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ABSTRACT

Logic programs offer many opportunities for parallelism. We

present two models of computation which allow parallel processing

of Prolog programs. In the goal list model each processor is

given a separate approach to the problem. In the and/OR model

each processor is given a separate subcomputation. Each model

allows an arbitrary number of processors, and both perform the

same sequence of unifications as would the standard depth first

interpreter for Prolog if only one processor were available. In

each model the parallelism is achieved as a result of the

non-determinism in the program.
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1. INTRODUCTION

Prolog is a high level applicative language in which programs

are sets of Horn clauses. The language has been implemented on a

number of different computer systems (c.f. [8]), and has been

found to be comparable to LISP in terms of execution speed [11],

The DECsystem-10 interpreter [8] uses a depth first search of an

AND/OR tree defined by the program. There are a number of other,

more "intelligent" interpreters. IC-Prolog [2] has control

annotations to help guide the search by using certain runtime

information. A selective backtracking interpreter [9, 10] keeps

track of where values are created, so that if a value later

causes a failure, the interpreter can backtrack directly to the

source of the error.

In this paper we present two abstract models for parallel

execution of Prolog programs. At present, these models represent

a line of research that is independent of the intelligent,

interpreters; perhaps in the future parallel interpreters will

incorporate some of the methods developed for intelligent

interpreters.

Section 2 is a discussion of some items that are common to both

of our parallel models; tbe models themselves are presented in

sections 2 and 3. We conclude with a discussion of metrics that

can be used to compare the performance of the various single- or

multi-processor interpreters and plans for future research. The

remainder of this section contains definitions of terms and a



- 3 -

brief introduction to Prolog (using the syntax of DECsystem-10

Prolog).

There are two kinds of clauses in Prolog programs:

iinplig3tj..Qns and assertions. Implications are of the form

w X, y, z.

where w, x, y, and z are terms, w is the head of the clause, and

those terms to the right of the symbol form the body of the

clause. Assertions are clauses that have an empty body. Terms

can be atoms. variables, or structured objects. The names of

variables (which take values of either atoms or structures) begin

with upper case letters, and all other names must begin with a

lower case letter. The "scope" of a variable is a single clause;

if X appears in two different clauses, it will not necessarily

refer to the same object.

A Prolog program is activated by giving it a goal list, which

has the syntax of a clause with no head. The interpreter tries

to solve the goals in order, from left to right. To solve a

goal, the interpreter looks for a clause whose head unifies with

the goal (we sometimes say that a head matches a goal if they can

be unified). Two terms can be unified if there is a substitution

for variables that makes the terms identical. For example, the

two terms

P(X,a), p(b,Y)
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can be unified by the substitution {X/b,y/a}, meaning substitute

"b" for X and "a" for Y, to give the single term p(b,a). After

the goal is unified with the head of some clause, the unifying

substitution is applied to the entire goal list and the body of

the clause, and this new body now replaces the original goal at

the front of the goal list. Note that under this interpretation,

terms in the body of a: clause can be considered subaoals. i.e.

one can read the statement

w X, y, z.

as "in order to solve the goal w, solve the goals x, y, and z in

that order." Assertions (goals with no subgoals) always succeed.

If the current goal does not unify with the head of any clause,

it fails. and the interpreter backtracks by undoing the latest

unifying substitution, and trying another clause for the most

recently matched goal. When the goal list is empty, the

interpreter stops and prints the values obtained for any

variables that were in the original goal.

Figure 1-1 contains an example of a Prolog program, and shows

the series of steps carried out when the program is given various

goals to solve. References [2], [5], [7], and [8] are other

descriptions of logic programming and Prolog.

2. COMMON FEATURES

Both of our models are distantly related to.dataflow models of
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Prolog program:

clauses

(1) gf(x,z) :-p(x,y), f(Y,z)

(2) p(X,Y) in(X,Y)

(3) p(X,Y) f(X,Y)
(4) m(doug,peg),
(5) m(den,peg).
(6) f(doug,larry).
(7) f{den,larry).
(8) f(larry,sam).

