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Abstract
We adopt a Dirichlet process Gaussian mixture model
(DPGMM) for unsupervised acoustic modeling and represent
speech frames with Gaussian posteriorgrams. The model per-
forms unsupervised clustering on untranscribed data, and each
Gaussian component can be considered as a cluster of sounds
from various speakers. The model infers its model complex-
ity (i.e. the number of Gaussian components) from the data.
For computation efficiency, we use a parallel sampler for the
model inference. Our experiments are conducted on the corpus
provided by the zero resource speech challenge. Experimental
results show that the unsupervised DPGMM posteriorgrams ob-
viously outperform MFCC, and perform comparably to the pos-
teriorgrams derived from language-mismatched phoneme rec-
ognizers in terms of the error rate of ABX discrimination test.
The error rates can be further reduced by the fusion of these two
kinds of posteriorgrams.
Index Terms: Bayesian nonparametrics, Gibbs sampling,
acoustic unit discovery, Gaussian posteriorgrams, ABX dis-
crimination

1. Introduction
In many state-of-the-art speech applications, a considerable
amount of labeled speech data and language-specific linguis-
tic knowledge (such as phoneme definition and pronunciation
dictionary) are needed to build reliable statistical models. It is
time-consuming and expensive to acquire these resources. Even
worse, in some languages, there is no written form and the lin-
guistic knowledge may be even completely absent. This leads
to the increasing interest in unsupervised speech processing in
recent years. Acoustic pattern matching [1–3] and unsuper-
vised discovery of subword units [4–13] from the raw speech
of a low-resource language are being studied. It is generally
assumed that only untranscribed data is available for the target
language in the study. These techniques have been applied to
applications, such as topic segmentation [14, 15], spoken term
detection [4, 16], spoken document classification [17] and sum-
marization [18], etc.

Acoustic pattern matching was first studied with spectral
features (e.g. MFCC) [1]. Later on, GMM posteriorgrams, one
kind of model-based posteriorgrams, was introduced to acous-
tic pattern discovery [2, 16]. This kind of posterior features has
been shown less sensitive to speaker variation and better perfor-
mance than spectral features. It is suitable for the case when
only untranscribed data is available. Noteworthily the posteri-
orgrams derived from phoneme recognizers and unsupervised
subword models have also been used in low-resource applica-

tions [7, 8, 19]. In additional to posteriorgrams, there are works
on frame-based embedding representation motivated by mani-
fold learning [20–22] and deep learning [10, 11, 23].

In this paper, we are interested in deriving posterior fea-
tures whose model adapts to the untranscribed data. GMM pos-
teriorgram is a suitable choice where each Gaussian component
can be considered as a cluster of sounds from various speak-
ers [2]. However, in real situation, development data may not
be available, so the model complexity (i.e. the number of Gaus-
sian components) cannot be known easily. This motivates us
to derive posteriorgrams from Dirichlet process Gaussian mix-
ture models (DPGMMs). DPGMM is a mixture model with
infinite components. It has been successfully applied to unsu-
pervised lexical clustering of speech segments [24]. We expect
that DPGMM can also serve well in frame-level clustering so
that it can provide effective features that highlight the linguistic
content with their good speaker-independence in speech pattern
discovery.

Moreover, we adopt a parallel sampler [25] for the
DPGMM inference in our study. The training of DPGMM is un-
avoidably slow because of the sampling based inference. More-
over, a Bayesian nonparametric model relies on the amount of
training data to fit a suitable model. Thus an efficient inference
algorithm which is scalable to a large amount of training data is
desired. Note that in addition to the use of DPGMMs for lexi-
cal clustering, a Bayesian nonparametric model [19] that jointly
performs segmentation, subword unit discovery and modeling
of the subword units for untranscribed speech has been pro-
posed. However, parallel inference of this kind of models has
never been considered in these speech applications.

