predictive-process model with a
Matérn covariance function similar to the one in Section 7, for r = 49 and r = 121 knots,
and varying numbers of simulated observations and numbers of servers. The timing results
shown in Figure 3 are the means of ten replicates (the variation between replicates is very
small). The study was conducted on a MacBook Pro with an Intel quad-core 2.6 GHz i7
processor and 8 GB of memory. The specific results are dependent on the characteristics
of the processor, but provide a relative sense of computational improvement potential. We
see that parallelizing over several processors leads to speed-ups, as expected. We would
like to emphasize that, while not investigated further here, the divide-and-conquer scheme
made possible by our methodology can also lead to memory advantages by splitting up the
analysis in a distributed-memory environment. This is crucial when, for example, analyzing
sea-surface temperature with hundreds of millions of measurements per day.

9 Conclusions and Future Work

As datasets are becoming larger, so is the cost of moving them to a central computer for
analysis, necessitating algorithms designed to work on distributed data that keep analysis op-
erations as close to the stored data as possible. We showed how distributed spatial inference,
including likelihood-based parameter inference, can be carried out in a computationally fea-
sible way for massive distributed datasets under the assumption of a low-rank model, while
producing the same results as traditional, non-distributed inference. Our approach is scal-
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able in that the computational cost is linear in each nj (the number of measurements at
server j) and the communication cost does not depend on the nj at all. Inference, espe-
cially when done based on a particle sampler, is also “embarassingly parallel,” allowing a
divide-and-conquer analysis of massive spatial data with little communication overhead. In
addition, if the selected low-rank model has fixed basis functions that do not depend on
parameters (see Section 4.2), our methodology can be used for data reduction in situations
where it is not possible to store all measurements.

After extending the results to the spatio-temporal case, we demonstrated the applicabil-
ity of our model to massive real-world data in Section 7, and showed that we can obtain
sensible results in a fast manner. However, getting the best possible results for this particular
application is part of ongoing research and will likely require a more refined and complicated
model.

The methodology described in this article can be extended to the full-scale approximation
of Sang et al. (2011), where the fine-scale variation is assumed to be dependent within
subregions of the spatial domain, resulting in nondiagonal Vj. This idea is explored for a
multi-resolutional extension of the full-scale approximation in Katzfuss (2016).

Another natural extension of our methodology is to the increasingly important multivari-
ate data-fusion case involving inference on multiple processes based on data from multiple
measuring instruments. Multivariate analysis can in principle be carried out as described
here by stacking the basis function weights for the individual processes into one big vector
η (see, e.g., Nguyen et al., 2012, 2014), but it will likely require more complicated inference
on δ(·) due to different instrument footprints and overlaps. While the combined size of the
low-rank components for multiple processes will become prohibitive in highly multivariate
settings, the hope is that the processes can be written as linear combinations of a smaller
number of processes.

Acknowledgements

This material was based upon work partially supported by the National Science Foundation
under Grant DMS-1127914 to the Statistical and Applied Mathematical Sciences Institute.
Katzfuss was partially supported by NASA’s Earth Science Technology Office AIST-14 pro-
gram and by National Science Foundation (NSF) Grant DMS-1521676. Hammerling’s re-
search also had partial support from the NSF Research Network on Statistics in the At-
mosphere and Ocean Sciences (STATMOS) through grant DMS-1106862. We would like to
acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc)
provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the
National Science Foundation. We would like to thank Amy Braverman for making us aware
of the problem of distributed spatial data; John Forsythe and Stan Kidder for the datasets
and helpful advice; Yoichi Shiga for support with preprocessing and visualizing the data;
and Andrew Zammit Mangion, Emtiyaz Khan, Kirk Borne, Jessica Matthews, Emily Kang,
several anonymous reviewers, and the SAMSI Massive Datasets Environment and Climate
working group for helpful comments and discussions.

16



A Derivation of the Likelihood

We derive here the expression of the likelihood in (5). First, note that z1:J |θ ∼ Nn(B1:Jν0,Σ1:J),
where Σ1:J = B1:JK0B

′
1:J +V1:J . Hence, the likelihood is given by,

−2 log[z1:J |θ] = log |Σ1:J |+ (z1:J −B1:Jν0)
′Σ−1

1:J(z1:J −B1:Jν0)− (n/2) log(2π).

