Parallel Interior Point Solver

for Structured Linear Programs
Jacek Gondzio Robert Sarkissian

December 4th, 2000
Revised February 2nd, 2002 and November 17th 2002

MS-2000-025

For other papers in this series see http://www.maths.ed.ac.uk/preprints
To appear in Mathematical Programming.



Parallel Interior-Point Solver for Structured Linear Programs*

Jacek Gondzio!  Robert Sarkissian?

Department of Mathematics & Statistics
The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ
United Kingdom.

December 4th, 2000, revised February 2nd, 2002 and November 17th 2002

*Supported by the Engineering and Physical Sciences Research Council of UK, EPSRC grant GR/M68169.
Accepted for publication in Mathematical Programming.
"Email: gondzio@maths.ed.ac.uk, URL: http://maths.ed.ac.uk/ gondzio/
YEmail: Robert.Sarkissian@hec.unige.ch, URL: http://ecolu-info.unige.ch/~logilab/sarkissian/sarkissian.html



Parallel Interior-Point Solver for Structured Linear Programs

Abstract

Issues of implementation of an object-oriented library for parallel interior-point methods are
addressed. The solver can easily exploit any special structure of the underlying optimization
problem. In particular, it allows a nested embedding of structures and by this means very
complicated real-life optimization problems can be modelled. The efficiency of the solver
is illustrated on several problems arising in the optimization of networks. The sequential
implementation outperforms the state-of-the-art commercial optimization software. The
parallel implementation achieves speed-ups of about 3.1-3.9 on 4-processors parallel systems
and speed-ups of about 10-12 on 16-processors parallel systems.
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1 Introduction

Optimization models often involve system dynamics, uncertainty, spatial distribution or other
factors that lead to huge problems made up of small, nearly identical parts which have to be
coordinated through time, uncertainty, space or other dimensions. These real-life models present
a challenge to the state-of-the-art optimization software and sequential processing hardware.
As a consequence, they need specialized optimization approaches and considerable computing
facilities.

Many real-life linear programs (LPs) display some particular block structures that deserve special
treatment by an optimization code. A well-known example is the block-angular structure of
constraints that can be handled by a decomposition approach [4, 11]. Decomposition allows
tight control of memory requirements and considerable computational efficiency, in particular
through parallel computation [5].

An alternative is to use a direct solution method. There are two major approaches to the
solution of linear programs: simplex method [10] and interior-point method [28]. There exist
efficient implementations of both methods for general problems. An advantage of interior-point
methods (IPMs) is that they require a number of iterations that is almost independent of the
problem size [2, 22]. For very large problems they are sometimes substantially faster.

The implementations of both direct approaches might exploit the structure in many different
ways. Some general purpose solvers use heuristics to detect certain structures and then take
advantage of them. For example, simplex solvers look for network constraints while interior-point
solvers detect dense columns.

There are several papers that address the issues of structure exploitation in the implementation
of interior-point methods. A nonexhaustive list includes: [6, 9, 15, 16, 18, 19, 26, 27]. These
papers describe specialized algorithms each exploiting one particular structure of the constraint
matrix. Some of them [16, 19, 26] present dedicated parallel implementations of these methods.

Another approach is to incorporate in a solver a set of routines that can support any structure.
An object-oriented implementation of such a set of routines within the context of an interior-
point solver is the subject of this paper.

The approach takes advantage of inclusion polymorphism: we define a class for matrix operations
from which we derive all other classes. This abstract matrix class contains a set of virtual
functions (methods in the object-oriented terminology) that:

e provide all the necessary linear algebraic operations for an IPM, and

e allow self-referencing.

Among derived classes we define elementary ones for sparse, dense, network, identity and pro-
jection, as well as classes for block-structured matrices such as block-diagonal, primal block-
angular, dual block-angular. Definitions of the latter use references to abstract matrix classes
(place-holder objects). This self-referential property of our block-structured matrix classes al-
lows us to represent a variety of nested structures.
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We assume that the stuctured LP constraint matrix is built of a nested set of blocks. The
hierarchy of blocks can be naturally represented as a tree: its root is the whole matrix, in-
termediate nodes are block-structured submatrices and the leaves are the elementary blocks.
The tree defines how the different class objects are combined to represent the matrix structure.
In this context the root corresponds to the matrix seen by an interior-point method, any leaf
node corresponds to one of the elementary matrices and any intermediate node corresponds to
a block-structured matrix.

Block-matrix operations are natural candidates for parallelisation. We have therefore imple-
mented all higher-level matrix clasess in parallel. The parallelisation is coarse-grained and so is
well suited to large scale linear programming applications.

With our object-oriented design of an interior-point method we expect to achieve three goals:

e reduce storage requirements of the algorithm (in consequence, to be able to solve larger
problems);

e accelerate the computations by doing more block matrix operations; and

e cnable easy parallelization of the algorithm.

The paper is organized as follows. In Section 2 we briefly discuss the linear algebraic operations
required to implement the interior-point method. In Section 3 we introduce the tree represen-
tation of the block-structured matrices and discuss certain features of the abstract matrix class,
the crucial object used in our design to support the notion of block. In Section 4 we discuss the
special structures of the problems that are most often met in practical applications. In Section 5
we address issues of design and implementation of the object-oriented library used to handle lin-
ear algebraic operations of block-structured matrices. In Section 6 we describe several network
optimization problems that have been used to illustrate the efficiency of our new interior-point
code. In Section 7 we discuss numerical results and finally, in Section 8, we give our conclusions.

2 Linear Algebra in Interior-Point Methods

The theory [28] and the implementation [2, 22] of interior-point methods for general linear
programs are very well understood. It seems that for very large LPs with unknown structure
interior-point methods are often a better choice than the simplex method, at least for solving
isolated problems. The efficiency of IPM strongly depends on the linear algebra.