We evaluate our proposed features on a minimal-pair ABX
phoneme discrimination task [26,27]. This task, which only re-
quires the generated features and a proper distance metric for
the features, provides a straightforward way to measure the dis-
criminability between two sound categories. In some previous
studies, the learned subword models are evaluated by their clus-
tering performance (e.g. measured by purity) with reference
manual subword labels. In this case, there is an assumption on
language-specific knowledge (e.g. number of subword units) in
the generated features and the evaluation metric. This evalua-
tion approach is not suitable for evaluating the features derived
from a Bayesian nonparametric model. Alternatively, many
proposed features [8, 19] derived from unsupervised subword
modeling are usually evaluated with a relevant application, such
as spoken term detection. However, some postprocessing tech-
niques (e.g. score normalization and pseudo-relevance feed-
back in spoken term detection), which are usually application-
specific, may be able to tolerate the defects in the features.



∞ ∞ N 

π
k 

z
i 

x
i 

θ
k 

α θ
0 

Figure 1: Graphical representation of Dirichlet process Gaus-
sian Mixture Model (DPGMM).

As a result, the evaluation metrics of the application, such as
mean average precision (MAP) and actual term-weighted value
(ATWV) in spoken term detection, may not directly indicate the
effectiveness of the proposed features.

2. Dirichlet Process Gaussian Mixture
Model

We employ Dirichlet process Gaussian mixture model
(DPGMM), also referred to as infinite Gaussian mixture model
(IGMM), to conduct frame-level clustering and extract posteri-
orgrams. DPGMM is a Bayesian nonparametric model which
can automatically learn the number of components according to
the observed data. It is more suitable for an unsupervised sce-
nario in which no language-specific knowledge exists, or there
is no development data in the target language.

2.1. Definition of Generative Process

The graphical representation of DPGMM is illustrated in Fig-
ure 1. Given a group of observations, X = {xi}Ni=1, a DPGMM
is constructed according to the following generative process of
X :
(1) Generate the mixing weights π = {πk}∞k=1 according to a

stick-breaking process [28];
(2) Generate a set of parameters {θk}∞k=1 of a Gaussian mix-

ture model (GMM) according to their prior distribution
named Normal-inverse-Wishart (NIW) distribution [29]
with parameters θ0;

(3) For each observation xi to be generated, assign a compo-
nent label zi according to the mixing proportion π;

(4) Generate xi according to the zi-th Gaussian component.

The above process can be expressed as

π ∼ GEM(α), (1)
θk ∼ NIW(θ0), (2)
zi ∼ Multi(π), (3)
xi ∼ N (θzi). (4)

Here GEM denotes the stick-breaking process, θk =
{µk,Σk}(k = 1, 2, ...,∞) is a set of parameters including
the mean vector, µk, and covariance matrix, Σk of the k-th
Gaussian component. θ0 = {m0,S0, κ0, ν0} parameterizes
the prior distribution in form of NIW where m0 is prior mean
for µk, S0 is proportional to the prior mean for Σk, κ0 is the
belief-strength in m0, and ν0 is the belief-strength in S0.

2.2. Inference of DPGMM

Various algorithms [30–34] have been studied for inference of
DPGMMs. Some of them [30, 31] are based on sampling us-
ing a Markov chain Monte Carlo (MCMC) scheme while oth-
ers are based on variational inference [32–34]. In our work,
we need an algorithm which explicitly represents the mixing
weights π for the computation of GMM posteriorgrams, and

can be highly parallelized so that the inference can be scalable
to a huge amount of speech frames. Due to these requirements,
we employ a parallelizable split-merge-based sampler [25]. It
alternates between a restricted DPGMM Gibbs sampler and a
set of split/merge moves to construct an exact MCMC sampling
algorithm to conduct posterior sampling-based inference. The
rest of this sub-section summarizes the procedures of the split-
merge-based sampler.