Applying a matrix determinant lemma (e.g., Harville, 1997, Thm. 18.1.1), we can write the
log determinant as,

log |Σ1:J | = log |V1:J |+ log |K0|+ log |B′
1:JV

−1
1:JB1:J +K−1

0 |
=

∑J

j=1 log |Vj| − log |K−1
0 |+ log |K−1

z |.

Further, using the Sherman-Morrison-Woodbury formula (Sherman and Morrison, 1950;
Woodbury, 1950; Henderson and Searle, 1981), we can show thatΣ−1

1:J = V−1
1:J−V−1

1:JB1:JKzB
′
1:JV

−1
1:J ,

and so

(z1:J −B1:Jν0)
′Σ−1

1:J(z1:J −B1:Jν0)

=
∑J

j=1(zj −Bjν0)
′V−1

j (zj −Bjν0)

−
(∑J

j=1 B
′
jV

−1
j (zj −Bjν0)

)′
Kz

(∑J

j=1 B
′
jV

−1
j (zj −Bjν0)

)

=
∑

j z
′
jV

−1
j zj − 2ν ′

0(K
−1
z νz −K−1

0 ν0) + ν ′
0(K

−1
z −K−1

0 )ν0

−
(
(K−1

z νz −K−1
0 ν0)− (K−1

z −K−1
0 )ν0

)′
Kz

(
(K−1

z νz −K−1
0 ν0)− (K−1

z −K−1
0 )ν0

)

=
∑

j z
′
jV

−1
j zj − 2ν ′

0K
−1
z νz + ν ′

0K
−1
0 ν0 + ν ′

0K
−1
z ν0

− (K−1
z νz)

′Kz(K
−1
z νz)− ν ′

0K
−1
z KzK

−1
z ν0 + 2(K−1

z νz)
′KzK

−1
z ν0

=
∑

j z
′
jV

−1
j zj + ν ′

0K
−1
0 ν0 − ν ′

zK
−1
z νz,

where
∑J

j=1 B
′
jV

−1
j Bj = K−1

z −K−1
0 and

∑J

j=1 B
′
jV

−1
j zj = K−1

z νz−K−1
0 ν0 both follow from

(3).

B Spatial Prediction When Observed and Prediction

Locations Coincide

Here we describe how to do spatial prediction when a small number, q say, of the observed
locations are also in the set of desired prediction locations. Define δP,O to be the vector of the
first q elements of δP , which we assume to correspond to the q observed prediction locations,
and let Pj be a sparse nj × q matrix with (Pj)k,l = I(sj,k = sPl ). We write our model in
state-space form with identity evolution equation, zj = B̃jη̃ + ξ̃j, where B̃j := (Bj,Pj),
η̃ := (η′, δ′

P,O)
′ ∼ N(ν̃0, K̃0), ν̃0 := (ν ′

0,0
′
q)

′, K̃0 is blockdiagonal with first block K0 and

second block diag{vδ(sP1 ), . . . , vδ(sPq )}, ξ̃j ∼ Nnj
(0, Ṽj), and Ṽj is the same as Vj except

that the ith diagonal element is now vǫ(sj,i) if sj,i is one of the prediction locations.

The decentralized Kalman filter (Rao et al., 1993) gives K̃−1
z = K̃−1

0 +
∑J

j=1 R̃j and ν̃z =

K̃z(K̃
−1
0 ν̃0 +

∑J

j=1 γ̃j), where R̃j := B̃′
jṼ

−1
j B̃j and γ̃j := B̃′

jṼ
−1
j zj are the only quantities
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that need to be calculated at and transfered from server j, which is feasible due to sparsity if q
is not too large. The predictive distribution is then given by yP |z1:J ∼ N(B̃P ν̃J , B̃

P K̃zB̃
P ′+

ṼP
δ ), where B̃P := (BP , (Iq,0)

′) and ṼP
δ := diag{0′

q, vδ(s
P
q+1), . . . , vδ(s

P
nP
)}.
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