The dominant computational task in an interior-point method [2] is the solution of the following

linear equation system
—o~1 AT Az | | r (1)
A 0 Ay | | h |’

where A € R™*™ is the LP constraint matrix, © € R™ " is a diagonal scaling matrix that
changes at every iteration, r and h are right hand side vectors, and Az and Ay are Newton
directions in the primal and dual spaces, respectively. The matrix of the linear system (1) is
symmetric but indefinite. By substituting

Az = ©ATAy—or,
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we get the symmetric, positive definite system

(AOAT)Ay = g = AOr + h. 2)

Almost all interior-point solvers use either (1) or (2) and usually split the solution of these linear
equation systems into two steps [2]:

e factorization to LLT form,

e backsolve to compute direction Ax and Ay.

The factorization LL” is either the Cholesky or another symmetric triangular decomposition.
Although in general purpose IPM codes these linear algebraic operations are implemented with
particular care, the solvers cannot in general take advantage of the special structure of matrix
A in the inversion of the matrix in the system (1) or (2). An exception is the detection of
dense columns in matrix A and handling them by the Schur complement mechanism, which is
an option available in some interior-point solvers.

In this paper we assume that the augmented system (1) is always reduced to the normal equations
(2). (It does not imply, however, that the normal equations matrix A©A” is explicitly formed.)
We further assume that an inverse representation of A©A” is computed. This representation
may be implicit, i.e., it does not necessarily have the form of a symmetric LLT factorization.
However, the representation provides an efficient method for the solution of equations involving
AOAT,

An implicit inverse representation offers certain advantages over explicit Cholesky factorization.
First, it often requires significantly less memory than Cholesky factorization of AOAT. Secondly,
in many cases it better exploits the sparsity of A and leads to CPU time savings compared with
the Cholesky factorization. Moreover, it exploits block matrix operations and allows natural
parallelization of computations. Finally, by working with small block matrices a lot of paging
can be avoided and cache memory is used more efficiently.

To implement an interior-point method for linear programming one can use the following linear
algebraic operations to be done with matrix A € R™*™ and vectors of appropriate dimensions:

e Given A, z, y and ©, compute Az, ATy and AGAT,
e Given AOAT compute the inverse representation (factorization) AOAT = LLT, (3)

e Given L and g, solve Lz =g or LTz = g.

These operations are an integral part of the abstract matrix class used in our solver. It is worth
noting that an interior-point algorithm does not need to know how these operations are executed;
it needs to access only their results.

We take advantage of this property to define a polymorphic matriz class, which is a class of
algebraic operations for interior-point methods.
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Figure 1: Example of Block-Structured Matrix A.
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Figure 2: Tree Representation of Blocks.
3 Block-Structured Matrices

There are many structures that can be exploited by an interior-point solver. We restrict our
discussion to those in which the LP constraint matrix A is built of blocks. There are two
reasons for that. First, such structures are most often met in practice because they reflect the
presence of dynamics, uncertainty, space distribution or other similar factors in the optimization
problem. Secondly, block matrix structures can and should be exploited in any optimization
algorithm that heavily involves linear algebraic operations, and the interior-point method is such
an algorithm.

We assume that the special structure of A is known to the user. This is different from the
approach of [12] in which an anonymous linear program (not necessarily specially structured)
is reordered to a special form that can be exploited by an optimization algorithm. In [12] any
matrix is reordered to a bordered block-angular form by a special reordering heuristic like the
one of [21] and then the problem is solved by an optimization algorithm specialized for this
particular structure.
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3.1 Tree Representation of Block-Structured Matrices

With a given block-structured matrix we associate a tree that defines the embedding of blocks.
Every node in this tree corresponds to a block of the matrix. An arc indicates the embedding of
blocks. The root of the tree is the whole matrix, and its leaves correspond to elementary blocks
that are not partitioned into smaller entities. Any intermediate node of the tree corresponds to
some submatrix that is further partitioned into blocks; the nodes corresponding to these blocks
are children of a given node. Figure 1 gives an example of the structured matrix and Figure 2
shows the corresponding tree.

The tree provides a complete description how the matrix is partitioned. In the example of
Figure 1 the matrix is first partitioned into blocks Fi, F5, E1 and Fo corresponding to dual
block-angular structure. Block Fj has also dual block-angular structure: it is partitioned into
subblocks Aj, As, Cy and Cy. Block F5 has primal block-angular structure with three diagonal
blocks D1, D5, D3 and three row-border blocks By, By, Bs.

With every node of the tree we associate the type of the block-structure. We will say for example
that A is a dual block-angular matrix with 2 diagonal blocks, F} is also a dual block-angular
matrix with 2 diagonal blocks, F5 is a primal block-angular matrix with 3 diagonal blocks, and
all the remaining nodes are elementary matrices, e.g., sparse, dense, network, etc. Every type of
the block structure corresponds in our implementation to a particular Matrix object class.

Observe that the type of the node determines how the linear algebraic operations for the corre-
sponding block of the matrix should be executed. Consider one of the simplest operations such
as the matrix-vector product computed with A. The type of node A in the tree implies that
the operation will be split into 4 subblocks F}, Fy, E1 and F», corresponding to children of this
node. In cases of nodes E7 and FEs that correspond to elementary blocks, this operation would
invoke a routine appropriate for the given type of the node. For nodes F; and F5 the same
operation will have to be split further into subblocks — children of nodes F; and F5. However,
the same operation of matrix-vector product will be executed in a different way for nodes F}
and Fy because the types of these nodes are different.

3.2 Linear Algebraic Operations for Block-Structured Matrices

We have already seen that the form of the tree and the types of its nodes determine the unique
way in which matrix-vector multiplication with A should be unfolded to gather the results of
partial matrix-vector multiplications from all its submatrices. We also observe that to compute
a matrix-vector product for any node in the tree one only needs to know the results of matrix-
vector products computed for all children of this node; one does not have to know how these
products are computed. This is a key feature that we shall exploit in a definition of a polymorphic
abstract matrix class for linear algebra operations on block-structured matrices.

Note that a block is a submatrix of the original matrix: the operations on the original matrix
induce operations on its blocks. Also, a block may itself be block-structured. Therefore, there is
a recursivity which should be supported in the definition of a block. Among the blocks we will
distinguish elementary blocks, i.e., those which are not composed of smaller entities and derived
blocks, i.e., those which are partitioned into smaller blocks.
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We now consider the set of operations that are required to implement linear algebra for nested
block-structured matrices. This set of operations Fx has to satisfy the closure condition: any
operation for a derived block can be obtained by combining operations for its subblocks. We
have seen that (3) was the set of operations required by an IPM, hence Fx should cover (3).

