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Abstract13

Dynamic latent variable modelling has provided a powerful tool for understanding how popula-14

tions of neurons compute. For spiking data, such latent variable modelling can treat the data as a15

set of point-processes, due to the fact that spiking dynamics occur on a much faster timescale16

than the computational dynamics being inferred. In contrast, for other experimental techniques,17

the slow dynamics governing the observed data are similar in timescale to the computational18

dynamics that researchers want to infer. An example of this is in calcium imaging data, where19

calcium dynamics can have timescales on the order of hundreds of milliseconds. As such, the20

successful application of dynamic latent variable modelling to modalities like calcium imaging21

data will rest on the ability to disentangle the deeper- and shallower-level dynamical systems’22

contributions to the data. To-date, no techniques have been developed to directly achieve this.23

Here we solve this problem by extending recent advances using sequential variational autoen-24

coders for dynamic latent variable modelling of neural data. Our system VaLPACa (Variational25

Ladders for Parallel Autoencoding of Calcium imaging data) solves the problem of disentangling26
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deeper- and shallower-level dynamics by incorporating a ladder architecture that can infer a27

hierarchy of dynamical systems. Using some built-in inductive biases for calcium dynamics, we28

show that we can disentangle calcium flux from the underlying dynamics of neural computation.29

First, we demonstrate with synthetic calcium data that we can correctly disentangle an underlying30

Lorenz attractor from calcium dynamics. Next, we show that we can infer appropriate rotational31

dynamics in spiking data from macaque motor cortex after it has been converted into calcium32

fluorescence data via a calcium dynamics model. Finally, we show that our method applied to33

real calcium imaging data from primary visual cortex in mice allows us to infer latent factors34

that carry salient sensory information about unexpected stimuli. These results demonstrate that35

variational ladder autoencoders are a promising approach for inferring hierarchical dynamics in36

experimental settings where the measured variable has its own slow dynamics, such as calcium37

imaging data. Our new, open-source tool thereby provides the neuroscience community with the38

ability to apply dynamic latent variable modelling to a wider array of data modalities.39

INTRODUCTION40

Dynamic latent variable modelling has been a hugely successful approach to understanding the41

function of neural circuits. For example, it has been used to uncover previously unknown mechanisms42

for computation in the motor cortex1,2, somatosensory cortex3, and hippocampus4. However, the43

success of this approach is largely limited to datasets where the observed variables have dynamics44

whose timescales are much faster than the dynamics of the underlying computations. This is the45

case, for example, with spiking data, where the dynamics governing the generation of individual46

spikes are much faster than the dynamics of computation across the circuit. This makes it possible to47

characterise the observed data, e.g. the spiking data, as a set of point-processes that can be used48

directly for inferring latent variables.49

However, many datasets in the life sciences are generated by a hierarchy of dynamical systems,50

wherein the shallower-level dynamical systems that directly generate the observed data have temporal51

dynamics whose timescales overlap with that of the deeper-level dynamical system to be inferred. A52

clear example of this is in-vivo calcium imaging data, which is widely used in neuroscience. Thanks to53

advances in imaging technology and genetically encoded calcium indicators, calcium imaging enables54

monitoring of the activity of large populations of genetically targeted neurons in awake behaving55
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animals5,6. However, calcium imaging introduces an additional layer of a relatively slow dynamical56

system between the computations occurring in the brain and the measurements that neuroscientists57

make. This problem is outlined in Figure 1A, in which calcium fluorescence observations, x, depend58

on the state of calcium flux, z1, which is governed by a shallower-level dynamical system with59

temporal dynamics on the order of hundreds of milliseconds. These dynamics are driven, in part, by60

perturbations due to spikes, u1, which are themselves governed by a computational state, z2, with a61

similar timescale in its dynamics to the calcium flux (and which itself can be perturbed independently62

by unknown inputs, u2, that may also have slow dynamics). Due to the overlap in timescales, it is63

impossible to identify immediately which components of the calcium fluorescence data are driven64

by the dynamics of calcium flux, and which are driven by the deeper-level latent dynamics of neural65

computation. Ideally, neuroscientists would have a method for inferring both the shallower-level66

calcium dynamics and the deeper-level computational dynamics in order to uncover the hierarchical67

dynamical systems that generated their data. Such a tool would significantly benefit the systems68

neuroscience community.69

Currently, these problems are treated separately. For situations where the observed data can be70

treated as a point process, we have good techniques for inferring the deeper-level dynamics. For71

example, recent applications of sequential variational autoencoders with recurrent neural networks72

have seen great success in inferring underlying computations from extracellular spiking data2. This73

technique, named Latent Factor Analysis of Dynamical Systems (LFADS), has improved neuroscien-74

tists’ ability to infer underlying neural computations from spiking data, e.g. it has been used to identify75

latent rotational reaching dynamics and to decode reaching behaviour of macaques and humans with76

higher fidelity than other techniques. Many other approaches using deep neural networks have also77

been successful in finding latent temporal structure in population spiking data, including those using78

piece-wise linear recurrent neural networks7, generative adversarial networks8, transformers9, and79

self-supervised dual-predictor networks10.80

Although LFADS has significantly advanced our ability to analyze neural data in the form of spike81

trains, it does not address the problem highlighted above for calcium imaging, wherein the calcium82

dynamics introduce an additional shallower-level dynamical system whose timescale overlaps with83
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the timescale of neural computation. In a calcium imaging scenario, what we observe is a filtered84

point process with emission noise, also known as a shot-noise process, in which our observations can85

be modelled as a point process that triggers an event with a stereotyped dynamical profile, along with86

independent white noise. In reality, this is also what we observe in electrophysiological experiments.87

However, the dynamics of events in such cases do not distort the inference of point-processes to the88

same degree.89

Theoretically, this problem could be solved independently by first inferring spikes from calcium90

data, whether by deconvolution (e.g., OASIS)11, variational inference (e.g., DeepSpike)12, dynamic91

programming13, or multiple other methods14–17, and then applying LFADS. However, this approach92

treats each calcium trace as a completely independent variable when inferring calcium dynamics.93

