
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 4, APRIL 2005 427

Parallel Interleaver Design and VLSI Architecture for
Low-Latency MAP Turbo Decoders

Rostislav (Reuven) Dobkin, Michael Peleg, Senior Member, IEEE, and Ran Ginosar

Abstract—Standard VLSI implementations of turbo decoding
require substantial memory and incur a long latency, which
cannot be tolerated in some applications. A parallel VLSI ar-
chitecture for low-latency turbo decoding, comprising multiple
single-input single-output (SISO) elements, operating jointly on
one turbo-coded block, is presented and compared to sequential
architectures. A parallel interleaver is essential to process multiple
concurrent SISO outputs. A novel parallel interleaver and an
algorithm for its design are presented, achieving the same error
correction performance as the standard architecture. Latency
is reduced up to 20 times and throughput for large blocks is
increased up to six-fold relative to sequential decoders, using the
same silicon area, and achieving a very high coding gain. The
parallel architecture scales favorably: latency and throughput are
improved with increased block size and chip area.

Index Terms—Decoders, interleaver, maximum a posteriori
(MAP) algorithm, parallel architecture, turbo codes, VLSI archi-
tecture.

I. INTRODUCTION

TURBO CODES with performance near the Shannon
capacity limit have received considerable attention since

their introduction in 1993 [1], [2]. Optimal implementation
approaches of turbo codes are still of high interest, particularly
since turbo codes have become a 3G standard.

VLSI sequential architectures of turbo decoders consist of
soft-input soft-output (SISO) decoders, either connected in a

pipeline or independently processing their own encoded blocks
[3]–[5]. Both architectures process turbo blocks simultane-
ously and are equivalent in terms of coding gain, throughput,
latency, and complexity.

For the decoding of large block sizes, sequential architec-
tures require a large amount of memory per SISO for turbo
blocks’ storage. Hence, enhancing throughput by duplicating
SISO is area inefficient. In addition, latency is high due to it-
erative decoding, making the sequential architecture unsuitable
for latency-sensitive applications such as mobile communica-
tions, interactive video, and telemedicine.

One way to lowering latency is to reduce the number of re-
quired decoding iterations, but that may degrade the coding
gain. An interesting tree-structured SISO approach [6] signif-
icantly reduces the latency, at the cost of an increased area re-
quirement. Parallel decoding schemes [7], [8] perform the SISO
sliding window algorithm using a number of SISOs in parallel,

Manuscript received January 30, 2003; revised August 19, 2003; October 10,
2004.

The authors are with the Electrical Engineering Department, Technion—Is-
rael Institute of Technology, Haifa 32000, Israel (e-mail: rostikd@tx.tech-
nion.ac.il; michael@lena.technion.ac.il; ran@ee.technion.ac.il).

Digital Object Identifier 10.1109/TVLSI.2004.842916

each processing one of the sliding windows. Those schemes
trade off the number of SISOs for error correction performance,
and are reported as having increased hardware complexity rel-
ative to sequential architectures. The designs presented in [9]
and [10], and the architectures presented in [11] and [12], em-
ploy the sliding window approach inside each subblock that is
decoded in parallel. In our approach [13], the subblocks are pro-
cessed in a similar way, while the definitions of the boundary
metric values for the beginning and the end of the block are im-
proved by use of tailbiting termination. Interleaving approaches
for parallel decoders were presented in [14], [15], and [13]. A
recently introduced parallel interleaver architecture [16], sim-
ilar to the structure presented here, enables an unconstrained
implementation of any interleaver. The VLSI performance re-
sults presented here apply also to that interleaving approach.

This paper presents a complete analysis of parallel VLSI
architecture, partly presented by us in [13]. Our architecture
allows choosing the number of SISO decoders independently
of the desired sliding window and block size. Parallel inter-
leaving of multiple concurrent SISOs’ outputs is an essential
element of this architecture, affecting error correction perfor-
mance, latency, and throughput of the entire decoder. The paper
presents a new parallel interleaver (PI) of moderate complexity,
able to achieve the error correcting performance of standard
sequential architecture, and a new algorithm for PI design,
comprising spread optimization and elimination of low-weight
error patterns. We discuss the architecture, implementation, and
performance of the PI for different levels of parallelism. The
parallel decoder architecture significantly reduces both latency
(up to 20-fold) and hardware complexity, and improves decoder
throughput (up to six-fold) relative to sequential decoder using
the same chip area. No significant coding gain degradation was
observed. Performance of parallel and sequential architectures
is compared.

Pertinent aspects of turbo coding and the sequential decoder
architecture are described in Sections II and III, respectively.
The novel parallel decoding architecture is presented in Sec-
tion IV. Section V presents the parallel interleaver architecture
and its design algorithm. In Section VI, the parallel and se-
quential architectures are compared in terms of coding gain,
throughput, and latency.

II. TURBO CODING—THEORY OF OPERATION

A. Encoder

A turbo encoder consists of convolutional encoders con-
nected either in parallel or in series. The parallel scheme [2]
(Fig. 1) comprises an interleaver and two parallel convolutional

1063-8210/$20.00 © 2005 IEEE

428 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 4, APRIL 2005

Fig. 1. Turbo encoder and decoder (I : interleaver).

encoders (CE1, CE2), producing redundant bits (,). One
encoder receives the original information bits while the
other receives them interleaved. Interleaving is a crucial com-
ponent of turbo coding, affecting performance [2], [17].