To illustrate this condition better, let us observe that the matrix-vector product operation
for block-structured matrices needs only matrix-vector product operations for subblocks. For
efficiency reasons, certain more complicated linear algebraic operations for block-structured
matrices (building A©AT, factorizing it, etc) may need additional operations. Below we give
a complete list of these operations used in our design of an abstract matrix class. The reasons
for some of them will become clearer after discussing in more detail the inverse representations
used for block-angular matrices.

Below we assume that A is a block of the LP constraint matrix, the vectors z and y are parts
of the vectors corresponding to this block, and the matrix © is a diagonal scaling matrix cor-
responding to this block. We also assume that the inverse representation of A©A” preserves
symmetry so we write it in a form A© AT = LL”. However, matrix L should not be understood
as the Cholesky factor of A©AT. It may be a part of an implicit inverse representation. The
abstract Matrix class has to provide the following linear algebraic operations:

e compute AOAT for a given O,

e compute the inverse representation LLT = AQAT,

e compute the solution of equation (A0AT)z =y,

e compute the solution of equation Lx = y,

e compute the solution of equation LTz =y,

e compute the product Az =y,

e compute the product ATz =y,

e retrieve column j of A,

e solve a triangular equation with the column j of A, i.e., compute x = L_la.j,

e solve a triangular equation with the ith unit vector, i.e., compute z = L™ 'e;.

We denote this set of operations by Fyx.

4 Exploitable Structures

We allow any structure to be exploited in the linear algebraic operations of the interior-point
method. We allow many different structures to be exploited within the same framework.
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To make a given structure exploitable, we developed a set of routines that implement the nec-
essary linear algebraic operations. These routines can be invoked directly by the interior-point
method and also indirectly to deal with subblocks of intermediate blocks. The approach is flexi-
ble enough to allow many kinds of matrices to be included in it. Obviously, adding a new matrix
class needs some programming effort. However, adding it always expands the class of problems
that can be modelled within our system.

As a starting point, we have implemented a set of elementary matrix classes (general sparse
matrix, general dense matrix, network adjacency matrix, identity matrix, projection matrix)
and a set of block-matrix classes (block-diagonal matrix, primal block-angular matrix and dual
block-angular matrix). We shall describe some of them below.

Two elementary matrix classes for general sparse and dense matrices are the major blocks the
other classes are often built of. They provide all the necessary operations to solve linear programs
in which matrix A is a general sparse or a general dense matrix, respectively. We have developed
three more specialized elementary matrix classes for network, identity and projection matrices.
Although these matrices could be treated as general sparse matrices, we found the presence of
the corresponding classes useful in modeling certain network optimization problems.

A first example of a potentially exploitable block structure is the so-called staircase structure
which is often found in mathematical programs that model dynamic processes. The simplex
method can take advantage of this structure [13], both in the routines that handle the basis
inverse and in the pricing. However, we have not developed a specialized matrix class for this
structure because it is naturally expressed by a general sparse matrix. Indeed, Cholesky factors
of AOAT matrices preserve the staircase form and display moderate fill-in.

We have developed matrix classes for two block-angular structures, primal block-angular and
dual block-angular. The numerical operations required by these matrices are rather straight-
forward; they rely on some elementary linear algebra for block structured matrices and can
be found for example in [7]. These techniques are widely used in optimization and are spread
across optimization literature under different names. We recall them below and use them to
illustrate our developments. To simplify the discussion and the mathematical formulae we omit
the diagonal scaling matrix ©. This matrix does change the normal equations system but it
does not change the sparsity pattern (structure) of this system so it can be dropped without
reducing the generality of our discussion.

4.1 Primal Block-Angular Structure

Suppose a block of the constraint matrix of the linear program has the primal block-angular

structure
Ay

Az
A= : (4)
Ay
By By -+ B, Bnu
where A; € R™i*" ¢ = 1,...,n and B; € R™*™ 4 = 1,...,n + 1. Matrix A has then M =
S ym; rows and N = Y n; columns.
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The corresponding normal equations matrix has the form

A AT A BT
Ag AT AyBY
AAT = : , (5)
A AT A, BT
B1AT ByAT ... B, AT C
where
n+1
C=)> BB/ (6)
=1

Its bordered form is preserved by the Cholesky factorization. We compute the following implicit
inverse
A AT = LI, i=1,2,...n
B; BATL;T, i=1,2,..,n (7)
S=C-Y",BB' = LgLL.

Assume a vector g € RM is given and we want to solve equation AATz = g. We then par-
tition both vectors z and g accordingly to the row partition of matrix A into blocks z =
(21,22, .y 2n,25) and g = (g1, 92, ---, gn, gp) and solve the sequence of triangular equation sys-
tems:
Livi = Gi, 1= 1,2, s
Lsu = gp— i BiA,LTL;TUZ‘
=1 (8)

ngB = u

LTz = v —L;'A;Bl 25, i=1,2,..,n.

It is worth noting that the order in which matrix multiplications are performed in (7) and (8)
may have a significant influence on the overall efficiency of the solution of equation AATz = g.
In many cases, for example, it is advantageous to compute S in (7) as a sum of outer products of
columns of matrices B;. Similarly, B;ATL; Ty; in (8) can almost always be computed fastest if
the order of multiplications is the following B;(A7 (L; 7v;)). An important reduction of memory
requirements can be achieved by avoiding storing blocks B; by dealing with them in an implicit
form. Indeed, even if the matrix L; is very sparse, its inverse may be quite dense, which would

inevitably lead matrix B; = BiA;fFL;T being quite dense.

