Parallel k/h-Means Clustering
for Large Data Sets

Kilian Stoffel and Abdelkader Belkoniene

Université de Neuchatel
Groupe Informatique
Pierre-a-Mazel 7
CH-2000 Neuchatel
(Switzerland)
{Kilian.Stoffel;Abdelkader.Belkoniene}@seco.unine.ch
Phone: +441 32 718 1376, Fax: ++41 32 718 1231

Abstract. This paper describes the realization of a parallel version of
the k/h-means clustering algorithm. This is one of the basic algorithms
used in a wide range of data mining tasks. We show how a database can
be distributed and how the algorithm can be applied to this distributed
database. The tests conducted on a network of 32 PCs showed for large
data sets a nearly ideal speedup.

1 Introduction

Clustering, the process of grouping similar objects, is a well known and a well
studied problem. Some of early work has been done in statistics (e.g. [2][1]).
In more recent years clustering was identified as a key technique in data mining
tasks [3]. This fundamental operation can be applied to many common tasks such
as unsupervised classification, segmentation and dissection. We are focusing here
on one specific algorithm for clustering namely k/h-means clustering [I]. The
original version of the k/h-means algorithm was designed for numerical data
A6l E.

Our contribution in this paper is the development of a parallel version of
the k/h-means algorithm. We present a realization of this algorithm on top of a
distributed object store installed on a simple PC network.

2 The k/h-Means Algorithm

The k/h-means belongs to the class of the partitional or non-hierarchical clus-
tering algorithms. The goal of the algorithm is, starting from a set of objects
X and an integer number K, to find a partitioning of the objects in X into K
clusters. If M denotes the number of objects in the database then K < M. The
partitioning is optimized in the sense that the distance between the objects in
one cluster is minimized. This optimization is often called ”whiting group sum
squared error minimization”.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1451-{I254] 1999.
© Springer-Verlag Berlin Heidelberg 1999

1452 Kilian Stoffel and Abdelkader Belkoniene

More formally this problem can be defined in the following way:

Given X a set of M objects. Let X; = [x;1,Ti2, ..., in] denote a vector that
represents the values of it" object over the n attributes, let Po(M,K) be a
partition matrix, and let Cj, [= 1, K be the clusters of the partition. Each of the
M objects lies in one of the K clusters. The mean of the K clusters are defined by
X, = n% Ziecl X;, I =1, K where n; stands for the number of elements in cluster
C). The error for a given cluster Cj is given by: ¢ = Ziecl §(X;, X;) where §
represents any distance function. Then the error for a partition Py(M, K) can be
defined as: ¢[Py(M, K)] = Zf; €; The overall goal is to minimize €[Py(M, K)].
The large number of all possible partitions makes it impracticable to search for
an optimal partition P*(M, K) such that e[P*(M, K)] is minimal. Instead, it is
necessary to use a local optimization technique.

Let Py (M, K) be a partition in the neighborhood of Py(M, K) obtained by
moving the object k from the cluster C,. of the partition Py(M, K) to the cluster
C; of the partition Py (M, K). If for § we use the squared Euclidean distance,
then the relation between €[Py(M, K)] and €[P; (M, K)] is given by:

€[PL(M, K)] = €[Po(M, K)] + —450(X;, Xi,) — -250(X,, Xi). €[P1(M, K)] de-

n]+l r—1 - _
creases if #5(Xj,Xk)—n:‘:16(Xr,Xk) < 0Oor #6(Xj,Xk) < 725 0(X, Xi)

3 The Parallel k/h-Means Algorithms

In the previous section we describe the original k-means algorithm. This algo-
rithm can be translated into the pseudo code version given in Figure [Il This is
the version we will use to present the reflection to be made in order to parallelize
the algorithm given above. However, another formulation of the k-means algo-
rithm exists. This version is sometimes also called h-means . Very often people
do not distinguish between the two algorithms. However, we think it is important
to make this difference, even though the conceptual difference in the algorithms
is very small. The only difference is the place in the algorithm where the means
are recalculated. Instead of recalculating them after each migration of an object,
all objects are migrated if a better cluster assignment can be found, and then
the new mean values are calculated (see Figure[T]). The theoretical properties of
the two algorithms are different. The k-means algorithm has better convergence
properties and is less likely to get stuck in a local minimum. However in a wide
range of tests we conducted, no major differences could be measured.