/*
/*
/*
/*
/*

/*
/*

coimnents

The grandfather of
a parent of X is Y
the father of Y.
Y is a parent of
the mother of X.

X is Z if
and Z is

V
X if

*/
Y is

peg is the mother of doug
(an assertion)

Example: find G such that G is the grandfather of den.

step

[1]
[2]
[3]
[4]

[5]
[6]
[7]

goals to be solved

- gf(den,G)
- p(den,Y), f(Y,G)
- m(den,Y), f(Y,G)
- f(peg,G)

matching
clause

1

2

4

none

unifying
substitution

{X/den,Z/G}
{X/den}
{Y/peg}

Retry step [3], i.e. does den have another mother?
This also fails, so retry step [2], i.e. does den
have another parent? This time the goal p(den,Y)
is unified with clause 3, giving us

f(den,Y), f(Y,G)
f(larry,G)

<empty>

7

8
{Y/larry}
{G/sam}

*/
V

*/

*/
*/

An empty goal list means success; the variable G in
the original goal list was bound to sam, thus giving
the answer: sam is the grandfather of den.

Note: it is also possible to use this program to solve
the goal gf(G,sam), i.e. who is the grandson of sam?
This is an example of a nondeterministic goal; Prolog
will generate the answer G = doug first, and then
(if told to backtrack), the answer G = den.

Figure 1-1: Example of a Prolog Program
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computation (c.f. [1]). Research in dataflow architectures can

be described at three distinct levels of abstraction; there is a

high level language, an intermediate level graph language called

the base language, and, at the lowest level, a multiprocessor

machine architecture.

Our high leyel language is Prolog. Both of our models for

parallel execution of Prolog programs are explained in terms of

dynamic tree structures that are created as the program is

interpreted; these trees are the base language. Our models

differ in the information stored at each node and in the rules

for creating descendants of nodes. No attempt has yet been made

to define the physical architecture; we anticipate that much of

the work • that has been already been done on dataflow

architectures will be applicable.

Each model will perform with any number of processors. If

there is only one processor, both models will behave like the

standard Prolog interpreter. If there are more processors then

required, both models will evaluate each non-deterministic choice

asynchronously. With fewer processors only some of the

non-deterministic choices will be searched in parallel.

2.1. Limitations

In order to keep the models as simple as possible, we have made

the following assumptions for the initial versions of the

interpreters:
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- Processors will have some amount of local memory.

- Programs will not modify themselves (i.e. no "assert"
or "retract" procedures will be used).

- Programs will be small enough so that each processor
can store a copy of all the clauses.

- The programmer is responsible for coding in a style
which will allow parallel processing. Opportunities
for parallel processing arise from either
non-deterministic choices or from independent
subcomputations.

- The programmer is responsible for coding in a style
which does not lead to inordinate data tranfers.

- The programmer can no longer control his program
execution by "falling through". Since the interpreters
execute clauses asynchronously, each clause must stand
on its own as a true statement. We regard this
limitation as a demand for good coding style.

2.2. Processing Elements and Messages

Processors (PEs) in our models are capable of sending messages

to one another, performing the primitive operations of Prolog,

e.g. unification and goal list construction, and storing

information in a local memory.

Processors are either active or idle. At times a PE will

divide the problem it is currently working on into two or more

subproblems which can be solved in parallel. When this occurs,

the PE can send any of the subproblems to a dispatcher ^ which in

turn sends the subproblems to PEs that it knows are idle. This

notion of a dispatcher is simply a convenient means for modeling

the fact that idle processors will begin to work on subproblems

set up by other processors; the actual mechanism for performing

this distribution of subproblems will not necessarily have to be
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a special PE in the system, and in fact will probably be similar

to the mechanisms used in dataflow systems whereby a PE decides

to work on an activity when all of the input tokens have been

computed for that activity (c.f. [4]). If the dispatcher

receives a subproblem from a PE, and there are no more idle PEs

in the system, the problem is saved and assigned when a PE

becomes idle. A second function of the dispatcher is to open a

"communication channel" between a PE that originates a process

and the PE that is eventually assigned to work on it. Thus,

aside from the original assignment of a PE to a problem, the

dispatcher is not involved in any interprocessor communication;

rather, all messages are sent directly from one PE to another.