For every new input block, the encoder starts at a known trellis
state. In order to terminate at a known trellis state, traditionally
some extra input termination bits are generated. Most termina-
tion techniques [17] result in changes in block size and code
rate, and in some cases at least one of the added terminations is
not interleaved. Tailbiting termination [18] for recursive convo-
lutional codes keeps the block size unchanged. A data-depen-
dent initial state is identified such that the initial and final states
of the encoder are identical. In this paper we employ tailbiting
termination.

B. Decoder

Decoding is performed iteratively (Fig. 1): information from
one SISO is processed by the other SISO until convergence is
achieved. Each SISO produces an increasingly better correction
term (extrinsic information), which is (de)interleaved and used
as a-priori information by the next SISO [2]. According to the
original Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [19],
the SISO computes forward metrics , backward metrics ,
and output metrics (probability values obtained as SISO output).

BCJR decoding is performed by first computing and storing
metrics for the entire block (going backward), and then com-

puting and output metrics (going forward). This approach,
however, suffers from very high latency and memory require-
ment [20].

Latency and memory size are significantly reduced by the
sliding window approach [3], [20]–[22]. Backward (and/or for-
ward) metrics are initialized at an intermediate point instead of
the end or the beginning of the block. Degradation due to this op-
timization is negligible when an appropriate intermediate point
is used, providing sufficient window overlap size [3], [21].

When tailbiting termination is employed, the last window
length () bits of the block (tail window) are sent to the SISO
prior to the entire block [13], [20]. The SISO performs a dummy

calculation over that window in order to get initial values
for the first window of the block. The initial values for the
last window are calculated and stored during the valid state
metrics calculation over the first window. Note that the cost of
using tailbiting is additional latency of cycles per decoding
iteration.

C. Interleaver

The interleaver size and structure considerably affect turbo
code error performance. The purpose of the interleaver in

turbo codes is to ensure that information patterns that cause
low-weight words for the first encoder are not interleaved to
low-weight patterns for the second encoder, thus improving the
code weight spectrum.

Interleaver spread optimization is desirable for both fast con-
vergence and good distance properties of the code. Large dis-
tance lowers the point at which the bit error rate (BER) curve
flattens (“error floor”) and increases the slope of the BER. We
adopted a “high spread” definition following [23]. Let ,
be the locations of the interleaver outputs and at the input of
the interleaver. The spread associated with and is

(1)

The minimal “high spread” associated with the entire in-
terleaver is

(2)

When tailbiting termination is used, distance calculations,
such as , are performed considering the cyclic property
of the tailbiting trellis. Thus the tailbiting distance for two in-
dexes and is defined as follows (is the interleaver size)

(3)

A pair of possible input–output spans is called spreading fac-
tors [24]. An alternative description of spreading factors is de-
scribed in terms of the displacement vector

(4)

The “randomness” of the interleaver is another factor af-
fecting performance. Regularly structured interleavers, such as
classical block interleavers, perform poorly for turbo codes.
The set of the interleaver displacement vectors can be used to
study “randomness” [24]

(5)

The largest set of displacement vectors occurs for Costas per-
mutation [24], [25], in which the number of displacement vec-
tors is 1 2. The normalized dispersion is then defined
as follows:

obtaining (6)

where is the size of the set of the displacement vectors
. However, we cannot use that definition of dispersion, due

to tailbiting. Therefore, we consider the ratio of the number of

DOBKIN et al.: PARALLEL INTERLEAVER DESIGN AND VLSI ARCHITECTURE FOR LOW-LATENCY MAP TURBO DECODERS 429

Fig. 2. Iterative decoder scheme (I : interleaver).

parallel interleaver displacement vectors (see Section VI-A) and
the dispersion of a random interleaver

(7)

Using recursive systematic codes, single 1s yield codewords
of semi-infinite weight, and low-weight words appear with pat-
terns of two, three, and four errors in the information bits [26].
While for a single convolutional code a 3-bit error pattern may
cause an error event, it rarely happens in turbo codes, thanks
to interleaving. The low-weight pattern elimination contributes
drastically to the code performance at the error floor region [26].
We define the 2-bit error pattern spread [26] - involving in-
terleaver outputs and , according to (1). The 4-bit error pattern
[26] spread - , is defined analogously [20]. Our algorithm
eliminates 2- and 4-bit error patterns (Section V-C).

III. SEQUENTIAL DECODER ARCHITECTURE

An iterative decoder detailed scheme is shown in Fig. 2. An
iteration through the decoder can be divided into two stages: the
interleaving stage, where the result of the previous iteration plus

, and bits are processed by SISO1 and passed through inter-
leaver ; and the deinterleaving stage, where the extrinsic data
from the interleaving stage plus an interleaved version of , and

are processed by SISO2 and deinterleaved. Both stages per-
form similar operations in the same order: add, compute (SISO),
and (de)interleave. When CE1 and CE2 are identical, SISO1 is
identical to SISO2. In addition, the same memory unit can per-
form interleaving and deinterleaving while suitable addresses
are provided. Therefore, these two stages can be implemented
by the same hardware block, used twice for each iteration.

