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ABSTRACT: A parallel algorithm for square root Kalman filtering is developed and implemented 
on the Connection Machine (CM). The algorithm makes efficient use of parallel prefur or scan 

operations which are primitive instructions in the CM. Performance measurements show that the 
CM filter runs in time linear in the state vector size. This represents a great improvement over ' 
serial implementations which run in cubic time. A specific multiple target tracking application is 
also considered, in which several targets (e.g., satellites, aircrafts and missiles) are to be tracked 

simultaneously, each requiring one or more filters. A parallel algorithm is developed which, for 
fixed size filters, runs in constant time, independent of the number of filters simultaneously pro- 

cessed. 



1. INTRODUCTION 

Since the appearance of Kalman's original paper [12], the Kalman filter has become a fundamental tool 
for solving state estimation problems. Kalman filtering is a general technique for recursively estimating the 

state variables of a dynamic system from noisy observations or measurements. Applications of Kalman filter- 

ing include spacecraft orbit determination 141, target tracking [1,3,5], vehicle guidance and navigation 

[7,9,13,16,20], geophysical subsurface estimation [19], demographic modeling [IS], and industrial process con- 
trol [22,23]. 

The solution of the Kalman filter equations is expensive, in general requiring 0 (n3) operations for each 

state update, where n is the number of state variables. This has motivated the design of a number of parallel 
algorithms (see, e.g., [14] and the references contained therein). The majority of the proposed algorithms are 
targeted for implementation on special-purpose VLSI architectures such as systolic arrays and wavehnt 
arrays. The reason is that the computations occurring in the Kalman filter are mostly matrix operations which 

can be efficiently mapped on systolic arrays. 

On the other hand, little work has been done to demonstrate the feasibility of implementing the Kalman 
filter on commercially available parallel computers. To date, the only work we are aware of is by Baheti, 

Iakowitz and O'Hallaron [10,17] who developed and implemented a parallel Kalman filter on a Warp com- 
puter. The Warp is a linear array of 10 or more identical and programmable cells connected to a general- 
purpose host computer. Baheti et al. designed a parallel algorithm for solving an n -state, m-measurement 
square root Kalman filter using an (n+m+l)-cell linear array. Based on this algorithm, they demonstrated on 

the Warp a mapping of a 9-state extended square root Kalman filter commonly used in target tracking applica- 
tions. 

This paper describes a parallel algorithm for square root Kalman filtering on a two-dimensional SIMD 
array and its implementation on the Connection Machine (CM). Manufactured by Thinking Machines Cor- 
poration, the CM is a SIMD architecture that consists of up to 64K data processors physically connected via a 
hypercube interconnection network 1211. 

The results of our investigation demonsrrate that the square root Kalman filter can be efficiently mapped 

on the CM. Specifically, the CM has primitive parallel prefut or scan operations that facilitate the derivation 
of a simple, yet efficient, two-dimensional array algorithm. Moreover, using the CM's "virtual processing" 
facility, the same algorithm is applicable to filters of different sizes. Performance measurements show that the 
CM filter runs in time linear in the state vector size. This represents a great improvement over serial irnple- 

mentations which run in cubic time. Moreover, the CM is well suited for K h a n  filter applications with large 

state vector sizes. Examples are satellite estimation, which may use between 40 to 200 states and missile gui- 

dance, which may use 10 to 20 states plus many bias variables. 

We also investigated the applicability of the CM to large-scale applications such as multiple target track- 

ing. In such an application, up to a hundred targets (e.g., satellites, aircrafts and missiles) may have to be 

tracked simultaneously, each requiring 3 or more different filters. Thus, up to 300 different Kalman filters 
may have to be processed simultaneously. For this application, we developed two mappings on the CM. The 

h t  mapping is based on the serial algorithm and assigns one processor per filter. The second mapping is 
based on the parallel algorithm and assigns a two-dimensional subarray of processors per filter. Both map- 
pings achieved constant run-times, independent of the number of filters simultaneously processed. 