This ignores correlations in population activity that inform the separation of calcium dynamics (which94

are independent of population activity) from computational dynamics (which are not independent of95

population activity). If this separation is sub-optimal, then inference of the deeper-level system will be96

impaired.97

Here, we address this problem by extending LFADS with a variational ladder autoencoder98

architecture18 that folds the calcium dynamics inference into the larger inference problem (Fig. 1B).99

Our system, VaLPACa (Variational Ladders for Parallel Autoencoding of Calcium imaging data),100

incorporates inductive biases for calcium dynamics and, thanks to the ladder architecture, is able101

to infer the deeper-level dynamical system better than an approach that treats inference of calcium102

dynamics and deeper-level dynamics as separate problems. Hierarchical Bayesian approaches to103

extracting neural population level statistics from calcium imaging data have had success in past, e.g.104

in estimating connectivity in neuronal networks19 and detection of discrete activity motifs in neuronal105

assemblies20, but none have yet directly attempted to infer latent low-dimensional nonlinear dynamics106

in population activity.107

First, we show, using synthetic data, that we are able to reconstruct ground-truth latent dynamics108

from synthetic calcium traces. Next, we apply VaLPACa to spiking data from macaque motor cortex109

that has been converted into calcium fluorescence traces using a calcium dynamics model. We110

show that we are able to recover rotational dynamics from this “calcified” data just as LFADS111
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identifies rotational dynamics from spiking data. Finally, we show using real 2-photon calcium112

imaging data from mouse primary visual cortex that VaLPACa can identify deeper-level latent factors113

that carry information about unexpected visual stimuli. Altogether, our work shows the benefits114

of incorporating the calcium dynamics inference procedure into the larger inference problem. It115

also provides neuroscientists with a new, open-source tool for analyzing calcium imaging data116

in order to identify deeper-level dynamics. Given the importance of calcium imaging to modern117

systems neuroscience, we believe that VaLPACa will be a very useful analysis tool for the community.118

Furthermore, our VaLPACa could be adapted to other neuroscience data modalities, such as fMRI119

data which, like calcium imaging, comprises both fast deeper-level latent brain dynamics and slower120

shallower-level blood oxygen measurement dynamics21. Beyond this, we believe that our approach121

may be applicable to other life sciences domains, for example insurance claim modelling, where better122

identifying the relatively slow dynamics underlying the observed variables, such as claim submission123

distributions over time, could improve forecasting accuracy22.124

MODEL DEFINITION125

VaLPACa extends the variational ladder autoencoder (VLAE) approach18 with recurrent neural126

networks (RNNs) (Fig 1B, Fig S1 for full directed acyclic graph), which enables inference of hierarchical127

latent dynamical systems. VLAEs were proposed as a way to prevent hierarchical variational128

autoencoders loading all of the latent code onto the shallowest level of the hierarchy (the problem129

of latent variable collapse in hierarchical inference). They do this by positioning more expressive130

networks deeper in the hierarchy to ensure that that deeper- and shallower-level features could be131

stored in different parts of the latent state. Crucically, no hierarchy is assumed among stochastic132

latent variables directly.133

More explicitly, For layers 1 : L in the hierarchy134

P (z1, ..., zL) =
∏

l

P (zl) (1)

135
Q(zl|x) = fl(hl) (2)

5
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Figure 1: A) Hierarchy of dynamical systems (Top). schema of calcium and Lorenz dynamics

(Bottom). B) Schema of our hierarchical model. Latent dynamics model in blue (right column),

calcium dynamics model in red (middle column).

136

hl = gl(hl−1) (3)

where h0 = x, and gl and fl are neural networks with increasing degrees of expressivity as l137

increases. This encourages more abstract features to be represented in certain portions of the latent138

state.139

This is in contrast to traditional hierarchical autoencoders that assume a Markovian structure in140
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the latent variables141

P (x, z) = P (x|z1)
L−1∏

l=1

P (zl|zl+1)P (zL) (4)

The key insight from18 is that under idealised assumptions for sampling and maximization of the142

ELBO, the ELBO for hierarchical VAEs in this form can be optimised by minimizing the KL divergence143

for the shallowest layer of the model hierarchy DKL(Q(z1|x)||P (z1|x)). This means that traditional144

hierarchical VAEs will tend to load all representations onto the shallowest level of the hierarchy.145

In contrast, by splitting the latent code by abstractness and parameterising the factorised posterior146

distribution with increasingly expressive functions, the VLAE can be trained with the simple ELBO147

formulation used in non-hierarchical VAEs.148

For VaLPACa, this means we separate the shallower-level inference and the deeper-level inference149

into parallel pathways for inference and generation (1B, orange arrow: h1 → h2). We subsequently150

recombine these levels in the generative network (1B, pink arrow: ft → u1,t). This approach has two151

major advantages: 1) It solves the problem of latent variable collapse in which all latent features are152

loaded onto the lowest-order variables in the hierarchy. 2) It retains a very simple formulation for the153

variational/evidence lower bound (ELBO) that is easily reparameterisable18,23. We will now outline154

how VaLPACa does this more explicitly by specifying the generative process, inference model, and155

cost function.156

VALPACA PROBABILISTIC MODEL157

First, we will briefly review the model of LFADS2 and the extensions that make it possible to infer158

dynamic latent variables from calcium fluorescence traces.159

3.1 LFADS Generative Model160

LFADS assumes that neural activity x is generated from a low dimensional non-linear dynamical161

system with unknown initial conditions subjected to unknown control inputs. The state of the low-162

dimensional non-linear dynamical system is modelled by the hidden state gt of a Gated Recurrent163

Unit (GRU) receiving control inputs ut. The prior for the initial conditions g0 is assumed to be normal164

with mean µg0
and variance σ2

g0
. External inputs are assumed to have an autoregressive process165

7
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prior with process mean µu, process variance σ2
u, and time constant τu,166

P (gt) = N (µg0
, σ2

g0
) (5)

167

P (u1) = N (µx, σ
2
u) (6)

168

P (ut|ut−1) = N (µu + e
−1

τu (ut−1 − µu), σ2
u(1 − e

−1

τu )) (7)

169

gt = GRU(gt−1,ut) (8)

The hidden states of the GRU are then projected to a low-dimensional set of factors ft170

ft = Wfgt + bf (9)