A decoding unit consists of a SISO, an interleaver memory,
an adder, memories for channel data (, ,), (, ,), (,

,) , ,), an interleaving address memory, and control
logic. When parallel processing of, say, blocks is required to
achieve higher data rate, the entire decoding unit is duplicated
times. Alternatively, a single interleaving address memory can
be shared, using appropriate first in, first outs (FIFOs).

The maximal input rate for the sequential architec-
ture (with input double buffer) is [13], [20]

(8)

(9)

where
number of decoding units;
number of iterations;
block size;

Fig. 3. Decomposition to subblocks example (WL: window length).

window length;
SISO delay in window lengths;
effective processing rate;
internal clock rate.

For a given silicon area, the throughput of the decoder
depends on the number of decoding units that can

be placed on that area. The area efficiency of sequential and
parallel architectures is discussed below.

The latency of the sequential architecture is that of the de-
coding unit

(10)

The latency consists of the delay of the practical SISO due
to prior input of five windows (for the algorithm with
tailbiting termination) in addition to processing metrics of
the block, all multiplied by the number of iterations.

IV. PARALLEL DECODER ARCHITECTURE

The parallel decoding architecture applies SISOs in par-
allel to one incoming block. The block is decomposed into
subblocks. The decomposition of processing to subblocks is fa-
cilitated by applying the sliding window principle, which allows
independent decoding of subblocks without degradation in error
correction performance [21]. Dummy and metrics are cal-
culated in order to determine the initial values of and for
each subblock . An example of block decomposition to
subblocks is shown in Fig. 3.

For each subblock , the initial metrics are calculated over
the “tail” window of subblock 1, incurring a slight increase of
computational load but no increase of latency. The tail window
for the first subblock is taken from subblock , thanks
to tailbiting. Similarly, initial values for the last window of
subblock are values received for the first window in sub-
block 1, incurring a slight decrease of computational load,
which compensates for the increase, mentioned above, due to

dummy metrics computation. The subblock is decoded ac-
cording to the sliding window SISO algorithm.

430 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 4, APRIL 2005

Fig. 4. Parallel decoder architecture.

Other works have also divided the block into subblocks [7],
[8]. However, the algorithms proposed there did not apply a
sliding window inside subblocks. The technique proposed here
creates boundary metrics for the first and last subblocks using
the same process as for the other subblocks, thus differing
from [10]–[12], and causing no performance degradation nor
increasing the computational load.

Alternatively, subblock decomposition could be performed in
the encoder, encoding each subblock separately with its own
tailbiting termination [27]. Thus, there would be no need to ex-
change dummy metrics between the parallel data flows in the
decoder. Incurring the same decoder complexity and achieving

similar throughput and latency as the previous approach, this
scheme may be a subject for future research.

Iterative parallel processing is executed by the architecture
shown in Fig. 4, as follows. The incoming block is divided into

subblocks, and each subblock is sent to a separate SISO. The
operations are the same as in the sequential architecture: add,
compute (SISO), and de/interleave. After SISO processing, the
extrinsic metrics are sent (in sets of metrics) to the parallel in-
terleaver, where they are permuted and stored in the interleaver
memory (interleaver/deinterleaver memory block in Fig. 4). The
interleaver memory and the channel data memories (U, C1, and
C2 memory blocks) consist each of an array of memories

DOBKIN et al.: PARALLEL INTERLEAVER DESIGN AND VLSI ARCHITECTURE FOR LOW-LATENCY MAP TURBO DECODERS 431

Fig. 5. The parallel interleaver.

of depth . The PI performs interleaving according to ad-
dresses supplied by its addressing memory. The PI architecture
is discussed in Section V.

The maximal input rate for the parallel architecture
is [13], [20]

(11)

where

(12)

and is the number of SISOs, defining the parallelism level of
the decoder.

The latency also depends on : each SISO now operates on
only metrics. The latency consists of the SISO delay due
to prior input of windows in addition to processing met-
rics of the subblock, all multiplied by the number of iterations

(13)

V. PARALLEL INTERLEAVER

A. Architecture

The PI plays a key role in the performance of the parallel
decoder. It comprises the first interleaving stage (FIS) and the
second interleaving stage (SIS). The FIS, which can hold up to

metrics, permutes the metrics coming simultaneously
from SISOs (FIS depth is termed also as FIS delay in the
following). The outputs of the FIS are directed into the

memories that constitute the SIS (Fig. 5). Each SIS memory can
hold and permute at least metrics.

At each calculation cycle, metrics (from SISOs) enter
the FIS. At the beginning, the FIS accumulates metrics for

cycles and then outputs sets of metrics at each calculation
cycle. Each output set contains out of the metrics. Each
metric is identified by its SISO source index and input cycle
number. FIS permutations are designated to be a permutation
of these indexes, turning them into the SIS memory destination
index and the output cycle number.

After FIS interleaving, the data arrive in the SIS, where in-
trasubblock permutation is performed by properly addressing
each of the memories. In order to perform deinterleaving, an
additional FIS unit with reversed FIS addresses is incorporated
in the design. In [16], the deinterleaving stage is supplied with
different addressing allowing unconstrained interleaver imple-
mentation. Thanks to the very similar structure, the results pre-
senting in this paper (Section VI) are applicable to the architec-
ture employing the approach of [16].