(1) Restricted DPGMM Gibbs sampling. This part re-
stricts z to be sampled only from the existing labels based on
the fact that any realization of z belongs to a finite number of
components. We denote the label assignment as Z = {zi}Ni=1

where zi ∈ {1, 2, ...,K}(i = 1, 2, ..., N). Note that Dirich-
let process (DP) has a property that the measure on any finite
partitioning of the measurable space is distributed according to
a Dirichlet distribution. As a result, the posterior sampler of
π = (π1, π2, ..., πK , π′

K+1) can be expressed as

(π1, ..., πK , π′
K+1) ∼ Dir(N1, N2, ..., NK , α), (5)

where π′
K+1 denotes the sum of all empty component weights

and Nk is the number of observed data assigned with label k.
α can be interpreted as the relative probability of assigning an
observed data with a new component label. The sampling of
θk = {µk,Σk} can be expressed as

µk,Σk
∝∼ NIW(mk,Sk, κk, νk), ∀k ∈ {1, 2, ...,K}, (6)

where a
∝∼ b denotes sampling a from distribution proportional

to b and the parameters of NIW are computed as follows:

κk = κ0 +Nk, νk = ν0 +Nk,mk =
κ0m0 +Nkx̄k

κk
,

Sk = S0 +
∑

{i:zi=k}

xix
T
i + κ0m0m

T
0 − κkmkm

T
k ,

where x̄k is the mean of {xi|zi = k}. And zi can be sampled
as follows:

zi
∝∼

K∑
k=1

πkN (xi|µk,Σk)1[zi = k]. (7)

where 1[zi = k] is a K-element vector whose zi-th element
equals 1 and others equal 0. Note that Eqs.(5)-(7) can be paral-
lelized and compose a restricted DPGMM Gibbs sampler.

(2) Split/merge sampling. The previous part only samples
labels from existing components so that it constructs a non-
ergodic Markov Chain (MC) that one does not expect. Thus
split/merge moves of the existing components emerge since it
can form an exact ergodic MC. In the split/merge sampling pro-
cedure, there are two steps: (a) splitting each component into
2 sub-clusters to supply candidates for split moves; and (b)
Metropolis-Hastings split/merge.

(2-a) Generating sub-clusters. Each component is split
into 2 sub-clusters with mixing weights π̃k = {π̃k,l, π̃k,r} and
θ̃k = {θ̃k,l, θ̃k,r}, and each observed data xi is assigned with
a sub-cluster label z̃i ∈ {l, r} indicating which sub-cluster
it belongs to. The sampling is independent between different
components and is parallelizable. To sample parameters of sub-
clusters and sub-cluster label assignments, we use the following
steps (∀k ∈ {1, ...,K},∀i ∈ {1, ..., N},∀s ∈ {l, r}):

π̃k = (π̃k,l, π̃k,r) ∼ Dir(Nk,l + α/2, Nk,r + α/2), (8)

θ̃k,s
∝∼ N (xk,s|θ̃k,s)NIW(θ̃k,s|θ0), (9)

z̃i
∝∼

∑
{i:z̃i=s}

π̃zi,sN (xi|θ̃zi,s). (10)



where Nk,s(s ∈ {l, r}) is number of observed data assigned
with sub-cluster label s in cluster zi.

(2-b) Metropolis-Hastings split and merge. After the sub-
cluster-related variables including ṽk = {π̃k, θ̃k, Z̃k}(Z̃k =
{z̃i|zi = k}Ni=1, k = 1, ...,K) are sampled according to
Eqs.(8)-(10), we propose split or merge moves in a Metropolis-
Hastings (MH) fashion. In the following description, the hat
on the top of variables (e.g. π,θ, π̃, θ̃,Z, Z̃) denotes the pro-
posal for the variables. Q ∈ {Qsplitc , Qmergem,n} denotes
proposal move selected randomly from split move or merge
move where Qsplitc denotes splitting component c into m and
n, Qmergem,n denotes merging components m and n into c.
Conditioned on Q = Qsplitc , the proposed variables are sam-
pled as follows:

(Ẑm, Ẑn) = splitc(Z, Z̃), (11)

(π̂m, π̂n) = πcπsub,πsub = (πm, πn) ∼ Dir(N̂m, N̂n), (12)

(θ̂m, θ̂n) ∼ q(θ̂m, θ̂n|X , Ẑ, ˆ̃Z), (13)

(ˆ̃vm, ˆ̃vn) ∼ p(ˆ̃vm, ˆ̃vn|X , Ẑ), (14)

and conditioned on Q = Qmergem,n , we propose samples as
follows:

Ẑc = mergem,n(Z), (15)
π̂c = π̂m + π̂n, (16)