In Pandarinath et al. 2 , the neural activity being modelled was single-trial spikes extracted from171

electrophysiological data in macaque and human motor cortex. LFADS assumes a simple observation172

model for spiking data where the spike count observed in a given time-bin xt follows an independent173

Poisson process parameterised by the instantaneous firing rate λt. To obtain the instantaneous174

firing rate, low-dimensional factors ft are linearly projected to the dimensionality of the data and a175

non-linearity enforcing positivity is applied, in this case the exponential function.176

λt = exp(Wλft + bλ) (10)

177

P (xt|λt) = Poisson(λt) (11)

3.2 Calcium Fluorescence Generative Model178

Before describing how the low dimensional dynamic factors are used to generate calcium fluorescence179

data, we first describe our probabilistic model for calcium fluorescence transients. We assume that180

calcium fluorescence transients are generated by an autoregressive process ct occluded by white181

emissions noise ǫ and perturbed by an unknown spike train st.182

Probabilistic models of unknown spike counts in calcium fluorescence data typically assume a183
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Bernoulli distribution, or some continuous approximation thereof12. This is somewhat problematic184

given that fluorescence is sampled at a rate of 10-30 Hz, leaving time-bins large enough to observe185

more than one spike per time-bin. As such, we wanted to use a simple continuous approximation186

to a Poisson distribution to infer spike counts in each bin. For this purpose, we used a log-normal187

approximation,188

P (st) = ReLU(LogNormal(µst
, σ2

st
) − 1) (12)

This approximation is easily reparameterizable since we can sample from a lognormal distribution by189

transforming samples from a normal distribution with an exponential function. The ReLU function and190

subtraction of 1 from samples ensures that many counts are zero. Furthermore, this parameterization191

permits a simple closed-form ELBO calculation.192

Spike counts are then used to perturb an autoregressive process modelling the slow decay of193

calcium transients c(t) after a spike. A simple autoregressive model for calcium transients is the194

AR(1) process. With discretised time, this can be modelled with Euler updates195

ct = ct−1(1 + ln γ) + κst (13)

where γ = exp(−∆t
τc

), with ∆t the size of time bin and τc the decay of calcium transients, and196

with ∆t < τc. This parameterization was chosen to reduce variability during gradient descent, and197

required restricting the domain γ ∈ (0, 1). κ is a constant gain term controlling the effect of spikes on198

fluorescence.199

To convert calcium transients to fluorescence Ft we assume a linear independent Gaussian noise200

model of emissions with constant variance σ2
F ,201

P (Ft|ct) = N (ct, σ
2
F ) (14)

9
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3.3 VaLPACa generative model202

To tie LFADS and our observation model for calcium fluorescence together, we will adjust the notation203

slightly to make the hierarchical positioning of latent variables clearer. The variables of the deeper-204

level model of LFADS are denoted by the subscript l = 2, whereas the variables of the shallower-level205

model of observed calcium fluorescence are denoted by the subscript l = 1. For consistency and206

notation simplicity, we denote variables that are the state of a dynamical system by gl,t and inputs to207

the dynamical system as ul,t.208

We observe neural activity x in the form of single-trial calcium fluorescence traces. We assume209

that fluorescence follows a simple autoregressive process gl=1 perturbed by an unknown set of spike210

counts ul=1 and subject to additive white emissions noise. We also assume that spike counts ul=1211

are influenced by the state of a nonlinear dynamical system with unknown initial conditions gl=2,t=0212

and unknown inputs ul=2.213

As in LFADS, the nonlinear dynamical system is modelled by a GRU. The hidden state of the214

GRU gl=2,t is projected to a low-dimensional set of factors ft215

P (g2,0) = N (µg2,0
, σ2

g2,0
) (15)

216

P (u2,1) = N (µu2
, σ2

u2
) (16)

217

P (u2,t|u2,t−1) = N (µu2
+ e

−1

τu2 (u2,t−1 − µu2
), σ2

u2
(1 − e

−1

τu2 )) (17)

218

g2,t = GRU(gl,t−1,u2,t) (18)

219

ft = Wfg2,t + bf (19)

For approximate spike counts to be informed by the dynamic factors ft, we sample according to220

zt ∼ P (zt) = N (µz, σ
2
z) (20)

221

u1,t = ReLU(exp(Ws[zt, ft] + bs) − 1) (21)

10
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using the continuous approximation to spike counts described in section 3.2.222

Although this factorization separates the generation of approximate spikes counts from the223

dynamic latent factors, for the formulation of the loss function we treat u1,t as if it is generated from a224

homogeneous Poisson process with intensity λt = exp(Wλft + bλ), i.e.,225

P (u1,t|λt) ≈ Poisson(λt) (22)

We then use these approximated spikes counts to perturb the state gl=1,t of an AR(1) process226

g1,t = g1,t−1(1 + ln γ) + κu1,t (23)

The likelihood of the observed fluorescence in a given time bin xt is then modelled as normal227

random variable with a mean dependent on the state of the AR(1) process.228

P (xt|g1,t) = N (d(g1,t), σ
2
x) (24)

where again d(·) is an optional function modelling dye kinetics. In our case d(g1,t) = g1,t.229

3.4 VaLPACa inference network230

The inference network of VaLPACa parameterises the approximate posterior distributions Q(g2,0|x),231

Q(u2,t|x) and Q(z|x). As per the ladder architecture18 these posterior distributions take the form232

Q(z|x) = qθ(pφ(x)) (25)

233

Q(u2,0|x) = rψ(pφ(x)) (26)

where p(·), q(·), r(·) are neural networks parameterised by φ, θ, ψ respectively. The combination234

of latent space factorization and parameter sharing ensures that dynamics can be disentangled235

effectively18.236

As in LFADS, the approximate posterior distribution over the initial conditions to the nonlinear237
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dynamical system Q(g2,0) is parameterised separately using a bidirectional Gated Recurrent Unit238

(BiGRU)239

Q(g2,0|x) = N (µg2,0
, σ2

g2,0
) (27)

240

µg2,0
= W

µg2,0 hg2,0 + b
µg2,0 (28)