For the sake of efficient hardware implementation, and
should be chosen so that and is a power of

two. All permutations can be achieved on the metrics within
the same SIS memory since there is no restriction on the order
of metrics inside the memory.

B. Possible Permutations

Due to the structure of PI, the number of possible permuta-
tions is limited, in comparison with the turbo interleaver used in
the sequential decoder. The standard interleaver of size , im-
plemented as a memory, can perform permutations.

432 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 4, APRIL 2005

Fig. 6. Alternative FIS architectures: (a) crossbar, (b) infinite permutation
network, and (c) finite permutation network.X represents a crossbar switch.

We considered three alternative FIS architectures: a crossbar,
an infinite permutation network, and a finite permutation net-
work (Fig. 6). Wide input and output memories are combined
with crossbar switches. Regardless of which FIS architecture is
employed, the output is always directed into the SIS.

In the crossbar architecture, a single set of metrics is per-
muted by an crossbar switch, facilitating permuta-
tions. Note that two metrics that arrive in the same input cycle
can never end up in the same target SIS memory [Mem(i) in
Fig. 5].

In the (most powerful) infinite permutation network architec-
ture, an crossbar spreads the incoming met-
rics into free spaces in the memory. A different set of

metrics is concurrently extracted from the memory and per-
muted by the second crossbar. All metrics stored in the memory
are considered as one big set, out of which the next set of
metrics can be selected without any constraints. The total ef-
fect in the FIS thus consists of three permuting steps (in the
two crossbar switches and by memory addressing). Note that
any single metric may enter memory early on and stay there for
a long time, hence the name of this architecture. Note further
that, unlike the crossbar architecture, the entire set of met-
rics (namely, metrics arriving simultaneously at the FIS) can be
channeled into the same SIS memory.

The finite permutation network architecture is a simpler ver-
sion, employing a double-buffered memory in lieu of the first
crossbar switch. metric sets are stored in one memory (during

cycles) and are permuted and extracted in full during sub-
sequent cycles, while the other memory is being filled. Thus,
any single metric may be delayed by at most 1 cycles, hence
the name of that architecture. The full content of a buffer (
metrics) is termed a delay packet in the following. The delay
impacts the total number of possible permutations. For an un-
limited value, FIS resolves all blocking and provides all
permutations.

A parallel interleaver may perform any of possible permu-
tations, when FIFOs of an appropriate length are used. A form
of parallel interleaver, which optimizes the FIFO sizes, was re-
cently proposed in [14]. The multiple multi-input FIFO solution

becomes very expensive with growing block size and level of
parallelism.

The crossbar architecture can be considered a special case of
the finite permutation network, whereas the latter is a special
case of the infinite one. Their implementation is progressively
more complex; we have opted for the medium complexity finite
permutation network, and we analyze its area requirements in
Section V-D below. We now consider the impact of the level of
parallelism and the FIS delay on , the number of
possible PI permutations.

Let us assume that divides . The depth of
the SIS memory (and the number of output cycles of the SISO’s
array) is . In other words, sets of metrics [

packets] enter PI during one internal decoding iteration.
The total number of possible permutations for the entire PI is

[20]

(14)

The FIS can perform permutations on one
delay packet; there are delay packets, and the entire
SIS can perform permutations. For example, for
(crossbar architecture)

For (one SISO, sequential architecture)

As can be seen from (14), the number of possible permuta-
tions depends on three parameters: , , and . Increasing
expands the delay packet size, resulting in a growing number of
possible permutations. Fig. 7 shows the results for
and four different delay values in the log-domain. Stirling’s ap-
proximation was used in the computation. Thus com-
pensates for most of the decrease resulting from partitioning.
In Fig. 7, is normalized by the logarithm of the
maximal number of permutations . The decrease shown on
the log-ratio scale actually reflects a decrease by many orders
of magnitude in the permuting power relative to the maximum
number of permutations. In general, as the level of parallelism
grows, the degradation levels off thanks to the growing size of
the delay packet .

C. Parallel Interleaver Design

1) Interleaver Design Algorithm: Given a PI with certain
, , parameters and finite permutation network FIS, the

high-performance PI design algorithm (Figs. 8 and 9) gener-
ates the required permutations according to the high-spread cri-
teria [(2)], while eliminating the 2- and 4-bit error patterns (Sec-
tion II-C) and considering the tailbiting restrictions of (3). The
algorithm comprises the following stages (stage numbers corre-
spond to the markings in the figures).

DOBKIN et al.: PARALLEL INTERLEAVER DESIGN AND VLSI ARCHITECTURE FOR LOW-LATENCY MAP TURBO DECODERS 433

Fig. 7. Normalized number of permutations for various delays versus the level of parallelism.