Summing up, important savings can be achieved in the storage requirements as well as in the
efficiency of computations if the linear algebraic operations exploit the block structure of matrix
A. Last but not least, exploiting block structure allows an almost straightforward parallelization
of many of the computational steps in (7) and (8).
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4.2 Dual Block-Angular Structure

Suppose a block of the constraint matrix of the linear program has the dual block-angular
structure

Ay C

A C
A= ° . (9)

A, C,
where A; € R™>*™ j=1,...n and C; € R™>*¥ i = 1,...,n. Matrix A has then M = 37, m;
rows and N = k + > ;- n; columns.

The corresponding normal equations matrix has the form

A AT

A, AT

AAT = +ccT,

Ap AT

where C = [C],CT,...,CIT € RM*¥ defines a rank-k corrector. The matrix AAT may be-
come very dense if columns of C' are dense. Should this happen, the Cholesky factorization of
AAT would become prohibitively expensive. As in the previous section, it is advantageous to
apply an implicit inverse. This relies on the Sherman-Morrison-Woodbury formula and requires
computing the following factorization:

AAT = LT, i=1,2,..n

C; LGy, i=1,2,..,n (10)
S=1I,+ 2?11 CZTCZ' = Lng.

Having defined a block-diagonal matrix
LLT = diag(L;LT), (11)
the inverse of AAT can be expressed in the following way:

(AAT)"1 = (LLT 4+ cCcT) ! (12)
= (LIt —(LLhy-tes—tot (L)t
with all inversions easy to compute. This formula can farther be simplified to exploit the
Symmetry

(AAT)~t = N1 —-r-tos~toT-1L1

T(I _ és_léT)L_l. (13)

I~
I~

Assume a vector g € RM is given and we want to solve equation AATz = g. We partition both
vectors z and g accordingly to the row partition of matrix A into blocks z = (21, 29, ..., 2,) and
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9= (91,92, ..., gn) and execute the sequence of multiplications and triangular solves:

Livi = g, 1=1,2,....n
u = 'n CiTLZ-_TUZ'
Lst = u (14)
Lgv =t
LIz = v—L7'Cw, i=1,2,..,n.

Again it is worth noting that the order in which multiplications in some of the equations in (10)
and (14) are executed may have a significant influence on the overall efficiency of the solution
of equation AA”z = g. In many cases, for example, it is advantageous to compute S in (10) as
a sum of outer products of columns of matrices C’ZT . Similarly, the result of the multiplication
Civ = L;lCiv in (14) can almost always be computed fastest if the multiplication C;v is done
first and it is followed by only one triangular solve with L;. As in the case of the primal block-
angular matrix, an important reduction of memory requirements can be achieved by avoiding
storing blocks C; and instead dealing with them in an implicit form. Finally, many steps in (10)
and (14) can be executed in parallel.

In the case of primal and dual block-angular matrices all operations on subblocks could be
limited to the set (3). For efficiency reasons however we extend this set to a larger one, Fy.
The closure condition for Fy has to be ensured.

We have now shown that for two particularly structured matrices, the solution of linear equations
can be rearranged to take advantage of the block structure. Let us observe that many linear
algebraic operations can be done with whole matrix blocks, which leads to flexible solution
schemes for distributed computing. The implicit inverse representation offers significant storage
savings and in some cases may also result in an improvement in the speed of computations. In
a case when the available computing resources may not be sufficient to generate the whole LP
constraint matrix of some very large problem, the implicit inverse representation working with
parts of the problem may remain the only solution alternative. On the other hand, implicit
inverse representation schemes are more sensitive to accuracy issues. We are currently working
on specially adapted techniques that can be used in this context.

The presence of different matrix classes specialized for some block structure of matrices is justi-
fied whenever it can offer advantages either in the storage or in the efficiency of computations.
We have used two block-angular structures to illustrate some of these advantages. As will be
seen in the discussion in the next section, the framework we have developed allows the easy
incorporation of many specialized matrices that can exploit different block structures.

5 Design and Implementation
The implementation has certain key features that provide a significant enhancement in exploiting
block structures. Below we discuss the most important features of our design.

Though we speak of object-oriented programming, our program is written in C and we use
pointers of functions and void* pointers to implement the desired object-oriented programming
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features. For the sake of clarity, we will however use the Java programming language termi-
nology [3] to convey the ideas behind the implementation. Programs written in a higher level
language such as C++ or Java tend to be slower than those in a language like C. Given the
compilers, hardware and operating systems at the time we designed the program, we accepted
some loss of clarity to achieve good performance.

In terms of programming, a structure exploiting solver should provide the basic elements a user
may need to take advantage of a particular structure in a matrix. The solver should be easy to
extend without any modifications to existing elements. The basic elements of the solver should
provide a laboratory for rapidly experimenting with the exploitation of different structures, since
the best combination of basic elements is unlikely to be known in advance.

Finally, we stress that our object-oriented implementation need not add any overhead compu-
tation: if the structure is not exploited, the program should be as efficient as a general sparse
IPM code. However, we intend to use our implementation for structured problems and expect
to improve the performance.

5.1 Methods in the Matrix Class

One of the main difficulties in the design follows from the requirement for the Matrix object
class to be self-referencial. Indeed, we want the same Matrix class to describe all possible blocks
of the matrix, both elementary and derived. Thus the operations provided by the Matrix class
(methods in the object-oriented terminology) must be sufficient to execute any linear algebraic
operations needed by the higher level blocks. It is easier to meet this closure condition if the
set of methods Fy in the Matrix class is small. As previously observed, it would be possible to
restrict Fy to (3).

However, to make sure that the block-matrix operations will be executed efficiently we have to
add a few functions to the matrix class. These include retrieving a single column from the matrix
and solving triangular equations with this column or a unit vector as a right hand side. These
are crucial for an efficient implementation of the linear algebraic operations for block-angular
matrices, such as (8) or (14). Such operations are never accessed directly by the interior-point
algorithm; however, they can be invoked by the matrix class that corresponds to an ancestor of
a given matrix in the tree describing the block structure of the constraint matrix. We added
these operations to Fy.