241

σg2,0
= exp(

1

2
W

σg2,0 hg2,0 + b
σg2,0 ) (29)

where hg2,0 is the final hidden state of a bidirectional Gated Recurrent unit242

hg2,0 = [h
g2,0,fwd

T ,h
g2,0,bwd
0 ] (30)

h
g2,0

t = BiGRU(h
g2,0

t−1,xt) (31)

= GRU([h
g2,0,fwd
t−1 ,h

g2,0,bwd
t+1 ],xt) (32)

where h
g2,0,fwd
t is the state of a GRU running forward sequentially over the input, and h

g2,0,bwd
t is243

the state of a GRU running backward sequentially over the data.244

The functions fφ(·), gθ(·), hψ(·) are modelled by pairs of recurrent neural networks. As in LFADS,245

we use bidirectional GRUs followed by unidirectional controller GRUs receiving representations from246

the generative network. The bidirectional GRU is defined as before247

hu1,t = BiGRU(hu1,t−1,xt) (33)

248

hu2,t = BiGRU(hu2,t−1,h1,t) (34)

From this point the inference model splits into the two levels of the hierarchy. The hidden state hut249

is passed through the a controller GRU which takes feedback from the generated samples250

c1,t = GRU(c1,t−1, [h
u
1,t,ut−1]) (35)
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251

c2,t = GRU(c2,t−1, [h
u
2,t, ft−1]) (36)

The states of the controller GRU are then linearly transformed onto the parameters of a normal252

distribution253

Q(zt|x) = N (µzt
, σ2

zt
) (37)

254

Q(u2,t|x) = N (µ2,t, σ
2
2,t) (38)

255

µzt
= Wµz c1,t + bµz (39)

256

σzt
= exp(

1

2
Wσz c1,t + bσz ) (40)

257

µu2,t
= Wµu2 c2,t + bµu2 (41)

258

σu2,t
= exp(

1

2
Wσu2 c2,t + bσu2 ) (42)

3.5 VaLPACa loss function259

To construct the cost function of VaLPACa, we start from the evidence lower bound (ELBO)260

P (x) ≥ Ez,u2,g2,0∼Q(z,u2,g2,0|x)[logP (x, u1|x̂, λ)] (43)

−DKL(Q(z, u2, g2,0|x)||P (z, u2, g2,0))

= −LELBO

where x denotes the observed data and x̂ denotes the reconstructed data.261
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With our model, this factorises as

−LELBO = Ez,u2,g2,0∼Q(z,u2,g2,0|x)[logP (x|x̂)] (44)

Eu2,g2,0∼Q(z,u2,g2,0|x)[logP (u1|λ)]

−DKL(Q(u2,g2,0|x)||P (u2,g2,0))

−DKL(Q(z|x)||P (z))

Since u1,t is a continuous random variable that we are treating as if it came from an independent,262

homogeneous Poisson process with parameter λt, we approximate the log-likelihood with263

logP (u1|λ) =
∑

t

logP (u1,t|λt) (45)

≈
∑

t

u1,t log λt − λ− u1,t = −Lspike (46)

This approximation is very similar to the true log-likelihood of a Poisson distribution. The key264

difference is that the log-factorial term over the observations is replaced with the identity over the265

observations, i.e., log u1,t! ≈ u1,t. In deep learning applications, the log-factorial is often dropped266

entirely from the Poisson log-likelihood (see e.g., the Pytorch implementation and default setting1). It267

is sometimes replaced with a shifted log-gamma function log k! ≈ log Γ(k + 1) or an approximation268

via Stirling’s formula log k! ≈ 1
2 log 2πk. Since Stirling’s formula blows up near zero, and since the269

log-gamma function has a local minimum between zero and one, they were not deemed appropriate270

for our model.271

However, we observe that this term helps to enforce sparsity in the observations. Since this is272

desirable for inferred spike counts, we replace this term with what is essentially the L1 norm of u1,t,273

since by construction u1,t is forced to be positive.274

1https://pytorch.org/docs/stable/generated/torch.nn.PoissonNLLLoss.html
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The remaining terms of the ELBO were not approximated in any special way. As such we275

breakdown LELBO as follows,276

Lrecon = −Ez,u2,g2,0∼Q(z,u2,g2,0|x)[logP (x|x̂)] (47)

277

KL1 = DKL(Q(z|x)||P (z)) (48)

278

KL2 = DKL(Q(u2, g2,0|x)||P (u2, g2,0)) (49)

Two additional terms are also added to the cost function, L2 regularizers on the weights of the279

controller and generator network, and a regularization term for γ that both enforces the domain γ and280

allows for incorporation of prior knowledge about likely values of parameter since it is equivalent to281

the log probability of a Beta distribution over γ.282

LL2 = Ccon||W hh
con||2 + Cgen||W hh

gen||2 (50)

283

Lγ = −((α− 1) ln γ + (β − 1) ln(1 − γ)) (51)

The final cost function of VaLPACa becomes284

LV aLPACa = Lrecon + Lspikes + wKL1
LKL1

+ wKL2
LKL2

+ LL2 + Lγ (52)

where wKL1
and wKL2

are KL warmup terms that are typically used in training variational285

autoencoders. These terms slowly transition the model from a traditional autoencoder to a variational286

autoencoder, which helps to prevent pathological behaviour where the KL terms are minimised too287

early in training. This typically results in the model then generating trivial solutions. In our case, we288

use a staggered KL warm-up in which wKL1
linearly increases from 0 to 1 over epochs 0-100, and289

then wKL2
linearly increases from 0 to 1 over epochs 100-200. This allows the model to converge to290

a solution that overfits spikes to the fluorescence data first, then gradually regularises this proposed291

set of spikes by ensuring they are well explained by the low-dimensional latent factors.292
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3.6 Training293

Parameters of VaLPACa were optimised with ADAM24, with an initial learning rate of 0.01, and batch294

sizes set at 1/16th of the size of the training data. Learning rates were decreased by a factor of295

0.95 when plateaus in training error were detected. As in LFADS training, KL and L2 terms in the296

cost function were ‘warmed up’, i.e., had a weight wl∈(1,2) between 0 and 1 applied that gradually297

increased23,25. Warm-up for the deeper parameters (l = 2, blue modules in Figure 1) was delayed298

until warm-up for shallower parameters (l = 1, red modules in Figure 1) was completed. We found in299

preliminary tests that this delayed warm-up sequence was necessary for better hierarchical inference300

compared to simultaneous warm-up. As with aggressive inference network training methods26, this301

prevents issues with training of the deeper-level dynamical system parameters converging more302

slowly than the shallower-level dynamical system parameters in the initial stages of training.303