Fig. 8. Parallel interleaver design algorithm—main flow.

a) A random permutation according to the , ,
and parameters is generated by passing an ordered se-
quence through the PI, using random addresses at the FIS
and SIS. Thus, the permutation is guaranteed realizable.

b) The current spread value is initialized to the max-
imal possible value. While according to [23]

, in practice that bound is unreachable and a lower
initial value results in faster convergence of the algorithm.

c) For each permutation index CurIdx, the algorithm per-
forms minimal spread calculation according
to (2). The spread is calculated for CurIdx
and for the 2- and 4-bit patterns related to the CurIdx

- and - .

d) In order to satisfy total permutation spread, [the min-
imal spreads computed at stage c)] should satisfy the fol-
lowing inequalities:

-

- (15)

e) When (15) is satisfied, the algorithm accepts CurIdx and
begins treating the next index CurIdx 1.

f) If (15) is not satisfied, is rejected and replaced
as follows.

i) The algorithm searches for a set of indexes, which
can be swapped with CurIdx . The suitable indexes

434 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 4, APRIL 2005

Fig. 9. Parallel interleaver design algorithm—CurIdx spread validation and
optimization.

must belong to the same delay packet or to the same
SIS memory as CurIdx, and satisfy (15) after the swap.
ii) If such a set is found, CurIdx is exchanged with

a randomly selected index from the set, and CurIdx
is incremented. Otherwise, replacement cannot be per-
formed.

g) If the replacement cannot be performed, the con-
straint is reduced.

h) Due to tailbiting, when the algorithm reaches index ,
the first indexes of the permutation should be re-
computed.

This algorithm converges fast in practice. It arrives very close
to the highest spread value within a few dozens of search itera-
tions. The algorithm was developed based on results presented
in [17], [23], and [26]. A similar approach (for the design of
a sequential interleaver) has recently been presented in [28],
achieving performance very close to the application of our al-
gorithm to the sequential case .

D. VLSI Implementation

The PI consists of two stages: FIS and SIS (Fig. 5). SIS is
implemented by an array of memories that perform interleaving
using addresses generated by the algorithm of Section V-C. The
following FIS implementation is optimized for the finite permu-
tation network architecture (Fig. 6).

The FIS consists of an array of memory elements (flip-
flops) followed by a crossbar switch (an inter-
connection matrix and selection multiplexers). The finite per-
mutation network comprises two memory arrays (Fig. 6) in a
double-buffer setup; only one array is shown in Fig. 10.

The write operation is performed sequentially by rows. For
each output at each read cycle, an address is supplied indicating
from which of the memory elements the metric is taken.
The two buffers are switched every time sets are read and
written.

Application-specific integrated circuit (ASIC) and field-pro-
grammable gate array (FPGA) FIS implementations were de-
signed and compared for area requirements. An eight-bit data
width was selected for inputs, outputs, and the memory ele-
ments. The total parallel decoder chip area (for parallelism level
of) is approximately times the area of a single SISO.
Fig. 11 shows ASIC chip area for and a baseline
without a FIS. Evidently, FIS requires an insignificant silicon
area on the parallel decoder chip. Note the highly linear growth
in chip area with ; below we show also a linear speedup in re-
turn for this linear increase in cost. Fig. 12 shows similar results
for an FPGA implementation.

In addition, it should be noted that at least twice lower total
gate counts and FIS gate counts are achievable when using a
shorter metric representation (thanks to SISO internal optimiza-
tions).

VI. PERFORMANCE ANALYSIS

This section contains the analysis and simulation results for
the parallel decoder.

A. Spread and Dispersion

The spread and dispersion performance of the PI design algo-
rithm for various configurations of the parallel decoder (, ,

) are presented in Figs. 13 and 14.
A slight spread degradation relative to the sequential inter-

leaver (,) is observed as the level of parallelism
grows. A slight spread improvement is achieved when (PI
delay) is increased, thanks to larger delay packets. Most of the
improvement occurs when is increased from to .

The interleaver dispersions (Fig. 14) are very close to that of
a random interleaver (where). With such dispersion and
high spread characteristics, the decoder achieves a high error
correction performance, as shown in Section VI-C.

B. Throughput and Latency

Parallel and sequential architectures were compared in terms
of latency and throughput for a given silicon area. Performance
is highly correlated to the number of decoding units and
level of parallelism ; see (8)–(13). The higher and
are, the more efficient the area utilization; parallel architectures
are more area efficient thanks to the fact that, as we add more
SISOs, no additional memories and almost no additional logic
are required. When, on the other hand, we wish to add more
SISOs to a sequential architecture, the entire decoding unit must
be duplicated.

The ratio of throughput of the parallel architecture
to that of the sequential one for various block sizes is charted
in Fig. 15 as a function of chip area. It can be seen that for
larger area, the parallel architecture can handle larger blocks
more efficiently, and higher input data rates are accommodated.

DOBKIN et al.: PARALLEL INTERLEAVER DESIGN AND VLSI ARCHITECTURE FOR LOW-LATENCY MAP TURBO DECODERS 435

Fig. 10. Finite permutation network architecture.

Fig. 11. Parallel turbo decoder ASIC chip area versus parallelism level.

The nonmonotonic changes in Fig. 15 are due to employing an
integral number of decoding units and SISOs.

The latency reduction is summarized in Fig. 16. A linear
speedup with chip area increase is evident in the chart. Recall
that the level of parallelism is also linear in chip area (Fig. 11),
thus achieving an attractive cost/performance ratio.

Fig. 12. Parallel turbo decoder FPGA chip capacity versus parallelism level.