The rest of the paper is organized as follows. Section 2 briefly describes the square root Kalman filter 
and its serial implementation. The most compute-intensive step in the solution of the filter equations is matrix 



triangularization. Section 2 discusses how the triangularization problem can be solved using fast Givens rota- 
tions. Section 3 gives an overview of the CM and its scan opedons. Section 4 focusses on the paralleliza- 

tion of the triangularization algorithm using the CM scan operations. For lack of space, the other steps of the 
parallel Kalman filter algorithm are only sketched (details can be found in the full paper [181). The perfor- 

mance measurements are summarized in Section 5. Finally, Section 6 is devoted to conclusions and recom- 

mendations for further study. 

2. THE SQUARE ROOT KALMAN FILTER 

2.1. Mathematical Formulation 

Consider a discrete-time space model given by 

where the subscript t is the discrete time, x, is an (n x 1) state vector, and y, is an (m x 1) measurement vec- 

tor (typically m I n). The process noise wt and the measurement noise vt are zero mean Gaussian random 
sequences. a , ,  G,, and Ht are time varying matrices of dimension (n x n), (n x n), and (m x n), respec- 

tively. It is assumed that E (wtwT) = Qt6,,, E (v ,  v:) = R, ti,,, and E (w,vT) = 0 (ti,, is the Kronecker delta). 

The Kalman filter [I21 gives an estimate %,+, of the state at time t+l that is a linear combination of an 
estimate f t  and the measurement data y,, at time t .  More precisely, the predicted state estimate is given by 
the recursive relation 

where: 

Kt is the Kalman gain marrk with dimension (n x m), Re, is the covariance of the innovations with dimen- 

sion ( m  x m ) ,  and Pt is the (n x n) covariance matrix. 

2.2. The Kalman Filter - Square Root Formulation 

It is well-known that the computation of matrix products of the form X Y X ~  (such as those in Equations 

4 and 5) results in loss of information unless the calculations are done in double-precision. To avoid this, 
various matrix factorization methods (e.g., QR , L D L ~ ,  etc.) are commonly employed. Based on earlier work 
by Kailath [Ill, Itzkowitz and Baheti [lo] presented an algorithm for solving the Kalman filter equations by 

maintaining the matrices Pt and R e ,  in factorized form: 

T 
Pt = Lp,tDp.tLp.t. 

R e ,  = ~ e , t ~ , , t L : , .  



where L,,, and L,, are unit lower triangular matrices, and D,, and D,,, are diagonal matrices. The Kalman 
gain matrix Kt and the covariance update P,+l are then obtained from the triangularization of a particular 

matrix. 

Let S be the (m+n ) x (m+2n ) matrix given by 

It was shown in [lo] that S can be factored as 

where A is an (m+n ) x (m+2n ) matrix and D is a (m+2n ) x (m +2n) matrix. Under the assumption that R,  
and Q, are dmgonal, D is also diagonal. Similarly, S can also be factored as 

S = A'D' (A')T (9) 

where A' is an (m+n ) x (m+2n) unit lower triangular mamx and D' is a (m+2n) x (m+2n) matrix. Because 

of the nature of this factorization, the matrix D, is arbitrary. 

The factorization of Equation 8 can be transformed into the factorization of Equation 9 using a mangu- 

larization algorithm based on fast Givens rotations. The triangularization algorithm is discussed in 5 2.3. 

Since the matrix A' contains Lp,t+l and matrix D' contains Dp,t+l, the matrix P,,, can be explicitly com- 

puted as soon as the triangularization procedure completes. However, this is not necessary since the recursive 
algorithm requires only the factorized version of P,,, (see Equation 8). 

The square root Kalman filter algorithm is presented as Algorithm K below. Assumed as given are an 

initial state estimate % and an initial factored covariance matrix Po = Lps0 DPgo L:,~. Algorithm K is slightly 
more efficient than the algorithm described in [lo]. Specifically, in [lo] the term Kt [y, - H,%,] was obtained 

by first computing Kt explicitly from Kt = [K,L,,,I[L,,~I-~, then multiplying it with c, = y, - Ht 2,. (The 
matrices [K,L,,,] and [L,,,] are obtained directly from matrix A' .) Excluding the time to compute c,, this 
method requires a total of 0 (m3 + nm2 + nm) operations. On the other hand, step (3) of Algorithm K com- 
putes the same term without precomputing Kt, and instead uses forward substitution followed by a matrix- 

vector multiplication. Consequently, the number of operations is reduced to 0 (m2 + nm). 