3.7 Implementation and hyperparameters304

VaLPACa was implemented in PyTorch 1.7. The majority of experiments were run on a Lenovo305

Thinkpad P51 with a built-in NVIDIA M1200 GPU. Model hyperparameters for different datasets are306

shown in table S1 and follow those chosen for LFADS2.307

RESULTS308

4.1 Lorenz Attractor Synthetic data309

4.1.1 Data Description310

As an initial test of VaLPACa, we examined its ability to infer the hierarchical dynamical systems of311

synthetic calcium fluorescence data generated from a simple model of spiking neurons. We examined312

synthetic data generated from a network with a Lorenz attractor embedded in its dynamics. This tests313

our ability to recover a ground-truth deeper-level dynamical system from the data, and has been used314

as a benchmark by many others2,27–30.315

In this system, network dynamics were used to generate a set of spike rates in simulated neurons.316

We then used a model of calcium dynamics and emissions noise to transform the spikes into synthetic317

fluorescence data. We tested VaLPACa on data generated from two models of synthetic calcium318
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dynamics: a simple linear model equivalent to an AR(1) process, and a nonlinear model in which319

an AR(1) process is transformed by a Hill function nonlinearity. We then added white noise to the320

resulting traces. This procedure is described in more detail in Appendix B.321

4.1.2 Model Comparison322

We measured the performance of VaLPACa by computing R2 goodness-of-fit with the embedded323

Lorenz attractor state variables. We also measured the ability of VaLPACa to reconstruct other324

ground-truth variables in the synthetic data (spike counts, spike rates, and fluorescence traces) using325

R2, but these were not as critical for assessing model performance.326

VaLPACa performance was compared against two baselines. First, we use LFADS with a327

Gaussian likelihood observation model to account for fluorescence (Gaussian-LFADS). Second, we328

consider the situation where spike counts are first estimated separately using the OASIS deconvolution329

algorithm11, a robust, popular, and computationally inexpensive method of spike extraction widely330

used by systems neuroscientists15,16. LFADS is then used to infer the deeper-level dynamical system331

and reconstruct the spike rates from the deconvolved spike trains. We refer to this approach as332

OASIS+LFADS throughout.333

Table 1 compares R2 goodness-of-fit in reconstructing ground-truth dynamic latent variables in334

held-out validation data. Table 1 shows VaLPACa is able to reconstruct the Lorenz attractor state335

for synthetic data with either linear or nonlinear synthetic calcium models (see Table 1 caption for336

significance test results). Indeed, the inclusion of nonlinearities in calcium dynamics does not affect337

VaLPACa’s ability to reconstruct the Lorenz attractor state as much as it does with OASIS+LFADS.338

VaLPACa is also better able to reconstruct other network state variables compared to OASIS+LFADS,339

as can also be seen in Table 1. However, it is worth noting that high accuracy in reconstructing340

other network state variables does not appear to be necessary for accurate reconstruction of the341

underlying Lorenz attractor. This indicates that VaLPACa is better suited to handling uncertainty due342

to spike-timing and is capable of separating sources of slow dynamics to reconstruct the embedded343

latent space.344

For comparison we show example outputs of VaLPACa and OASIS+LFADS in Figure 2. Figure345
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Table 1: Comparison of model performance (R2 mean+sem) on synthetic Lorenz datasets generated

with 15 different seeds. A hyphen indicates that the variable cannot be compared, as the model does

not infer it. The top row is italicised as the performance of LFADS on this task is considered the upper

limit, having no additional observation noise from fluorescence. Results of paired t-tests for testing

significance of differences in performance between OASIS+LFADS and VaLPACa within seeds for a)

linear calcium model: Lorenz state - t14 = 2.85, p = 0.013; Spike Counts - t14 = 20.67, p < 0.001;

Rates - t14 = 4.81, p < 0.001; Fluorescence - t14 = 16.2, p < 0.001. b) nonlinear calcium model:

Lorenz state - t14 = 3.29, p = 0.005; Spike Counts - t14 = 17.16, p < 0.001; Rates - t14 = 6.35,

p < 0.001; Fluorescence - t14 = 11.16, p < 0.001.

Calcium Model Lorenz state Spike Counts Firing Rates Fluorescence

NA LFADS 0.975 ± 0.001 - 0.956 ± 0.003 -

Linear
Gaussian-LFADS 0.818 ± 0.005 - 0.701 ± 0.004 -

OASIS+LFADS 0.960 ± 0.001 0.580 ± 0.006 0.912 ± 0.002 0.807 ± 0.005

VaLPACa 0.965 ± 0.001 0.817 ± 0.007 0.937 ± 0.002 0.909 ± 0.003

Nonlinear
Gaussian-LFADS 0.808 ± 0.005 - 0.650 ± 0.006 -

OASIS+LFADS 0.877 ± 0.003 0.351 ± 0.004 0.682 ± 0.005 0.843 ± 0.004

VaLPACa 0.902 ± 0.006 0.561 ± 0.010 0.756 ± 0.008 0.932 ± 0.005

2A-H provides example reconstructions from VaLPACa and OASIS+LFADS of the fluorescence346

traces (Fig 2A,E), spike rates (Fig 2B,F), spike counts (Fig 2C,G) and Lorenz attractor states (Fig347

2D,H) when using a linear model of synthetic calcium dynamics. Visually, it can be seen that both348

VaLPACa and OASIS+LFADS achieve a very close fit to the fluorescence traces, spike rates, and349

Lorenz dynamics. Both models also capture spike-timing, although spike-trains inferred by VaLPACa350

appear more smoothed due to VaLPACa’s continuous approximation and uncertainty about precise351

spike-timing. Similarly, both VaLPACa and OASIS+LFADS obtain close reconstructions for the Lorenz352

attractor states (Fig 2L,P) when a nonlinear model is used to generate synthetic data, although the353

reconstruction of other network variables 2I-K,M-O) has deteriorated to a much greater extent.354