C. BER Performance

The parallel decoder was simulated over a AWGN channel
using binary phase-shift keying modulation. The results refer to
rate 1/3, 2/3, and 3/4 turbo code with two identical eight-state
convolutional encoders with , generator [29].

436 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 4, APRIL 2005

Fig. 13. PI spread.

Fig. 14. PI dispersion �.

Fig. 15. The ratio of parallel to sequential throughput.

The decoder performed ten decoding iterations, using a 32-bit
sliding window.

Each line in Figs. 17 and 18 refers to a different config-
uration for a given block size and code rate. We used
and values. The number of error events
that occurred for the last computed BER point for the given

configuration is at least five. For other points the number
of the error events is in the range 10–100.

The results in Fig. 17 refer to code rate 1/3. The results show
only slight deviations relative to the sequential decoder (

Fig. 16. The ratio of sequential to parallel latency.

Fig. 17. BER results, CR= 1=3, N = 0:5; 1; 2; 4 K.

,). For all different block lengths and for different
values, performance is within 0.05 dB of the sequential turbo
decoder. Since the lines for the same are so close together,
marking values per line is ineffective. Generally, for the
larger block lengths, the small degradation is compensated by
applying .

For some configurations of the decoder, these results outper-
form marginally the (,) configuration. This is a
result of variations of the interleaver search algorithm. In any
case, the sequential architecture, which can implement any of

possible permutations, can implement the permuta-
tions as well.

The results in Fig. 18 refer to code rates 1/3, 2/3 and 3/4 for
a fixed block length of 2048. These code rates were obtained
by puncturing the outputs of the convolutional encoders (see
Fig. 1). The results are similar to those of Fig. 17.

DOBKIN et al.: PARALLEL INTERLEAVER DESIGN AND VLSI ARCHITECTURE FOR LOW-LATENCY MAP TURBO DECODERS 437

Fig. 18. BER results, N = 1024, CR= 1=3; 2=3;3=4.

TABLE I
IMPLEMENTATION EXAMPLE

D. Implementation Example

Table I lists the results for parallel and sequential decoder
ASIC implementations. ASIC synthesis was performed using
Synopsys synthesizer for a 0.35 technology and Passport
standard cell libraries. For comparison, we have also described
an FPGA implementation; Synplicity was used for FPGA
synthesis, and Xilinx physical design tools were used for FPGA
floor-planning, place, and route.

For an area-optimized SISO implementation, such as reported
in [9] and [10], SISO gate count can be reduced to only 53
KGates. Then we can place more SISOs on the die, having 6
SISOs for the sequential and 21 SISOs for the parallel case in the
implementation example. In addition, thanks to a shorter critical
path, a higher internal clock rate of 90 MHz can be used. In that
case, a throughput of 114.11 Mb/s is achieved (52 Mb/s for the
sequential case, see Fig. 15). Latency is reduced to only 7.18 s
per iteration. Scaling to a more advanced technology (e.g., 90
nm) will allow further throughput and latency improvements.

VII. CONCLUSIONS

A new parallel turbo decoder VLSI architecture was pre-
sented. The architecture of the parallel interleaver was detailed
and a new interleaver design algorithm was introduced. The
error correction performance was within 0.05 dB of that of
the sequential turbo decoder. A significant linear reduction of
latency was achieved (up to a factor of 20) in comparison with
a sequential turbo decoder. In addition, it was found that for
large blocks the parallel architecture is more area efficient,
improving throughput up to a factor of six for the same chip
area. The parallel architecture and the parallel interleaver
design algorithm achieved an attractive cost/performance ratio
and an attractive performance in terms of BER, latency, and
throughput.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for many
helpful and constructive comments.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. ICC’93,
Geneva, Switzerland, 1993, pp. 379–427.

[2] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp.
1261–1271, Oct. 1996.

[3] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI archi-
tectures for turbo-codes,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 7, no. 3, pp. 369–379, Jun. 1999.

[4] Z. Wang, Z. Chi, and K. K. Parhi, “Area-efficient high speed decoding
schemes for turbo/MAP decoders,” in Proc. 2001 IEEE Int. Conf. Acous-
tics, Speech and Signal Processing, Salt Lake City, UT, May 2001, pp.
2633–2636.

[5] G. Park, S. Yoon, C. Kang, and D. Hong, “An implementation method
of a turbo-code decoder using a block-wise MAP algorithm,” presented
at the VTC Fall 2000, Boston, MA, Sep. 2000.

[6] P. A. Beerel and K. M. Chugg, “A low latency SISO application to broad-
band turbo decoding,” IEEE J. Select. Areas Commun., vol. 19, May
2001.

[7] J. Hsu and C. Wang, “A parallel decoding scheme for turbo codes,” in
Proc. ISCAS’98, vol. 4, Jun. 1998, pp. 445–448.

[8] S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency
turbo decoding,” IEEE Commun. Lett., vol. 6, no. 7, pp. 288–290, Jul.
2002.

[9] B. Bougard, A. Giulietti, V. Derudder, J. W. Weijers, S. Dupont, L.
Hollevoet, F. Caththoor, L. V. der Perre, H. De Man, and R. Lauwereins,
“A scalable 8.7 nJ/bit 75.6 MB/s parallel concatenated convolutional
(TURBO-) CODEC,” in ISSCC 2003, San Francisco, CA, Feb. 2003,
pp. 152–153.