23. Matrix Triangularization Using Fast Givens Rotations 

Let A = [aij] be an (M x N) matrix with M < N,  and D = diag(dl, ..., dN) be an (N x N) diagonal 
matrix. We wish to transform k - p r  the pair of matrices (A, D )  into another pair (A', D') such that: (1) A' 
is unit lower triangular and D' is diagonal, and (2)   ADA^ = A'D'(A')~. The desired transformation can be 
achieved using fast Givens rotations as described below. 



Input: b 4 p D p . ~ ; O I . H I , R , , Q I . G , , ~ ~ . f o r t ~ 0 .  

1 output it for t 0. I 
Steps: For t = 0, 1. 2, . . . , do the following: 

(1) Set up matrices A and D such that I 

(2) Triangularize A to obtain: 
? 

such that S = ADA = A'D' (A' )T. I 
(3) Compute K, [y, - HI PI] as follows: 

(a) Compute c, = y, - HI 2,. 
(b) Solve L,, z, = c, for 4 .  

(c> Compute Kt ty, - H, f , I = [Kt L, I&. 

(4) Compute and outpuc = @,R, + Kt [y, - HIS,]. 

For 1 < k 5 M ,  define T& as the function that transforms ( A ,  D )  into (B , C) where: 

( 1 )  C is identical to D except for k-th diagonal element which is given by ck = a&dk. 

(2) B is identical to A except for the elements in column k which are given by bik = aiklaM. 

It can be shown that ADA = BCBT. Moreover, bu = 1. 

Similarly, for 1 < k < M and k < j I N ,  define Tk,(A, D )  = ( E ,  F )  where: 

(1) F is identical to D except for the k-th and j-th diagonal elements which are given by 
fk  = asdk  + a$dj and f j = dkdj/f  c .  

(2) E  is identical to A except for the elements in columns k and j which are given by 

ea = (a&aadk + akjaij d,)lf and eii = ah aij - akjaa. 

Again, it can be shown that  ADA^ = E F E ~ .  Also, ekj = 0. 

Thus, to triangulanze matrix A ,  we zero out the rows of A one at a time beginning with the first row. 

For row k ,  the diagonal element aM is set to unity by applying T M ,  then the elements (akj I k+l < j < N )  are 



set to zero in turn by applying T ~ & + I ,  Tk,k+2, .... Tw. 

A serial implementation of Algorithm K requires approximately 4.3n3 + 11.5n2m + 10nm2 scalar operations 
per state update [181. The matrix triangularization step alone (step (2)) takes up roughly three-fourths of this 
total time (3.3n3 + 4 n h  + 2nm2 to be precise). Consequently, for the CM implementation, we focussed on 
developing an efficient parallel algorithm for manix triangularization. The parallel algorithm makes efficient 

use of scan operations, which are available as primitive instructions on the CM. A brief description of these 

instructions is given in the next section. 

3. OVERVIEW OF THE CONNECTION MACHINE 

The Connection Machine (CM) [21] is a parallel SIMD architecture consisting of up to 64K processing 

elements called data processors. The data processors are collectively under the control of a single control unit 
called the sequencer. The task of the sequencer is to decode instructions issued by a front end computer and 

broadcast them to the data processors, which then all execute the same instruction simultaneously. 

The CM data processors are physically connected via a hypercube interconnection network; however, 

this physical interconnection is transparent to the user. The CM provides a facility called "virtual processing" 
which allows programs to be written assuming any appropriate number of virtual processors; the mapping from 

virtual processors to physical processors in done automatically by the CM. A collection of virtual processors is 
called a virtual processor set, or VP set. Associated with a VP set is a geometry which specifies the logical 

interconnection of the virtual processors. Geomemes currently supported by the CM are d -dimensional grids, 
where d is any number between 1 and 31 inclusive. The CM has primitive instructions for nearest-neighbor 

communication within the VP set (called NEWS communication). In addition, general communication instruc- 
tions are provided for data transfer between non-adjacent processors. NEWS communication is faster than 

general communication; the CM performs virtual-to-physical mapping such that any two nearest-neighbor vir- 
tual processors are either assigned to the same physical processor or to 

The third class of communication operations are called parallel prefuc or scan operations. These differ 
from the first two classes in that while communicating, the virtual processors also perform some combining 

operation (such as addition) on the data they receive. Informally, a scan operation takes a binary associative 
operator o and an ordered set of elements [ al ,  up, a3, - . . I, and computes the ordered set 
[ at, (a1 0 a d ,  (a1 0 a20 a31, . . . I. 