Suppose a class Vector that describes vectors associated with block-structured matrices has
already been defined. We can define an abstract (or virtual) class Matrix that supports all the
operations of Fy. It is an abstract class because its methods are not defined, leaving extended
classes to provide the missing pieces:

abstract class Matrix {

abstract void ComputeAThetaAt (Vector theta);

abstract void Factorize ();
abstract void SolveAThetaAt (Vector x, Vector y);
abstract void SolveTriang (Vector x, Vector y);

abstract void SolveTransTriang (Vector x, Vector y);
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abstract void MatrixVectProd (Vector x, Vector y);
abstract void MatrixTransVectProd (Vector x, Vector y);
abstract void GetColumnofA (Vector x, int j);

abstract void SolveTriangAj (Vector x, int j);

abstract void SolveTriangUnitVect (Vector x, int i);

abstract Matrix ();

We can extend the Matrix class with concrete and final classes for each kind of block-structured
matrix we want to support. Concrete and final classes do not contain any abstract method and
will not be extended by another class. Although this construction is simple, it has proved to be
quite powerful.

We take advantage of the polymorphism of the object class Matrix (it can represent many
different objects which share the same methods) in the classes that implement a particular kind
of block structure. For instance, the class PrimalBlockAngular can be defined as:

class PrimalBlockAngular extends Matrix {

private int NumOfBlocks;
private Matrix[] DiagonalBlocks;
private Matrix[] BorderedBlocks;

Polymorphism of the class Matrix implies that we do not make any assumptions about the
classes that handle blocks of a structured matrix. DiagBlocks and BorderedBlocks correspond
to blocks A; and B; of (4), respectively. Since by definition Fx contains all the necessary
operations to implement a block-structured operation, we know that we can include Matrix
objects in the array elements of PrimalBlockAngular class. The class Matrix is self-referencing:
it is itself a Matrix object and refers to other Matrix objects.

It is worth making a simple comparison of the set of operations Fy in Matrix with the usual
implementation of the set (3) in any interior-point code. For the latter, there is essentially only
one way to define the problem: the LP constraint matrix is represented as a general sparse
matrix. With Matrix, on the other hand, the user may choose among different constructors.
The user may decide if he wants to process a structured matrix as a simple sparse matrix or
with more dedicated treatment. Clearly, how the problem is defined and what classes are chosen
will determine the way Fx operations will be computed.

In many cases, we can take advantage of the flexibility and efficiency that result from the design
of the Matrix class. For instance, we have developed three simple classes for network, identity
and projection matrices by making minor modifications to the sparse class: the matrix-vector
products were specialized for these kinds of matrices. The development of these specialized
matrix classes is straightforward. They offer nonnegligible savings in storage and efficiency
compared with the general sparse matrices: the network adjacency matrix has all elements
equal to 1 and —1; the identity matrix does not have to be stored at all; the projection P; onto
the n — 1 dimensional subspace of R" in which the ¢-th component of the vector vanishes needs
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storage of only one index. Multiplications of such matrices or their transpositions with vectors
can achieve important savings by avoiding multiplications by ones. In the examples described
below the network matrices were used as diagonal blocks in the dual block-angular factorization,
in which a large amount of time is spent in matrix-vector products computed for the diagonal
blocks.

5.2 Parallel Implementation

Our parallel implementation uses the standard MPI library and was run on a variety of comput-
ers: IBM SP2; cluster of Linux PCs, multiprocessor SUN HPC. For the cluster of PCs running
Linux we used the MPICH implementation [17] of Argonne National Laboratory and Mississippi
State University.

In the primal and the dual block-angular matrix there is substantial room for parallel compu-
tation. Most computations can be done by distributing the blocks among different processors.

A succinct sequential implementation is a good step toward a parallel one, especially in the
context of message passing parallelism where the code tends to be quite verbose. Here, the
polymorphism of Matrix is useful: if we introduce a VoidMatrix in which the methods do
nothing, we can avoid excessive processor identity testing. Code which looks like

if (myid == BlockId) {
/* Compute something with Matrix Block held
by the processor BlockId. Otherwise do nothing. */

can be often advantageously replaced by the non testing version where the distinctions are made
based on the Matrix. Only one processor loads a block whereas the others load an empty
VoidMatrix.

The parallelism affects only the abstract classes that contain reference to the Matrix class. No
attempt was made to implement elementary matrices (sparse, dense, network, identity, projec-
tion) in parallel.

6 Examples of Structured Optimization Problems

There are numerous sources of structured linear programs. Although we have developed a general
structure exploiting IPM solver, the applications described in this paper are all variations of
optimization problems arising in the design of telecommunication networks [23]. This choice is
motivated by our knowledge of these types of problems and our experience in solving them with
decomposition approaches [15, 25].

Multicommodity network flows [1] are relevant to various sectors of the economy, e.g., trans-
portation, telecommunications, etc. In these problems, commodities in a network compete for a
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common capacity. Such problems are by nature structured and they are often solved by decom-
position, see e.g., [1, 15, 20]. Multicommodity flow problems can also be solved with a specialized
interior-point method using an iterative solver to compute approximate Newton directions, as
for example in the approach of [8] that employs the preconditioned conjugate gradient method.

In networks prone to failure, the problem is to find the best way to invest in additional arc
capacity, so that in case of any breakdown in one arc, it is still possible to ship all commodities
[25]. The problem also can be viewed as a two stage stochastic programming problem, with
an investment decision in the first stage and routing decisions in the second stage. There exist
specialized implementations of interior-point methods for two stage stochastic problems [6, 19]
that use the Sherman-Morrison-Woodbury formula to take advantage of the dual block-angular
structure of the LP constraint matrix.

We will solve three different classes of network optimization problems:

e Multicommodity flow problem,
e Multicommodity flow survivable network design,

e Single-Commodity flow survivable network design.

These problems are well described in the optimization literature so we give only a brief presenta-
tion of them. The reader interested in a detailed discussion of the formulation of these problems
may consult [23, 25].