[10] A. Giulietti, B. Bougard, V. Derruder, S. Dupont, J. W. Weijers, and
L. V. der Perre, “A 80 Mb/s low-power scalable turbo codec core,” in
CICC’02, Orlando, FL, May 2002.

[11] F. Gilbert, M. J. Thul, and N. When, “A scalable system architecture for
high throughput turbo-decoder,” in SIPS’02, San Diego, CA, Oct. 2002,
pp. 152–158.

[12] Z. Wang, Z. Chi, and K. K. Parhi, “Area-efficient high-speed decoding
schemes for turbo decoders,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 10, no. 6, pp. 902–912, Dec. 2002.

[13] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecture for
MAP turbo decoder,” in Proc. PIMRC’2002, vol. 1, Sept. 2002, pp.
384–388.

[14] M. J. Thul, F. Gilbert, and N. When, “Concurrent interleaving architec-
tures for high-throughput channel coding,” in ICASSP’03, vol. 2, Hong
Kong, Apr. 2003, pp. 613–616.

[15] A. Giulietti, L. van der Perre, and M. Strum, “Parallel turbo coding inter-
leavers: Avoiding collisions in accesses to storage elements,” Electron.
Lett., vol. 38, no. 5, pp. 232–234, Feb. 2002.

438 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 4, APRIL 2005

[16] A. Tarable, G. Montorsi, and S. Benedetto, “Mapping interleaving lows
to parallel turbo decoder architectures,” in Proc. 3rd Int. Symp. Turbo
Codes and Related Topics, Brest, France, 2003, pp. 153–156.

[17] S. Crozier, “Turbo-code design issues: Trellis termination methods, in-
terleaving strategies, and implementation complexity,” in Proc. ICC’99,
Vancouver, Canada, 1999.

[18] C. Berrou, “Additional information on the EUTELSAT/ENST-bretagne
proposed channel turbo coding for DVD_RCS,” in 6th Meeting Ad Hoc
Group on Return Channel Over Satellite, Geneva, Switzerland, 1999.

[19] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol.
IT-20, no. 2, pp. 284–287, Mar. 1974.

[20] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecture and
parallel interleaver design for low-latency MAP turbo decoders,” in
CCIT TR436, Jul. 2003.

[21] A. Hunt, S. Crozier, M. Richards, and K. Gracie, “Performance degrada-
tion as a function of overlap depth when using sub-block processing in
the decoding of turbo codes,” in Proc. IMSC’99, Ottawa, Canada, 1999,
pp. 276–280.

[22] H. Dawid and H. Meyr, “Real-time algorithms and VLSI architectures
for soft output MAP convolutional decoding,” in PIMRC’95, Toronto,
Canada, Sep. 1995, pp. 193–197.

[23] S. N. Crozier, “New high-spread high-distance interleavers for turbo
codes,” in 20th Biennial Symp. Communications, Kingston, Canada,
2000, pp. 3–7.

[24] C. Heegard and S. B. Wicker, Turbo Coding. Norwell, MA: Kluwer
Academic, 1999, pp. 50–52.

[25] S. W. Golomb and H. Taylor, “Construction and properties of Costas
arrays,” Proc. IEEE, vol. 72, no. 9, pp. 1143–1163, Sep. 1984.

[26] J. D. Andersen, “Selection of code and interleaver for turbo coding,” in
1st ESA Workshop Tracking, Telemetry and Command Systems ESTEC,
The Netherlands, Jun. 1998.

[27] D. Weinfeld, “Symbol-wise implementation of turbo/MAP decoder,”
Technion—Israel Institute of Technology, Electrical Engineering Dept.,
Communications Lab. (ISIS Consortium), Internal Rep., 2002.

[28] W. Feng, J. Yuan, and B. S. Vucetic, “A code-matched interleaver design
for turbo codes,” IEEE Trans. Commun., vol. 50, pp. 926–937, Jun. 2002.

[29] M. S. C. Ho, S. S. Pietrobon, and T. Giles, “Improving the constituent
codes of turbo encoders,” in IEEE Globecom’98, vol. 6, Nov. 1998, pp.
3525–3529.

Rostislav (Reuven) Dobkin received the B.Sc. and
M.Sc. degrees in electrical engineering from the
Technion—Israel Institute of Technology, Haifa, in
1999 and 2003, respectively.

During 1997–2000, he worked within the
RAFAEL ASIC Experts design group and during
2001–2002 led a very large-scale integration (VLSI)
Design Group at IC4IC Ltd., developing family
of chips for communications. In parallel, he was
a Teaching Assistant at the Technion Electrical
Engineering Department. His research interests are

VLSI architectures, parallel architectures, asynchronous logic, high-speed
interconnect, synchronization, GALS systems, SoC, and NoC.

Michael Peleg (M’87–SM’98) received the B.Sc.
and M.Sc. degrees from the Technion—Israel
Institute of Technology, Haifa, in 1978 and 1986,
respectively.

Since 1980 he has been with the communication
research facilities of the Israel Ministry of Defense.
He is associated with the Electrical Engineering De-
partment of the Technion, where he is collaborating
in research in communications and information
theory. His research interests include wireless
digital communications, iterative decoding, and

multiantenna systems.