Note that VaLPACa reconstructs the Lorenz dynamics almost as well as LFADS does when355

applied to the spiking data. Of course, it is to be expected that LFADS applied to true spiking data356

performs better than VaLPACa, since there is an additional source of observation noise from the357

generation of fluorescence transients. But, the fact that we can get very close to the same level of358

performance indicates that VaLPACa is effective at performing the same inference on calcium data that359

LFADS performs on spiking data. We speculate that the uncertainty over AR1 process parameters is360
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overcome in VaLPACa by constraining the reconstructed spike counts with the latent dynamics to361

make the inference of the observed dynamics process “population-aware”, something which cannot362

be done when using LFADS applied to spike counts obtained by OASIS deconvolution. This may363

mitigate errors in spike count reconstruction that occur by deconvolution due to the absence of364

information about whole-network dynamics. Thus, VaLPACa can use population-level dynamics when365

conducting the inference of network variables, and this helps it to separate out the shallower-level366

dynamics more accurately.367

4.2 Rotational Dynamics in Monkey Motor Cortex368

Next, we wanted to test VaLPACa on a real neural dataset to which LFADS has previously been369

applied, and successfully used to uncover meaningful latent dynamics. Specifically, it has been370

shown previously that rotational dynamics underlie neuronal responses in monkey and human motor371

cortex during reaching behaviour1. LFADS has been successful in uncovering these known rotational372

dynamics for single-trial spikes recorded from primary motor cortex (M1) and dorsal premotor cortex373

(PMd) in macaques2. To test whether VaLPACa could do the same, we took the original spiking data374

and converted it into semi-synthetic calcium traces, using the same model of calcium dynamics that375

was used for synthetic data generation in the previous sections (Fig 3A). We used data from the376

monkey electrophysiology dataset previously described, along with the reaching task, by Churchland377

et al. 1 , which was kindly provided to us by the original authors. Briefly, monkeys were trained to378

reach a target under 108 different reach conditions while multi-electrode recordings were made in M1379

and PMd. Reaches started from a specified location on a screen, and monkeys were rewarded for380

correctly reaching toward a target while avoiding on-screen obstacles (Fig 3B).381

First, to replicate the previous LFADS results, we applied jPCA1 to condition-averaged firing382

rates (trial averages for each of the 108 reach conditions), as well as single-trial firing rates inferred383

from spike data using LFADS. jPCA is a dimensionality reduction technique that finds orthogonal384

projections capturing rotational dynamics that explain variability in firing rates. The original LFADS385

paper showed that rotational dynamics explained a large amount of the variance in firing rates. As in386

the original papers, we identified both condition-averaged (Fig 3C – top) and single-trial (Fig 3C –387

bottom) rotational dynamics from firing rates inferred by LFADS, which explained a large amount of388
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Figure 2: Examples traces of inferred variables compared with ground truth in OASIS+LFADS

and VaLPACa for Lorenz attractor synthetic data with either a linear or nonlinear calcium transient

generation process. Red: Ground truth, Blue: Reconstruction. A-D) OASIS+LFADS example output

for a linear calcium transient generation process for A) Observed fluorescence, B) Spike rates, C)

Spike Counts, D) Dynamic factors. E-H) VaLPACa example output for a linear calcium transient

generation process for E) Observed fluorescence, F) Spike rates, G) Spike Counts, H) Dynamic

factors. I-L) OASIS+LFADS example output for a nonlinear calcium transient generation process for I)

Observed fluorescence, J) Spike rates, K) Spike Counts, L) Dynamic factors. M-P) VaLPACa example

output for a nonlinear calcium transient generation process for M) Observed fluorescence, N) Spike

rates, O) Spike Counts, P) Dynamic factors
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Figure 3: A) Schematic for the process of converting spikes to calcium traces, and B) for the reaching

task. C) Rotational dynamics inferred from condition-averaged (Top) and single-trial spikes (Bottom)

using LFADS. D) Same as C), but for VaLPACa. E) Same as C), but for OASIS+LFADS. Traces

are coloured based on their initial state values along jPC1 (from green to red for increasingly large

values).

the variance (R2 = 0.81), thereby replicating the original findings. Then, we evaluated VaLPACa’s389

ability to uncover the rotational dynamics of both condition-averaged and single trials from firing rates.390

As shown in Fig 3, our model also successfully uncovers rotational dynamics from calcium traces,391

explaining a large amount of variance (R2 = 0.78) for both condition-averaged (Fig 3D – top) and392

single trials (Fig 3D – bottom). These results demonstrate that VaLPACa is capable of identifying393

latent dynamics in real neural data, similar to LFADS, even when the spiking data is transformed394
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by calcium dynamics and emissions noise. We also found that the OASIS+LFADS approach was395

not as successful as VaLPACa in uncovering rotational dynamics, explaining only half the variance396

(R2 = 0.53, Fig 3E). This result corroborates the importance of the hierarchical modelling of calcium397

and neuronal dynamics in VaLPACa.398

4.3 Unexpected Stimulus Detection in Mouse Primary Visual Cortex399

Finally, we wanted to test VaLPACa on an entirely new calcium imaging dataset, to determine whether400

VaLPACa can infer dynamic computational factors that carry information about relevant features of401

the outside world. We chose to analyse data from mouse primary visual cortex (VisP), a region402

widely studied in systems neuroscience research where calcium imaging is a standard tool. There403

is evidence that the visual cortex of mammals performs a predictive function, anticipating expected404

stimuli31–34. As a result, unexpected stimuli can induce perturbations in network dynamics33,34. Thus,405

we wanted to determine whether VaLPACa could infer dynamic computational factors that carry406

information distinguishing unexpected from expected visual stimuli.407

To this end, we trained VaLPACa on calcium imaging data from the mouse visual cortex collected408

in collaboration with the Allen Institute for Brain Science35 (for a detailed description, see Appendix409

C). While awake behaving mice were presented with visual stimuli on a screen (Fig 4A), calcium410

fluorescence responses in cortical layer 2/3 of VisP were recorded using 2-photon microscopy (Fig411