When a PE cannot proceed any further on its current problem

(this state is defined later, in the context of a particular

model), it notifies the dispatcher that it is idle. Note that

this implies that a PE can possibly work on subproblems that it

creates.

2.3. Processes

A problem being worked on by a PE is modeled as a process which

can be in one of three states; active, ready, or suspended.

There is only one active process on a particular PE at any one

time. The PE maintains lists of other processes that it has

worked on and that are currently suspended or ready. The PE

works on the active task until such time as subproblems are

identified; at this time, the process is put in the suspended
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state; all but one of the subproblems are sent to the dispatcher

to become processes on other PEs; the remaining subproblem is

used to create a new process which is put on the list of ready

processes (it is ready since the PE can immediatley begin to work

on it); finally the PE selects one of the ready processes and

makes it the active process.

From time to time, messages will arrive from other PEs,

containing the results of subproblems. There are two possible

results: failure or success. In the latter case, the message

also contains a (possibly empty) list of values that . were bound

to variables during the solution of the subproblem. This result

is recorded with the appropriate parent problem (the process for

which is in the list of suspended processes). When enough

information about its subproblems has been received, the process

for a problem will be changed from suspended to ready. When the

PE selects this problem for activation, it computes a result, and

reports the result to the originator of the problem.

Our two models differ in what constitutes a subproblem, and

what is meant by "enough information" to compute a result.

To summarize, a process typically goes through the following

sequence of states:

- active, until the PE detects possible parallel
subproblems.

- suspended, until results of subproblems are computed.

- ready.
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- active, when results of subproblems are used to
calculate the result of the orignial main goal.

Another type of message that can be sent from one PE to another

is a "kill" message, where a PE that created a subproblem tells

another PE to abort that subproblem. A process receiving this

message will pass it on to all of its descendants, and then

terminate itself (i.e. it will no longer be in either the ready

list or the suspended list for the PE that was working on it).

Situations where these messages originate are described below in

association with a particular model.

3. AND/OR MODEL

3.1. General Description

There are many choices for a parallel interpreter for logic

programs which are based on an AND/OR tree. We plan to experiment

with several, but in this discussion, only one model, the

simplest, will be explained. To understand the AND/OR

interpreter, imagine the complete finite AND/OR tree associated

with the genealogy problem (see figure 3-2). The top node of the

tree is the AND node which represents the user's request. The

sons of each AND node are OR nodes and the sons of each OR node

are AND nodes. At any point in the parallel computation,

processes will be associated with nodes in a subtree of the

AND/OR tree which includes the root. A dispatcher will assign

processors to these processes. Arcs between nodes in the tree

correspond to a message passing capability between processes.
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When a process finishes a task-, it tells its father. If a

processor has an empty ready list, it informs the dispatcher that

it is free. This allows it to enter into the job stream again.

To understand this AND/OR interpreter it suffices to understand

the AND process, the OR process, the dispatcher, and the

communication among them.

3.2. OR Process

An OR process has a single goal to solve. When it finds a

solution it passes this to its father, suspends itself, and waits

for a message from its father to either send another solution or

to kill itself. A solution is defined by a (possibly empty)

substitution list. The OR process collects and saves other

solutions to the goal that it may receive from its sons; these

solutions will be sent to the parent upon request.

The OR process begins to solve a goal by unifying the goal with

each head term in the program, which is a collection of clauses.

Each successful unification generates a substitution list which

is applied to the body of the corresponding clause. Each

instantiated body will be the goal list for an AND process.

These AND processes will become sons of the OR process. If the

body is empty, the OR node has a trivial success.

In brief, OR processes allow for parallelism when the program

has non-deterministic choices.
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3.3. AND Process

An AND process has a list of goals to satisfy. Possible ways

of defining an AND process vary greatly. The one we give is

similar to the Prolog interpreter. The AND process sends the

first goal in its goal list to an OR process and suspends itself.