θ̂c ∼ q(θ̂c|X , Ẑ, ˆ̃Z), (17)
ˆ̃vc ∼ p(ˆ̃vc|X , Ẑ). (18)

In Eqs.(11)-(18), the function splitc(·) splits the labels of
component c according to the assignment of sub-clusters,
mergem,n(·) merges labels of components m and n, Ẑk =

{zi|zi = k}Ni=1(k ∈ {m,n, c}), and N̂k(k ∈ {m,n}) denotes
the number of observed data labeled with k. Eqs.(13) and (17)
proposing θ̂k(k ∈ {m,n, c}) are actually the same as Eqs.(6)-
(7) and thus we simplify the distribution as q. To sample ˆ̃vk

for a new proposed component from distribution p(·), we run a
Gibbs sampler described in Eqs.(8)-(10). With the “Hastings ra-
tio” H computed as suggested in [25], the proposed split/merge
moves above are accepted with probability min{1,H} in an
MH-MCMC framework. The Hastings ratio for merge moves
above may decay sharply so that merge proposal is hardly ac-
cepted, thus a random merge sampler is employed to propose
merge moves [25]. Note that, after the Hastings ratio deter-
mines the split/merge moves, sampling parameters of the new
components can be parallelizable.

2.3. Generation of DPGMM Posteriorgrams

In our application, the observed data are speech frames X =
{xi}Ni=1. DPGMM are inferred with K components together
with their mixing weights, π = (π1, ..., πK), mean vectors,
µ = {µk}Kk=1 and covariance matrix, Σ = {Σk}Kk=1. The
posterior probability of the k-th component conditioned on i-th
observed speech frame, xi, can be computed as follows:

pi,k = p(ck|xi) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

. (19)

Then Pi = (pi,1, ..., pi,K)(i = 1, ..., N) forms a posterior-
gram.
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Figure 2: Error rate (%) of ABX discrimination test on posteri-
orgrams of GMM with different numbers of components.

3. Experiments
3.1. Corpus and Setup
To evaluate the effectiveness of our proposed features, experi-
ments were conducted on the corpus provided by the zero re-
source speech challenge. This corpus consists of a 10 hour En-
glish dataset [35] and a 5 hour Xitsonga dataset [36]. Following
the track 1 of the challenge, our evaluation metric is error rate
in the ABX discriminability task [26, 27]. Supposing S(x) and
S(y) are two sets of acoustic examples corresponding to cate-
gory x and category y, the correct rate (c) of ABX discrimina-
tion is calculated as follows:

c(x,y) =
1

m(m− 1)n
Σa∈S(x)Σb∈S(y)Σx∈S(x)\{a}

(δd(a,x)<d(b,x) +
1

2
δd(a,x)=d(b,x)),

where m and n are the number of examples in S(x) and S(y),
d(x, y) denotes the DTW divergence, δ is an indicator function.
As suggested in [37], cosine distance was used for MFCC fea-
tures, and KL-divergence was used for posteriorgrams to com-
pute DTW divergences. The finally reported scores are the error
rates of within-speaker and across-speaker ABX discrimination
task where the correct rates are averaged over all found contexts
for a given pair of central phonemes and then over all pairs of
central phonemes [37].

We firstly removed the silence regions in the English ut-
terances. Silence detection was not performed on the Xit-
songa dataset because we observed that the Xitsonga dataset
is relatively silence free. Then 39-dimensional MFCCs (13-
dimensional MFCC+∆+∆∆) were extracted with a 25ms anal-
ysis window and a 10ms window shift, and followed by mean
and variance normalization (MVN) and vocal tract length nor-
malization (VTLN). Stopped at the 1500-th iteration, two
DPGMMs were trained with 8 cores of a workstation (In-
tel® Xeon®CPU W3520 @2.67GHz, 4GB memory). We con-
sumed 9.33 hours and 6.52 hours for the English and Xitsonga
datasets respectively. And then DPGMM-based posteriorgrams
(DPGPG) are computed as the described in 2.3. The parameters
including α and θ0 = {m0,S0, κ0, ν0} need manual setting in
training. m0 and S0 are set as the global mean and covariance
of the post-processed MFCCs, respectively. ν0 is set to 41 as
the common choice suggested in [38]. We conducted an ini-
tial study of the influences of α and κ0 illustrated at Figure 3.
Unless stated otherwise, α and κ0 are set to 1.