4B). The mice were familiarised with sequences of stimulus frames that followed simple probabilistic412

rules. Briefly, each sequence consisted of four randomised Gabor pattern frames followed by a413

grey screen (A, B, C, D, grey) with orientations drawn for each trial from the same distribution. After414

familiarization with this sequence, the expected D frame was replaced in ∼7% of trials by a Gabor415

pattern (U) with orthogonal orientations (Fig 4C).416

Figures S2 show examples of actual fluorescence traces, the corresponding inferred spike417

counts and spike rates, and inferred latent factors generated as the output of the VaLPACa and418

OASIS+LFADS models. Notably, we see that the inferred latent factors of VaLPACa are smoother419

and less noisy compared to those of the OASIS+LFADS.420

To determine if salient information about these unexpected stimulus features was present in the421
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Figure 4: A) Schematic of 2-photon calcium imaging recording setup. Mice are head-fixed on a

running wheel under the imaging objective, and visual stimuli are projected onto a screen to the side,

B) 2-photon calcium imaging recording plane, C) Schematic example of visual stimuli for expected

(A-B-C-D-grey) and unexpected (A-B-C-U-grey) trials. D) Schema of the non-linear model trained to

decode expected vs. unexpected stimulus trials. Example latent factors inferred by VaLPACa are

plotted for an expected (blue) and an unexpected (red) trial. Each stimulus frame (A, B, C, D/U, grey)

is labelled, and its onset and offset in the trial are marked with dotted lines. Latent factors are passed

through GRU and linear modules (green), followed by a sigmoid decision function. E) Average recall

(mean ± sem) of expected vs. unexpected trials across non-linear decoders trained on principal

components of fluorescence traces (0.815 ± 0.011, green), Gaussian-LFADS factors (0.776 ± 0.004,

blue), OASIS+LFADS factors (0.810 ± 0.005, purple), and VaLPACa factors (0.871 ± 0.004, maroon).

All pairs but one (fluor. vs. OASIS+LFADS factors, marked with n.s.) were significantly different at p

< 0.05 in 2-tailed independent t-tests with Bonferroni correction for multiple comparisons. F) Top: 3D

projection of factors in principal component space separated by unexpected (red) and expected (blue)

stimulus trials for Gabor frames sequences mean orientations of 0◦, 45◦, 90◦, and 135◦. Circle = trial

start, square = frame change, triangle = trial end. Bottom: Euclidean distance between unexpected

and expected trial factor trajectories.
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inferred factors from VaLPACa, we trained a non-linear decoder to classify whether the inferred factors422

came from a trial with an expected D frame or an unexpected E frame (Fig 4 for details, see Appendix423

C). We also trained the non-linear decoder on factors inferred by OASIS+LFADS, and on fluorescence424

traces reduced in dimensionality with principal components analysis. To compare the models fairly,425

despite the imbalance between expected and unexpected trial frequencies, we measured average426

recall. We find that using the VaLPACa factors leads to the highest performance on stimulus-trial427

identity decoding, with the average recall being significantly higher than when OASIS+LFADS factors428

are used (Fig 4E). This indicates that VaLPACa infers latent dynamics from real visual cortex calcium429

imaging data that reflect the predictability of visual stimuli, corroborating the ability of VaLPACa to430

infer meaningful dynamic factors in real data.431

To examine why discrimination performance improved for latent factors inferred from VaLPACa,432

we visualised factor trajectories in a 3D space using PCA, and compared the point-wise distance433

between trajectories (Fig 4F, Fig S3). The distance between trajectories diverges starting with the434

surprise frame (Fig 4F), and furthermore, the divergence in trajectories is still present when we435

compare trials with matched orientations during the surprise frames (Fig S3). This clearly indicates436

that the factors are learning to represent surprise information separate from orientation information.437

This corroborates the findings of35, who demonstrated that L2/3 pyramidal cells receive top down438

input representing surprise information.439

DISCUSSION440

In this paper we presented VaLPACa, a hierarchical recurrent variational autoencoder model capable441

of reconstructing latent computational dynamics. We confirmed VaLPACa’s ability to reconstruct442

known underlying dynamics using synthetic datasets where ground-truth was known. We also showed443

that VaLPACa is able to infer sensorimotor dynamics from real neural recordings. This indicates that444

VaLPACa is a promising method for analyzing calcium imaging data in neuroscience.445

There are two key advantages of VaLPACa over the use of deconvolution of calcium traces446

followed by application of LFADS. The first is that we can obtain measures of the uncertainty in447

both the latent dynamics, and the latent spike counts. The second is that VaLPACa performs better448

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.434105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434105
http://creativecommons.org/licenses/by-nc-nd/4.0/


than OASIS+LFADS when nonlinearities in calcium dynamics are present, as is the case in real449

experimental data where there are many sources of calcium influx related to spikes.450

While we have demonstrated how powerful VaLPACa can be as a tool for analysing calcium imag-451

ing data, it is likely not the only way to approach this problem. Alternative continious approximations452

to spike counts could still be explored, such as the zero-inflated Gamma model36 or techniques453

using the Gumbel-Softmax trick20,37. An interesting approach that we did not explore is to generate454

fluorescence traces directly from firing rates by marginalising over spike counts38, in which case a455

ladder architecture might not be necessary. Additionally, while we have shown that VaLPACa has456

better performance than a Gaussian-LFADS model on 2-photon imaging data, a simple Gaussian457

observation model will be effective for inferring nonlinear latent dynamics in wide-field calcium imaging458

data where spiking noise from individual cells does not dominate the signal so heavily, as shown by39.459

Finally, while we found that a linear model of calcium dynamics was sufficient to infer nonlinear latent460

dynamics, it would be a relatively simple extension to explore nonlinear calcium dynamics models.461

We designed VaLPACa to fit into a much broader class of artificial neural network models, namely462

sequential variational ladder autoencoders, in which different layers of recurrent neural networks can463

be used to infer and generate different layers of a hierarchical dynamical system. In this sense, this464

class of models is modular and composable, meaning it could readily be adapted to other domains.465