6.1 Multicommodity Flow Problem

Let a graph G = (V, £) be given where V denotes the set of its nodes and £ C {(i,7) :i € V,j €
V,i # j} denotes the set of its arcs. With every arc (i, j) we associate cost ¢;j > 0 of shipment
per unit flow through this arc and capacity K;; > 0. Assume some demands d®) k € D, are
given. Every demand specifies a flow of a different commodity to be shipped from a source or
to a target. Let vector x = (z(;;)) (i )es € RIEl define a flow in the network. A feasible flow
satisfies the flow balance equation at every node i:
dowii— Y, = di
(i,9)e€ (1,1)e€

where d; is a supply/demand of node i. For supply nodes d; > 0, for demand nodes d; < 0, and
for transshipment nodes d; = 0. Let N be the node-arc incidence matrix of G. A feasible flow
through a network that satisfies demand k is described by the following equation

Nz®) = gk,

For a simple demand, vector d*) has only two nonzero entries. Demands can be grouped,
however, leading to a more compact formulation of the optimization problem [20]; vector d®)
then has several nonzero entries.

Total flow through an arc (7, ) is the sum of all single commodity flows in the arc. This cannot
exceed the arc capacity:
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directed network undirected network

Figure 3: Structure of the minimum cost network flow problem.

Hence the minimum cost multicommodity network flow problem is the following linear optimiza-
tion problem:

. k
min > Cij > 5%(']')
(ij)eE k€D

st Y el <Ky, V(ig) €€,

keD (15)
Nzk) = gk, Vk € D,
k) >0, Vk € D.

This can be a very large linear program. Its constraint matrix has the primal block-angular
structure displayed in Figure 3. Incidence matrices N are repeated for every demand and
identity matrices appear in a linking constraint (arc capacity constraint). The formulation of the
minimum cost network flow problem for an undirected network needs every arc to be replicated
(right figure), which further increases the problem size but does not change its structure.

6.2 Multicommodity Flow Survivable Network Design

In real telecommunnication networks failures can occur and when they do customers expect that
their interrupted traffic will be swiftly restored. Broadly speaking, survivability problems aim to
ensure adequate performance of the network when some components fail. Following [25] we will
say that a network is survivable if, for any elementary failure (i.e., removal of a single edge or
node), there is a way, using some existing capacity, to rearrange the traffic assignment to meet
all demands. A necessary condition for the network to be survivable is its bi-connectivity [1].
However, this topological condition is not sufficient. An additional condition is needed to ensure
that there is enough capacity to reroute traffic affected by a given failure.

Consider the example network given in Figure 4 and assume that there are two commodities
flowing in it: from node a to node f, 3 units pass through the edges (a,h), (h,g), (g,k) and
(k, f), and from node ¢ to node d, 5 units pass through the edges (¢, h), (h,g), (g,¢e) and (e, d).
Assume the common edge (h, g) breaks down. There are two approaches to rerouting the affected
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PR

Figure 4: Arc failure in the network.

traffic.

In the local rerouting approach we will have one demand: send 5 4+ 3 = 8 units between the
endpoints h and g of the broken edge. In the global rerouting approach both affected routings
would be considered separately. Thus we would have two demands: send 3 units between a and
f, and 5 units between ¢ and d.

The goal of the network design is to enforce the connectivity and minimise the overall cost of
installing capacity.

Let an undirected graph G = (V, £) be given and let S be the set of states resulting from a failure.
A state of the network is characterized by an elementary failure and the rerouting demands that
result from this failure. There are |V| + |€| elementary failures of single nodes and arcs. If state
s represents the failure of the node v € V, then G(s) = (V(s),&(s)) is the graph (V' \ v,E \ &),
where &, is the set of arcs adjacent to node v. If states s represents the failure of the arc a € &,
then G(s) = (V(s),E(s)) is the graph (V, € \ a). For each state s, a set of demands indexed by
ks € Rs between pairs of nodes should be met. In a case of node failure any demand to send

a flow to or from the broken node has to be canceled. Let K = (K@. )(i.ivee(s) denote the
(i,5)/ (1:3)€E(s)

residual capacity of the network. Assume that we install an additional capacity y = (y(; j)) ., )ee
with cost ¢ = (c(; j))(i,j)ee- In the design of a survivable network, we look for the additional
capacity of least cost that allows the rerouting of the demands ks € R, for each state s € S.

Let N(s) denote the incidence matrix for a graph corresponding to failure s and let z(*s) denote
a feasible flow in G(s) for demand ks € R, in state s € S. Variable z(k) = (LU,E’]E'S))(Z'J)GS(S)
represents a flow that satisfies demand d*s).

Hence the multicommodity survivable network design problem is the following linear program
min 'y

st Y 2l <KS vy VseS, V(i.j) € Es),

ks€ERs
N(s) zks) = q(ks), Vs €S, Vks € R, (16)
z(ks) >0, Vs e S, Vks € R,

0<y<uy,
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Figure 5: Structure of the multicommodity survivable network design problem.

This is again possibly a very large linear optimization problem. Its special structure is dis-
played in Figure 5. The structure is a nesting of the primal and dual block-angular structures.
Every failure s induces a new network and associated multicommodity flow problem of rerout-
ing the traffic affected by this failure. Incidence matrices N(s) are repeated for every demand
corresponding to the traffic that has to be rerouted, and identity matrices appear in linking con-
straints (arc capacity constraints). The new capacity installed in the network y corresponds to
the block of columns that link all otherwise independent blocks. Thus the LP constraint matrix
has the dual block-angular structure. Each diagonal block corresponds to a multicommodity
flow problem and has primal block-angular structure.

6.3 Single-Commodity Flow Survivable Network Design

We shall now consider the problem of joint optimal investment in the base and spare capacities
of the network. The capacity of an arc (i,j) is split into y;; and z;;. The base capacity
Y = (Yj))j)ee 1s used in the normal state of the network to satisfy the demands of the
customers; the spare capacity z = (Z(i7j))(i7j)€g can be used for rerouting the traffic affected by
any failure. Installation of base and spare capacity y;; and z;; on arc (7,7) costs ¢;; and f;; per
unit, respectively.

Let N denote the incidence matrix of the original network and N(s) denote the incidence matrix
for a graph corresponding to failure s € S. Let xgg) denote a feasible flow between the source
and the target node, for a demand k € D. If arc s fails, the total flow through this arc creates
a new demand ks € R to be satisfied through the residual and spare network. Note that since
we deal with a local rerouting case, we have a single commodity: a new demand between the
extremities of the broken arc. Let z(ks) = (IESS))(Z'J)G{;(S) denote the flow in G(s) for a demand
ks € Rs in state s € §. This flow can use the capacity of the spare network z.