I 

For example, for a scan-with-add operation, the computed values are the prefix sums ak for all i .  The 
k=l  

ordered set of elements typically comes from an ordered sequence of processors along a specific axis of the 
given W set. 

In general, the scan instruction has two attributes: (1) direction, which is either upward or downward and 
(2) inclusion, which is either inclusive or exclusive. The direction indicates the ordering of the values along 

the axis: upward (downward) orders the values according to increasing (decreasing) processor NEWS coordi- 
nates along the axis. The inclusion indicates whether or not the value originally stored in a processor will be 

included in the partial sum computed for that processor. To illustrate the effect of these attributes on a scan- 
with-add operation, consider a linear array of N processors such that processor i initially contains a value 

1 

v (i). If an upward, inclusive, scan-with-add were performed, then processor i would get the value C v (k). 
k=l 



i -1 

If instead the inclusion were exclusive, then processor i would get the value x v(k) and processor 1 would 
k=l  

L 

get the value 0. For a downward, inclusive, scan-with-add, processor i would get x v(k); if the inclusion 
k -a 

i+l 

were exclusive, then processor i would get v (I() and processor N would get the value 0. 

A special case of the scan operation is the reduce operation. A reduce-wth-add computes only the total 
N 

sum v (k); this total sum is then stored in a specific destination processor which is also an argument to the 
k=l 

reduce operation (all other processors are unaffected). Another useful instruction is spread-with-copy, which 
causes data from a specified source processor to be broadcast to all processors (including the source processor 

itself). 

4. PARALLEL SQUARE ROOT KALMAN FILTER ON THE CONNECTION MACHINE 

4.1. Matrix Triangularization Using Scan Operations 

Consider again step (2) of Algorithm K which transforms the pair of matrices (A, D)  into another pair 

(A', D') such that A' is unit lower triangular. In 5 2.3 it was shown that the required transformation can be 
achieved using fast Givens rotations as follows (recall that A is an (M x N) mamx and D is an (N x N) 
diagonal matrix, where M = m+n and N = m+2n): 

for k = 1 to M do 

for j = k to N do 

(A,D)=Tkj(A,D); 
endfor; 

endfor. 

For 1 I k I M ,  let A(k) and D ( ~ )  be the matrices A and D,  respectively, at the end of iteration k of the 
outer loop. Similarly, let A@) and D(') be the original matrices. The idea behind the parallel triangularization 

algorithm is to parallelize the inner loop, i.e., to compute A ( ~ )  and D ( ~ )  directly from A(~- ' )  and Dck-') using a 

constant number of scan operations. 

Fork I i  I M  andk I j  <N,define 

In [18] we showed that the elements of A ( ~ )  and D ( ~ )  can be expressed succinctly in terms of the partial sums 
in Equation 10. More precisely, the &st (k-1) diagonal elements of D ( ~ )  have the same values as those of 
D(~-'); the remaining elements have new values: 



Similarly, the first (k-1)  rows and first (k-1)  columns of A ( ~ )  have the same values as those of A('-'); the 

remaining elements have new values: 

s#-l) 
= - 

s#-l) ' and 

Equations 10 to 12 suggests a parallel algorithm that maps nicely on the CM. For an (M x N )  matrix A 

and an (N x N )  diagonal matrix D ,  the parallel algorithm uses a twcdimensional VP set P of dimension 
M  x ( N + l ) .  The VP set has two memory fields, a  and d ,  for storing the elements of matrices A and D ,  

respectively. Initially, a ( i  j )  = aij and d  (i j )  = dj for 1 I i I M and 1  5 j  5 N  . The idea behind the paral- 
lel algorithm is simple. For each iteration k ,  1  I k I M ,  the partial sums (sijk-'I] are computed in parallel 
using scan-with-add operations. The partial sums are distributed to the right processors, which then update the 
matrix elements in their a  and d fields. The steps are given in Algorithm PT below. The triangularization is 

done in place; i.e., if A' is the a-iangularized matrix and D' is the corresponding diagonal matrix, then at the 
end of the algortihm, a ( i  j) = a'ij and d ( M , j )  = 4 for 1  I  i I  M  and 1  5 j I N .  