For example, it should be possible to replace LFADS as the deeper-level dynamical system model466

with any other differentiable model. Likewise the same is true for our AR1 based model of calcium467

dynamics: we could replace the calcium dynamics model with other models as required by the468

experimental set-up. Furthermore, there is no need to stop at two layers in the hierarchy; the brain469

is comprised of many interconnected recurrent neural networks sending long range signals to one470

another, and it should be possible to add in additional modules to capture additional hierarchies471

and dynamics within the brain. To date, we are unaware of any other instances of models in this472

class, however we believe our results from VaLPACa demonstrate that sequential variational ladder473

autoencoders are a useful model class for developing deep hierarchical inference algorithms.474

In summary, VaLPACa is a new, open source tool for inferring hierarchical dynamics from calcium475

imaging data that also has great potential for being modified and applied to other data modalities. This476
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could be of real benefit to the thousands of neuroscience laboratories around the world conducting477

calcium imaging experiments.478
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VARIABLE GLOSSARY620

Table S1: Glossary of variables, with descriptions and dimensionality across datasets

Dimensions

Variable Description Lorenz M1/PMd VisP

xt Fluorescence signal 30 202 96

h1,t Calcium dynamics embedding encoder state 128 200 128

h2,t Computational dynamics embedding encoder state 64 100 128

c1,t Calcium dynamics embedding controller state 128 200 128

c2,t Computational dynamics embedding controller state 0 0 64

g1,t Calcium dynamics embedding state 100 200 128

z2,t Computational dynamics embedding state 64 100 200

u1,t Approximate spike counts 30 202 96

u2,t Computational dynamics perturbations 0 0 1

g1,t Calcium dynamics 30 202 96

ft Dynamic factors 3 40 32

x̂t Reconstructed fluorescence signal 30 202 96
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SYNTHETIC DATA GENERATION621

As discussed in the main text, synthetic calcium fluorescence data was generated by embedding622

a Lorenz Attractor in the dynamics of a spiking neural network. Two models of calcium dynamics623

were then used to transform spikes to calcium transients, with additive emissions noise added to the624

resulting traces.625

The Lorenz Attractor is a nonlinear dynamical system with 3 states x1, x2, x3 commonly used to626

study chaotic dynamics. The dynamical system is defined by,627

dx1

dt
= σ(x2 − x1) (53)

dx2

dt
= x1(ρ− x3) − x2 (54)

dx3

dt
= x1x2 − βx3. (55)

(56)

This system was parameterised in its typical chaotic regime with σ = 10, β = 8/3, ρ = 28. These628

states were then normalised to have a mean of zero and a range of [−1, 1].629

The state of this system x was then randomly projected onto the firing rate of a population of630

N = 30 neurons,631

λt = exp(Wxt + b) (57)

with W ∼ N (0, 1√
N

I), and b = 1. Spike counts in time-bin t for neuron i si were then sampled632

using a Poisson distribution633

si,t ∼ Poisson(λi,t∆t) (58)

where ∆t is the width of a time-bin. For our simulations, we used ∆t = 0.1s.634
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Calcium fluorescence traces were then modelled in one of two ways. The first method modelled635

calcium concentration in neuron i ci as an exponentially decaying variable with time constant τ = 0.3636

and perturbations by spikes637

dci
dt

=
−ci
τ

+ si. (59)

Fluorescence was then modelled by adding white emissions noise with standard deviation638

σF = 0.2.639

Ft = ct + ǫt ǫ ∼ N (0, σF ) (60)

The second method for generating synthetic calcium traces added an intermediary step between640

calcium influx and observed fluorescence. As previously, spikes were integrated with a slow-varying641

exponentially decaying variable c as described in Equation 59. A hill function was used to capture the642

nonlinear binding kinetics of calcium to the indicator dye,643

dt =
cnt

1 + γcnt
(61)

with hill coefficient n = 2, and γ = 0.0001. These parameters were chosen based on parameter644

fits in Deneux et al. 13 . Finally white noise was added to these resulting traces to provide synthetic645

fluorescence traces,646

Ft = dt + ǫt ǫ ∼ N (0, σF ) (62)
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MOUSE VISP DATASET647

The 2-photon calcium imaging data used here is part of the OpenScope project dataset35, collected648

by the Allen Institute for Brain Science in Seattle, WA. All animal procedures were approved by649

the Institutional Animal Care and Use Committee at the Allen Institute for Brain Science. Neuronal650

activity was recorded in head-fixed, awake Cux2-Cre mice on a running wheel40 (Fig 4A) expressing651

the calcium indicator GCamP6f41 in layer 2/3 pyramidal cells of VisP (Fig 4B). The mice were652

first habituated to a repeating, expected stimulus over 6 days, after which unexpected trials were653

introduced. The stimuli were adapted from42. In each expected trial, 4 consecutive sets of 30 Gabor654

patches appeared in sequence for 300 ms each, followed by 300 ms of grey screen (A, B, C, D, grey).655

For each set, the locations and sizes of the Gabor patches were held constant within a session.656

However, within each trial, each Gabor patch’s orientation was sampled from a von Mises distribution,657

with trial mean sampled from {0, 45, 90, 135}◦ and standard deviation 0.25◦. In expected trials,658

occurring ∼7% of the time, the D set was replaced with a distinct set E, with its own locations and659

sizes. In addition, the Gabor patch orientations for E sets were sampled from a von Mises distribution660

with mean shifted positively by 90◦ (Fig 4C). Processed fluorescence (dF/F) traces were extracted661

from the calcium imaging recordings for the putative neurons identified, as described in35,40.662
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Figure S1: Directed acyclic graph for hierarchical model. Solid arrows denote deterministic mappings,

open arrows denote sampling steps.
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Figure S2: Samples of actual and reconstructed fluorescence traces, inferred spike count, spike

rates and latent factors in OASIS+LFADS and VaLPACa
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Figure S3: Top: 3D projection of factors in principal component space separated by unexpected (red)

and expected (blue) stimulus trials for Gabor frames sequences where the surprise and non-surprise

frame have the same mean orientation, and all other frames have orthogonal mean orientations.

Circle = trial start, square = frame change, triangle = trial end. Bottom: Euclidean distance between

unexpected and expected trial factor trajectories. Two pairs of conditions are omitted as they do not

match due to Gabor patch asymmetry.

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.434105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434105
http://creativecommons.org/licenses/by-nc-nd/4.0/