We will now show how the k-means algorithm can be parallelized. We will
first start with the mainLoop given in Figure [l At first glance this loop seems
to be ideal for the parallelization of an object based data distribution. However,
the parallelization of the loop as it stands is very difficult. The problem lies in
the link between the two function calls getNearestMean and recalculateMean.
Once an object is selected to be processed all three function calls inside the main
loop have to be finished before another object can be considered. Therefore an
easy parallelization of the mainLoop is not possible. The h-means algorithm
given in Figure [Il does not have this problems and is therefore much easier to
parallelize. Every processor can, independently of all other processors, find the

Parallel k/h-Means Clustering for Large Data Sets 1453

function K-MeanMainLoop { function H-MeanMainLoop {
assign each object randomly to one cluster; assign each object randomly to one cluster;
do { do {
for each object t in the database { for each object t in the database {
nC = getNearestMean(t); nC = getNearestMean(t);
insertIntoCluster (t,nC); insertIntoCluster (t,nC);
recalculateMeans (t,nC) ; }
T recalculateMeans();
} while at least one t changes its cluster } while at least one t changes its cluster
} }

Fig. 1. Pseudo code of the k-means and h-means algorithm.

nearest clusters for all local objects. Once the cluster membership for every
object is defined, the mean value and the membership values have to be globally
update. This modified version has exactly the same properties as the sequential
algorithm given in Figure [T

4 Experiments

In order to test the performance we conducted a series of tests. The environment
we used consists of a network of 32 PC connected through a 10 MBits Ethernet.
This is a very simple environment, but fairly realistic for many of the application
environments we are focusing on.

In order to get real timings we used some reference data sets from the Machine
Learning Database Repository at UC Irvine as well as artificially generated ones.
To present the timings here we use a database with the following characteristics:
20 continuous attributes, 100’000 objects in 20 clusters.

If we execute the program ”as it is” on one PC the average execution time
for the clustering is 528.7 seconds. This time can not be directly compared to
timings for the parallel version running in an environment of two and more
nodes. Every node could keep its part of the data in memory. In order to get a
usable reference time we added memory to one PC to allow it to keep the whole
database in memory. The execution time under these conditions goes down to
343.5 seconds. This time can now be used as reference time for the parallel
timings.

In order to measure the execution time in a parallel/distributed setting, first
we have to distribute the data to all the processors participating in the clustering.
In the real world scenario this distribution would be given. Here we installed the
data that was processed by each node on its local disk. This distribution is done
by the underlying object store [§]. The time for this operation is not included in
the timings presented here.

The first measures of interest are of course the overall execution timed] of
the application. For the one node configuration we measured the timings for the
standard machine (528.7 secs) and the machine with the augmented memory
(343.5). With an increasing number of nodes the speedup slowly degrades, but

! The timings are the mean values over 100 runs.

1454 Kilian Stoffel and Abdelkader Belkoniene

even with 32 nodes we still have 90% efficiency. This is reasonable with respect
to the slow interconnection network we are using. The increase in time consump-
tion we are measuring after adding nodes is not only related to the increase in
communication overhead, but is also related to the variations in the execution
times of the different processors. These variations are relatively high and are
very hard to control largely because of OS limitations (Windows 95) that do not
allow us to control many of the parameters we would like to.

The previously presented results are representative for all the other tests we
conducted. Because of space constraints we did not add other similar results.
Overall, the results are very satisfactory for the given environment.

5 Conclusion and Future Work

We have presented a parallel version of the k/h-means clustering algorithm. The
algorithm is designed to be used on large distributed data sets. Even on a very
simple distributed computing environment, namely a PC cluster on a 10 MBits
Ethernet, we are able to achieve about 90% efficiency for a configuration up
to 32 processors. These results show that parallel k/h-means is scalable and
thus enlarges its field of application to clustering tasks where it would be the
preferred algorithm, but the task’s computational complexity previously made
it impossible

The basic algorithm presented here can be used in conjunction with broad
variety of other settings. We are currently using this algorithm in a system that
handles a wide range of classification problems. The parallel algorithm presented
was extended to handle, not only continuous, but also categorical data. We are
currently working on a version that would allow us to combine both types of
data.

References

[1] M.R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[2] John A. Hatigan. Clustering Algorithms. John Wiley and Sons, 1975.

[3] W. Kloesgen and J.M. Zytkow. Knowledge discovery in database terminology.
Advances in Knowledge Discovery and Data Mining, pages 573-592, 1996.

[4] J.B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, 1967.

[5] C.F. Olson. Parallel algorithms for hierarchical clustering. Parallel Computing, 21,

1995.

E.M. Rasmussen and P. Willett. Efficiency of hierarchical agglomerative clustering

using the icl distributed array oricessor. Journal of Documentation, 45(1), 1989.

Helmuth Spaeth. Cluster Analysis Algorithms. John Wiley and Sons, 1980.

Kilian Stoffel. Pattern matching in time series. Technical Report University of

Neuchétel, September 1998.

=

RN

	Introduction
	The {sl k/h}-Means Algorithm
	The Parallel {sl k/h}-Means Algorithms
	Experiments
	Conclusion and Future Work