We also compared our proposed features with MFCC
and posteriorgrams derived from language-mismatched super-
vised phoneme recognizers. Posteriorgrams derived from
language-mismatched phoneme recognizers have widely been
used in a typical zero-resource task, such as query-by-example
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Figure 3: Study of performances over α and κ0 on Xitsonga dataset. (a)-(b): Performance over α; (c)-(d): Performance over κ0.

spoken term detection. In our experiment, phoneme state-
posteriorgrams from BUT phoneme recognizer [39] for Czech
(CZPG), Hungarian (HUPG) and Russian (RUPG) were evalu-
ated together with a fusion version of them (FUPG).

3.2. Results and Discussion

Table 1: Error rates (%) of ABX discrimination test.

Feature
English Xitsonga

NDim Within
(%)

Across
(%)

NDim Within
(%)

Across
(%)

MFCC 39 17.2 26.8 39 19.6 30.8
DPGPG 385 10.8 16.3 321 9.6 17.2
CZPG 138 11.4 17.2 138 11.8 16.8
HUPG 186 11.1 16.5 186 11.7 17.2
RUPG 159 11.7 17.3 159 11.3 15.6
FUPG 483 10.4 15.8 483 12.0 15.5

DPGPG+ 868 9.7 14.9 804 9.5 15.0FUPG

Tabel 1 summarizes the evaluation results in both within-
speaker and across-speaker tests together with the dimension
(NDim) of acoustic features. Our results of MFCC slightly dif-
fer from the baseline in [37] probably due to that our MFCC
is 39-dimensional with ∆ and ∆∆. As illustrated in Table 1,
DPGMMs inferred 385 and 321 components on the English
and Xitsonga dataset respectively. More components being in-
ferred in the English dataset is possibly because of more di-
versified speech characteristics due to less strict recording con-
dition. Compared with each kind of phoneme state posterior-
grams (CZPG, HUPG and RUPG), DPGPG obtained the low-
est within-speaker error rate on both datasets. In terms of the
across-speaker error rate, DPGPG performed comparably to
each kind of phoneme state posteriorgrams, and DPGPG even
outperformed each of them on the English dataset. DPGPG also
showed comparable performance to FUPG. We believe that dif-
ferent kinds of posteriorgrams characterize the test utterances in
different aspects and carry complementary information, and the
lowest error rates are obtained in the two datasets through the
fusion of features (DPGPG+FUPG).

We trained a set of parametric GMMs with different num-
ber of components on the Xitsonga dataset using the voicebox

toolkit [40]. The error rates of the corresponding GMM-based
posteriorgrams together with that of DPGMM posteriorgrams
are plotted in Figure 2. We observed that DPGMM can learn a
proper number of components.

Figure 3 shows the effect of different values of α and κ0.
Figure 3.(a) and (c) plot the log-likelihood curves against the
number of iterations when different values of α and κ0 are used.
We observed that convergence of DPGMM is stable against dif-
ferent hyper-parameter values. Figure 3.(b) and (d) show that
the number of inferred mixture components varies in a small
range between 300 and 321, and between 295 and 321 when
altering the values of α and κ0 respectively. The posterior-
grams extracted on different settings of hyper-parameters give
similar results of within-speaker and across-speaker error rates.
Illustrations above indicate that we can get stable DPGMM
posteriorgrams with little worry about the influence of hyper-
parameters.

4. Conclusions

We adopt a parallel sampler for the inference of DPGMMs. The
restricted Gibbs sampler with proposed split/merge moves facil-
itates parallelization, which leads to an efficient inference algo-
rithm which is scalable to a large amount of speech frames. Our
experiments show that DPGMM can determine the best number
of Gaussian components itself without parameter tuning in a
development set, and the inference of DPGMM is insensitive to
the choice of the hyper-parameters. This is particularly suitable
for low-resource scenarios. Moreover, the DPGMM posterior-
grams can perform comparably to the phoneme state posterior-
grams derived from language-mismatched phoneme recogniz-
ers.
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