Ran Ginosar received the B.Sc. degree in electrical
engineering and computer engineering from the
Technion—Israel Institute of Technology, Haifa, in
1978 and the Ph.D. degree in electrical engineering
and computer science from Princeton University,
Princeton, NJ, in 1982.

He was with AT&T Bell Laboratories in
1982–1983 and joined the Technion Faculty in
1983. He was a Visiting Associate Professor with
the University of Utah in 1989–1990 and Visiting
Faculty with Intel Research Labs in 1997–1999. He

cofounded four companies in the areas of electronic imaging, medical devices,
and wireless communications. He is Head of the VLSI Systems Research
Center at the Technion. His research interests include VLSI architecture,
asynchronous logic, electronic imaging, and neuroprocessors.

	toc
	Parallel Interleaver Design and VLSI Architecture for Low-Latenc
	Rostislav (Reuven) Dobkin, Michael Peleg, Senior Member, IEEE, a
	I. I NTRODUCTION
	II. T URBO C ODING T HEORY OF O PERATION
	A. Encoder

	Fig.€1. Turbo encoder and decoder (I: interleaver).
	B. Decoder
	C. Interleaver

	Fig.€2. Iterative decoder scheme (I: interleaver).
	III. S EQUENTIAL D ECODER A RCHITECTURE

	Fig.€3. Decomposition to subblocks example (WL: window length
	IV. P ARALLEL D ECODER A RCHITECTURE

	Fig.€4. Parallel decoder architecture.
	Fig.€5. The parallel interleaver.
	V. P ARALLEL I NTERLEAVER
	A. Architecture
	B. Possible Permutations

	Fig.€6. Alternative FIS architectures: (a) crossbar, (b) infinit
	C. Parallel Interleaver Design
	1) Interleaver Design Algorithm: Given a PI with certain N, $m

	Fig.€7. Normalized number of permutations for various delays ver
	Fig.€8. Parallel interleaver design algorithm main flow.
	Fig.€9. Parallel interleaver design algorithm CurIdx spread vali
	D. VLSI Implementation
	VI. P ERFORMANCE A NALYSIS
	A. Spread and Dispersion
	B. Throughput and Latency

	Fig.€10. Finite permutation network architecture.
	Fig.€11. Parallel turbo decoder ASIC chip area versus parallelis
	Fig.€12. Parallel turbo decoder FPGA chip capacity versus parall
	C. BER Performance

	Fig.€13. PI spread.
	Fig.€14. PI dispersion $\Gamma $.
	Fig.€15. The ratio of parallel to sequential throughput.
	Fig.€16. The ratio of sequential to parallel latency.
	Fig.€17. BER results, CR $=1/3$, $N=0.5, 1, 2, 4$ K.
	Fig.€18. BER results, $N=1024$, CR $=1/3, 2/3, 3/4$.
	TABLE I I MPLEMENTATION E XAMPLE
	D. Implementation Example
	VII. C ONCLUSIONS
	C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit
	C. Berrou and A. Glavieux, Near optimum error correcting coding
	G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, VLSI archit
	Z. Wang, Z. Chi, and K. K. Parhi, Area-efficient high speed deco
	G. Park, S. Yoon, C. Kang, and D. Hong, An implementation method
	P. A. Beerel and K. M. Chugg, A low latency SISO application to
	J. Hsu and C. Wang, A parallel decoding scheme for turbo codes,
	S. Yoon and Y. Bar-Ness, A parallel MAP algorithm for low latenc
	B. Bougard, A. Giulietti, V. Derudder, J. W. Weijers, S. Dupont,
	A. Giulietti, B. Bougard, V. Derruder, S. Dupont, J. W. Weijers,
	F. Gilbert, M. J. Thul, and N. When, A scalable system architect
	Z. Wang, Z. Chi, and K. K. Parhi, Area-efficient high-speed deco
	R. Dobkin, M. Peleg, and R. Ginosar, Parallel VLSI architecture
	M. J. Thul, F. Gilbert, and N. When, Concurrent interleaving arc
	A. Giulietti, L. van der Perre, and M. Strum, Parallel turbo cod
	A. Tarable, G. Montorsi, and S. Benedetto, Mapping interleaving
	S. Crozier, Turbo-code design issues: Trellis termination method
	C. Berrou, Additional information on the EUTELSAT/ENST-bretagne
	L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of
	R. Dobkin, M. Peleg, and R. Ginosar, Parallel VLSI architecture
	A. Hunt, S. Crozier, M. Richards, and K. Gracie, Performance deg
	H. Dawid and H. Meyr, Real-time algorithms and VLSI architecture
	S. N. Crozier, New high-spread high-distance interleavers for tu
	C. Heegard and S. B. Wicker, Turbo Coding . Norwell, MA: Kluwer
	S. W. Golomb and H. Taylor, Construction and properties of Costa
	J. D. Andersen, Selection of code and interleaver for turbo codi
	D. Weinfeld, Symbol-wise implementation of turbo/MAP decoder, Te
	W. Feng, J. Yuan, and B. S. Vucetic, A code-matched interleaver
	M. S. C. Ho, S. S. Pietrobon, and T. Giles, Improving the consti