When this goal is satisfied, it instantiates the next goal and

sends this off to an OR process. If a son fails its goal, the

AND process asks the previously suspended process for another

solution. If an AND process reaches the cut symbol "I", then it

kills the sons prior to the cut. The AND process treats the goal

"fail" exactly as if this goal were assigned to an OR and this

goal failed. When an AND process constructs a solution to the

entire goal list, it suspends itself and passes the answer to its

father.

A more efficient AND process would adopt the intelligent

backtracking ideas of [9, 10]. By severely complicating the

tasks of the AND process, using ideas suggested by [6] and [9],

one can achieve parallelism for independent subcomputations.

3.4. Communication

Each message in the parallel interpreter is tagged with the

source and destination. A background job for every PE is to route

messages to their destination process. The various forms of

messages, and their interpretations are:

1. Kill message: A father sends this message to a son.
The son process kills itself as well as sending kill
messages to all of its sons.
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2. Redo message; Sent by a father to a son, this message
tells the son to compute a different solution than the
any that have been sent previously, it causes the son
to change from the suspended to the ready state.

3. Failure message: A fail message is sent from a son to
his father when his goal or goal list cannot be
satisfied. After a process sends a fail message, it
l^ills itself. . Fail messages are handled differently
by OR and AND processes.

a. OR process: Upon receiving a failure message,
an OR node merely disowns his son. If he has no
more sons, he too fails.

b. AND process: The AND process awakens the
process responsible for the previous goal. If
the first goal sends a failure message, the AND
process fails.

4. Success messages: A success message is a (possibly
empty) substitution list. It is sent from son to
father. AND and OR processes handle success messages
differently.

a. OR process: The OR process compares the solution
with previous solutions, and if it is new, sends
it to its father when the father sends a redo
message. If the answer is not new, the son is
sent a redo message.

b. AND process: A success message to an AND process
causes the process to be moved from the
suspended state to the ready state. If the
answer was from the last goal of the goal list,
the answer is sent to the father of the AND
process. Otherwise the next goal in the goal
list is further instantiated and passed to an OR
process and the AND process is again suspended.

5. Goal List Request: Sent from an OR process to the
dispatcher, it sets up a son. If the list has more
than one element, the son is an AND process. If the
list has only one element, then the son can be an OR
process, rather than setting up a trivial AND process.

6. Goal Request: Sent from an AND node to the dispatcher,
it sets up a son, which is an OR process, if the OR
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process unifies the goal with only one clause^ then
the son can be regarded as an AND process rather than
setting up a trivial OR process«

7. Idle message; sent by a PE to the dispatcher when the
PE has no processes in the ready state.

3.5. Summary

The AND/OR model given here allows for parallelism only at the

OR nodes of the AND/OR tree. This model is adopted because it

clearly separates the processes at AND and OR nodes. If the

computer system had only one processor, then this model gives the

same results, with degraded performance, as would the standard

Prolog interpreter. The programmer cannot rely on the order of

the clauses he defines to dictate the order that the clauses will

be satisfied. The programmer can rely on the fact the body of

the clauses will be executed in the order that he has specified.

3.6. Example

Because of the inherent asynchrony in the AND/OR model, a

particular answer to a goal cannot be guaranteed. However the

first three time slices of a computation that an AND/OR

interpreter might obtain are illustrated in the following figure.

The notation S stands for suspended, — stands for not

applicable, and PEl and PE2 are different processors.

4. GOAL LIST MODEL

The goal list model was first presented in an earlier paper

[3]. In this interpreter, every node of the tree contains a goal

list which represents a complete continuati nn of the problem,
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time — >
goal process father 1 2 3

gf(X,Z) 1 user PEl S S
p(x,y) 2 1 — PEl S
m(X,y) 3 2 —

— ^ PEl
f(X,y) 4 2 — — PE2

Figure 3-1; Progress of Processes in the AND/OR Model

gf(den,G) [1]{1}

[2]{1} [4]{1} f(larry,G) [5]{1}

m(den,y) [3]{1} f(den,y) [3]{2} fail

Figure 3-2; AND/OR Tree

The number in brackets next to a goal indicates the
order in which a process was created to solve the goal
i.e. gf(den,G) was the first process created; p(den,y)
was the second process created, and so on.
The number in braces indicates which PE is assigned to
solve the goal.
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i.e. if every goal in the. list is solved^ then the top node

problem will be solved. in contrast, the goal lists at AND nodes

of the AND/OR model represent independent parts of the top node

problem.