Hence the problem of joint optimal synthesis of base and spare capacity in the network is the
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Figure 6: Structure of the single-commodity flow survivable network design problem.

following linear optimization problem

min Ly + [Tz

keD
NP = q®, Vk € D,

E ZL‘Z(;CS) S Zijs Vs € Sa V(’L,]) € 8(8)7
ks€Rs

(ks) (17)

N(s)z'®s) = —-Q(s)y, Vs e S, Vks € Ry,
2P >0, Vk € D,
z(ks) >0, Vs € S, Vks € R,
0<y<uy,
z > 0.

The complicated special structure of this linear program is displayed in Figure 6. The first top
level diagonal block corresponds to the multicommodity flow in a base network. The following
diagonal blocks correspond to arc failures (we omit node failures in this figure). Since the flow
through a broken arc is aggregated (local rerouting), there is only one commodity in each of
these blocks and, consequently, only one incidence matrix N(s). The last two column blocks
correspond to linking variables y and z, respectively. The capacity y is used by the base network.
In case of failure, the broken arc a induces a demand through matrix Q(s) that has only one
nonzero column with exactly two nonzero entries in rows corresponding to the extremities of arc
a: dbs) = —Q(s)y. Spare capacity z is available to reroute flows in all cases of failures. Matrices
P(s) link the single-commodity flows that use the same spare capacity. For an elementary
failure of arc a, P(s) € RUEI-DXIEN is a projection matrix obtained from the identity matrix
by removing the row corresponding to arc a. Note that in the more complicated case of node
failure (that is not displayed in this figure) several arcs would be removed from the network.
Blocks corresponding to single-commodity flows could then be replaced with blocks describing
multicommodity flows. The projection matrices P(s) would then be obtained from identity
matrices by removing all rows corresponding to the removed arcs.
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Problem H Nodes Arcs Demands

RealNet 119 308 7021
Random6 100 300 200
Random12 300 600 1000
Random16 300 1000 1000
Random20 400 1000 5000

Table 1: Minimum Cost Network Flow Problems: Network Statistics.

Problem H Rows Columns ‘ Iters Time
RealNet 14232 72996 31 77.3
Random6 8715 51300 20  27.6

Random12 88506 353400 40 933
Random16 87710 581000 39 2333
Random?20 || 160201 799000 63 3899

Table 2: Minimum Cost Network Flow Problems: Solution Statistics.

The resulting LP constraint matrix has a dual block-angular form. Diagonal blocks correspond
to multicommodity or single-commodity flows and each of these has a primal block-angular
structure. The special structure is worth exploiting only for the first large block. The single-
commodity blocks are too small and are treated as general sparse matrices.

7 Numerical Results

We shall discuss in this section the computational results that illustrate the efficiency of our
structure exploiting interior-point code. We call it OOPS which stands for Object-Oriented
Parallel interior-point Solver. Although we have already applied it to solve a number of different
structured large scale optimization problems, in this paper we restrict ourselves to problems that
arise in network optimization. We demonstrate the efficiency of the code on multicommodity
network flow problems and the survivable network design problems presented in Section 6 and
described in more detail in [25].

The first class of problems—minimum cost multicommodity network flows—has attracted a lot
of attention in the mathematical programming community due to its numerous applications.
Many very efficient algorithms for this class of problems exist [1] including interior-point im-
plementations, e.g., [8]. These specialized methods usually exploit network properties better
than a general linear programming approach (like ours). Thus we do not expect to offer a really
competitive alternative approach for this class of problems; we use it only as an easy illustration
of a well known structured problem.

Unlike the minimum cost multicommodity network flow problems, the problems of survivable
network design have a more complicated structure, though they are often not so large. These
problems can take full advantage of the structure exploiting methods described in this paper.
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Problem Basic data Failure data
Nodes Arcs Routes | Failures CondDems
PB1 30 57 150 81 1110
PB2 37 71 300 102 3266
PB3 40 7 200 109 1942
PB4 45 87 300 123 3658
PB5 65 127 400 179 7234

Table 3: Multicommodity Flow Survivable Network Design: Network Statistics.

Problem Size OO0OPS CPLEX 6.0

Rows Columns | Iters Time | Iters Time
PB1 22213 72514 25 122 23 143
PB2 59021 207901 34 518 35 730
PB3 54657 188266 29 407 25 518
PB4 83561 294735 33 735 31 1131
PB5 242570 886178 48 3956 34 -

Table 4: Multicommodity Flow Survivable Network Design: Solution Statistics.

7.1 Efficiency of the Sequential Code

The solver was run on a 400 MHz Ultrasparc II Sun HPC computer using Solaris 7 and on a
Linux PC with a 300 MHz Pentium Pro processor. In this section we report results of sequential
runs. The efficiency of the parallel code is discussed in the following section.

We start with the presentation of numerical results obtained for the multicommodity network
flow problems (15). In Table 1 we report the characteristics of the networks: the numbers of
nodes |V|, arcs |€| and demands |D|, respectively. In Table 2 we report the sizes of the resulting
linear programs and the solution statistics: the numbers of iterations and the CPU time in
seconds on the Sun HPC. Although we grouped the demands to keep the sizes of the problems as
small as possible, some of them remained large and reached several hundred thousand variables.
It is worth noting that the number of interior-point iterations shows moderate growth, reaching
63 on the largest problem with nearly 800,000 variables.