Algorithm PT: 

1 For k = 1 to M do the following: I 
( 1 )  Fordcolumhsj,kIjIN,spread-withcopya(k,j)domthecolumnandstoreitinb(i,j),k~i~M. 

(Thus, b ( i , j )  = ak!-').) 

(2) For k I i 5 M and k I j I N ,  compute t l ( i  . j )  = a ( i  , j  ).b ( i  ,j ).d ( i ,  j ) .  mu, t l ( i  , j )  = aiy-l)a$-l)dj(k-l).) 

(3) For all rows i ,  k 5 i I M, perform an upward, exclusive, scan-with-add over the set of values 

{ t l ( i , j ) I k  I j < N + l ) .  (Thus, t l ( i , j ) = s i g : i ) . )  

(4) For all columns j , k I j I N ,  spread-withcopy r l (k .  j ) down the column and store it in t2(i j ) ,  k 5 i I M 
(Thus, t 2( i .  j ) = ~$32) .) 

( 5 )  For k 5 i S M and k < j I N +1, compute t l(i j ) = t ,(i ,j )lt2(i j ). (Thus, t ,(i j ) = sfi:~)lsI;'~:~) ; 

in particular. t l ( i  f l + 1 )  = dk) and t2(i &+I) = dik) . )  

4.2. Parallel Implementation of Algorithm K 

Steps ( I ) ,  (3) and (4) of Algorithm K can also be parallelized using the CM scan operations. For exam- 

ple, consider the computation of the matrix products H,Lp, and @,Lp,, in step (1) .  Here, @, and L,,, are 
( n  x n )  matrices and H, is an (m x n )  matrix. Both matrix products can be computed in n  iterations as 



follows. Initially, H, (a,) is stored in the same set of processors where H,L,,, (QL,,,) will eventually reside. 
L,,, (obtained from the previous triangularization step) is stored in the same place where a, is (but in a 

different memory field). The elements of the matrix products will be stored in a sepafate field, say f , which 
is initially zero for all processors. (Only the processors containing Ht and Q?, will participate in the ensuing 

computation.) At each iteration k, 1 I k I n ,  the k-th row of L,, is broadcast to all the rows and the k-th 
column of the composite matrix [H, I a l l T  is broadcast to all the columns. The two elements received by 

each processor are then multiplied and added to the current contents of field f . It is easy to verify that at the 
end of n iterations, field f will contain the desired matrix products. 

Computing the matrix-vector products H , f ,  in substep (3a) and @,%, in step (4) can be accomplished 

with a single reduce-with-add operation. First, %, (again, computed in the previous iteration) is broadcast to 

all rows of the composite matrix [H, I Q?,lT and then multiplied element-wise with the each row. A reduce- 

with-add operation is then performed on each row to obtain the desired matrix-vector products. 

Substeps (3b) and (3c) can actually be performed while the first m rows of matrix A are being triangu- 
larized. Let 8 = [el, ..., O,+,,lT be the (m+n) x 1 vector defined by 

i-1 
ei = c , ( ' ) -  L:;~). ek, 1 5 i  I m ,  and 

k=l 

where L!!?) and [K,L, ,, I('") denote the (i ,k )-th element of L, , and [K,L, ,, I, respectively, and c,(') denotes the 
i -th element of c,. It can be verified that the first m elements of 0 is the (m x 1) vector z, computed in sub- 
step (3b). Similarly, the last n elements of 0 is -[K,L,,t]z,, the negative of the (n x 1) vector computed in 

substep (3c). Now, in the triangularization algorithm, the updated columns of the matrix A are always first 
computed at rightmost column of the VP set (see step (5) of Algortihm PT) before they are routed to their 

final destinations. Thus, for the first m iterations, columns 1, 2, ..., m of the composite matrix [L,, I K , L , , ~ ] ~  