Descendants of a node are created by selecting a goal from the

list and unifying it with as many heads of clauses as possible.

Each successful match creates a descendant, where the goal list

in a descendant consists of both the body of the matched clause

and the remaining goals from the parent's list. The unifying

substitution is applied to the entire list in the descendant.

Figure 4-1 shows a goal list tree for our example program.

The creation of descendants in this model essentially combines

the effects of AND node processing and OR node processing of the

AND/OR interpreter into one step, with the additional effect of

having OR nodes pass along the remainder of their parents' goal

lists with the new body. As the figure shows, each path from the

root to a leaf represents an independent approach to the solution

of the entire problem.

A brapch node in a goal list tree is defined to be a node that

has more than one descendant. A process is then defined to be a

path that starts with an immediate descendant of a branch node

and terminates at either a leaf or a branch node. The three

processes of our example are labeled in figure 4-1.

A computation in the goal list interpreter is similar to a
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gf(den,G)

p(den,Y) f(Y,G)

m(den,Y), f(Y,G) f (den,Y), f{Y,G)

{2}
f(peg,G)

{3}
f(larry,G)

fail success

Figure 4-1s Goal List Tree

The numbers in braces refer to process numbers;
processes {2} and {3} are descendants of {1};
PEl interprets {1} and {2}, and PE2 works on {3}
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computation using the AND/OR interpreter. A list of goals is

sent to a PE, and the PE creates a process from the list. A goal

is selected from the list and is used to create descendant lists.

If there are no descendants, the process terminates in failure

and sends a fail message to its parent. If there is exactly one

descendant, the process can continue, and the PE puts it on its

ready list. If there are two or more descendants, the current

list corresponds to a branch node, and therefore the process is

suspended pending results of each of its descendant processes.

One descendant process is put on the ready list of the current

PE, and the others are sent to the dispatcher. Any time the

empty list is generated as a descendant list, it represents a

successful computation; a success message is sent to the parent,

and the process terminates.

Whenever a process generates a branch node, and suspends

itself, it behaves like an OR node in the AND/OR model:

1. the first success message from a son is passed on to
the parent process; all subsequent successes are
stored.

2. a redo message from the parent causes the next
susccessful son's result to be sent to the parent
(assuming that the new result is different from any
previous result).

3. when all sons have reported, with either success or
failure, the next redo message from the parent causes
the process to send the parent a fail message and then
kill itself.
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5. METRICS FOR COMPARING PROLOG INTERPRETERS

Some of the metrics that we plan to gather statistics on are:

1. Size and number of messages sent during the solution
of a problem.

2. For each PE, the number of ready processes and the
number of suspended processes generated during the
solution of a problem.

3. Measure the ratio of idle time to processing time for
each PE.

4. For each PE, the costs for preparing, routing, and
receiving messages.

5. Cost for data base search for each processor.

It will also be possible to measure the number of unifications

attempted, and the number of successful unifications, during the

solution of a problem by one of the single processor

interpreters, and compare them with the same statistics for the

parallel interpreters.

6. FUTURE RESEARCH

The next step in our research is to build a simulator for the

models of parallel computation that we have defined. We expect

that the simulator will allow us to experiment with a variety of

other models. In particular we are eager to try to incorporate

various "intelligent" single processor interpreters into a

parallel processing framework. We also want to test various

models which allow for parallel execution of independent

subcomputations, as might arise in a program whose high level

plan was divide and conquer. A simulator is necessary to gain
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some insight into the cost tradeoffs between different parallel

models of computation.

It should also be possible to perform a "data dependency

analysis" among goals in a goal list, in order to gain some

insight into which of the goals should be solved before others,

or which goals could be solved in parallel. This analysis could

be performed by AND processes in the AND/OR model, and at every

step in the Goal List interpreter. We have done some preliminary

work in this area (this is the source of the "severe

complications" alluded to earlier).
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