The multicommodity flow survivable network design problem (16) displays a nested block spar-
sity pattern. Its constraint matrix has dual block-angular structure. Each diagonal block in it is
a multicommodity flow problem for some reduced network. We report in Table 3 several network
characteristics for the test problems: graph sizes and data for original routings (Routes), the
number of failures and the number of conditional demands created by them. The latter is a
major factor that determines the overall size of the LP formulation (16) of this problem. The
sizes of several test problems and the solution statistics for two solvers, our structure exploiting
code and CPLEX 6.0 barrier code, are reported in Table 4. To facilitate the comparison we ran
both solvers on the same Linux PC with 300 MHz Pentium Pro processor and 384 MB of RAM.
Our IPM solver was compiled with the GNU C and FORTRAN compilers gcc and g77; options
-03 -mpentiumpro were used. All solution times were measured with the Linux time command
and are given in seconds.
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Problem H Nodes Arcs Demands

T1 12 25 66
T2 26 42 264
T3 53 79 1378
P1 25 41 300
P2 35 58 995
P3 45 91 990

Table 5: Single-commodity Flow Survivable Network Design: Network Statistics.

Problem Size OO0PS CPLEX 6.0 CPLEX 6.0
Barrier Simplex
Rows Columns | Iters Time | Iters Time | Iters Time
T1 1021 2400 15 1.7 20 1.65 | 1577 2.0
T2 3414 7266 23 10.6 21 - 2852 6.8
T3 13053 26860 25 49.7 22 69.1 | 9112 68.0
P1 3241 6970 28 10.8 25 7.2 2474 5.2
P2 6492 13978 28  26.2 23 221 | 7829 @ 46.3
P3 14221 32760 49 138.2 54 226.9 | 42520 867.0

Table 6: Single-commodity Flow Survivable Network Design: Solution Statistics.

The analysis of results collected in Table 4 reveals that the structure exploiting code is slightly
faster than CPLEX on these problems. Both codes show slow increase of the number of iterations
with the size of the problem. An empty space in Time column for problem PB5 indicates the
case where CPLEX stopped due to numerical errors before the optimal solution was reached.

Finally, we analyse the efficiency of the new solver on the single-commodity flow survivable net-
work design problem (17). This problem has a less regular structure, with one multicommodity
block and many small single-commodity blocks. Network characteristics of the test examples
are given in Table 5 and the sizes of the corresponding linear programs are given in Table 6.
Since the sizes of these problems vary from small to medium we solved them also with the
CPLEX default (primal) simplex method. The results for three solvers (our IPM code, CPLEX
6.0 Barrier and CPLEX 6.0 Simplex) are collected in Table 6. There is no clear winner: the
simplex method is best on smaller instances and both IPM codes show a uniform behaviour, less
sensitive to the problem size. CPLEX Barrier did not satisfy optimality conditions for problem
T2.

The above analysis of the results justifies the conclusion that the new structure exploiting solver
is flexible enough to deal with complicated nested structures and when run as a sequential code
reaches the efficiency comparable to a high-quality general-purpose commercial LP solver. In the
following section we discuss the ability of the new structure exploiting solver to take advantage
of parallelism.
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Procs Random16 Random20 PB4 PB5
Time S-up | Time S-up | Time S-up | Time S-up ‘
1 2333 1.0 | 3899 1.0 661 1.0 | 3256 1.0
2 1169  1.99 | 1947 2.0 361 1.83 | 1788  1.82
4 612 3.81 | 1003 3.88 194 3.41 | 1041 3.13
8 361  6.46 538  7.25 106  6.24 539  6.04
16 224 10.42 333 11.71 62 10.66 324 10.05

Table 7: Parallel Efficiency.

7.2 Efficiency of the Parallel Code

The structure exploiting solver has embedded routines that allow it to be run in parallel. The
majority of block-matrix operations can take advantage of parallelism. This has been exploited in
interior-point codes such as those documented in [16, 19, 26]. In our solver, we have parallelized
only the higher level matrix classes, expecting that this will give the best granularity and will
achieve good speed-ups.

In Table 7 we report results of parallel runs on an 18 processor Sun HPC 3500 system. This
computer has 18 400MHz UltraSPARC II processors and 18 GB of shared memory. We have
chosen the two largest test examples from each of the first two problem classes, run them on 2¥
processors with £ = 0,1,2,3 and 4, and measured the parallel efficiency. The single-commodity
network design problems are small so we have not run them in parallel. The data in Table 7 are
self-explanatory: for every problem we report the CPU time and the speed-up (the ratio of the
solution time on 1 processor and the solution time on 2* processors).

The minimum cost multicommodity network flow problems Random16 and Random20 as well
as the multicommodity flow survivable network design problems PB4 and PB5 are large and
display regular structures (cf. (15) and (16) and Figures 3 and 5, respectively). The paral-
lel implementation benefits from these features and reaches speed-ups of about 10-12 on 16
processors.

8 Conclusions

We have discussed the design and implementation of our structure exploiting interior-point solver
and described several applications for which it can be used. Its object-oriented implementation
uses inclusion polymorphism. We defined an abstract matrix class with a set of virtual functions
that provide all the necessary linear algebraic operations for an interior-point algorithm and
allow self-referencing as well. By these means we can model any nested structure in the linear
optimization problem.

Linear algebraic operations for block-structured matrices are excellent candidates to take ad-
vantage of parallel computations [7]. Thus our solver has been designed to run in parallel. We
implemented it using the message passing model of parallelism and the MPT library [17]. Our
choice is motivated by the portability of the code to many different computing platforms. The
solver has already been run on a Sun HPC, an IBM SP2 and a cluster of Linux PCs linked with
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Ethernet as in the Beowulf project [24].

Since block-structured matrices result naturally from the modeling of real-life optimization prob-
lems, we expect the solver to be able to tackle many practical problems that are challenging for
general purpose optimization software. In this paper we have focused on problems arising in
network design. However, the solver has already been used to solve other structured problems
and we shall report soon on this experience.

The solution of very large problems requires flexible model generation and management as well as
a fast connection of the solver with the generation tool. The concept of the Structure Exploiting
Tool (SET) [14] offers a practical approach to link a structure exploiting solver like the one
discussed in this paper and algebraic modeling languages.

Finally, structure exploitation should improve the performance of the solver. With this respect
we have shown that, run on a single processor, the new solver has an efficiency comparable to a
general purpose commercial LP code. When run in parallel the new solver achieves speed-ups
of 3.1-3.9 on 4 processors, 6.0-7.3 on 8 processors and 10-11.7 on 16 processors.
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