appear, in turn, at the rightmost column of the VP set. By exploiting this fact, the vector 8 can be computed 

in m iterations as follows. First, 8 is positioned in the rightmost column of the VP set and initialized so that 
its first m elements comprise the vector c, and its last n elements are zero. At iteration k ,  the k -th element of 
0 is broadcast down the column and multiplied with the elements of the composite matrix [L,,, I K,L,, ,]~ that 
arrive during this iteration. These computed values represent the terms ~2;" )  . ek and [K,L,,,](~*) . ek in 
Equation (13). These values are then subtracted from the corresponding elements of 8 and the next iteration is 
ready to begin. At the end of m iterations, 8 would have been computed; the last n elements are negated to 
obtain the matrix product [K,L,,,]z, = K,c,. 

We have some final remarks. In the actual CM implementation, we exploited the sparsity of the mamx 

A to reduce the size of the VP set from (m+n ) x (m+2n+l) to (m+n ) x (n+l). This was done by storing 
only columns m+l through m+n of the matrix A (see step (1) of Algorithm K). The nonzero mamx contain- 
ing G, was stored in the same set of processors holding a,L,,, but with the rows reversed. (Imagine folding 

matrix A along the vertical line separating @,L,,, fiom G, .) The triangularization step is essentially the same 
as before except that the partial sums computed in Equation (10) are slightly modified to take into account the 
contribution due to the now missing first m columns of A (which contains [I I OIT).  Also, when zeroing out 

the last n rows of A, the row-scan operation (step (3) of Algortihm PT) is first performed towards the right 

(as before), then towards the left to pick up the contribution due to G,. Note also that the matrices L,, and 
[K,L,,,] are no longer stored (they are supposed to lie in the first m columns of A); this creates no problem 



since they are used only in computing the vector 0 as described in the previous paragraph. 

43.  Complexity Analysis of The Parallel Implementation 

Table 1 lists the numbers of CM instructions of various types required by the parallel square root Kal- 
man filter algorithm. These instruction counts are based on our actual CM implementation which used the 
reduced VP set We have included row-reducewith-add in the line labelled row-scan-with-add. A separate 
column gives the instruction counts for each step of Algorithm K. 

Table 1. 

Instruction Counts for Parallel Implementation of Algorithm K 

As Table 1 indicates, the total number of CM instructions executed is linear in n (assuming n 2 m). 
We should point out, however, that the "real" complexity of the parallel algorithm is 0 (nlog (n)) rather than 

0 (n). The reason is that the CM scan instructions are in reality nor constant-time operations. For instance, a 
row-scan-with-add, which operates on a row of size n+ l ,  actually takes log(n+l) unit routing steps and 

log(n+l) additions on the hypercube, the underlying network of the CM. Similarly, a column-spread-with- 
copy on a column of size m+n requires log(m+n) unit routing steps. 

Operation 

addfsub 

multjdiv 

row-scan-with-add 

col-spread-with-copy 

NEWS comm. 

gen. comm. 

Table 1 also allows us to determine, at least theoretically, the fractions of the total time due to commun- 

ication and computation. In Table 1, the h t  two rows contribute only to the computation time while the last 

thnx rows contribute only to the communication time. For the row-scan-with-add, half of the time is due to 
communication and the other half is due to computation. Under the assumption that one unit routing step 
takes as much time as one arithmetic operation, then communication will be about 78% of the total time. 

5. PERFORMANCE RESULTS 

Step(1) 

n 

n 

0 

n + l  

0 

0 

5.1. Performance Results for Different Filter Sizes 

The parallel square root Kalman filter was implemented on an 8K Connection Machine with floating- 

point hardware. In addition, the serial algorithm (Algorithm K )  was run on two types of serial pmesson: (1) 

a Sun 3/60 computer with a 68881 floating-point coprocessor and (2) a single CM data processor. For each 

Total 

4n +3m +3 

13n +7m +2 

2n +m +2 

5n +3m +3 

6n +m 

1 

s t e ~ ( 2 )  

3n +2m 

12n+6m 

2n +m 

4n +2m 

6n +m 

0 

Step(3) 

m +2 

m+l 

1 

m+l  

0 

0 

s t e ~ ( 4 )  

1 

1 

1 

1 

0 

1 



implementation, the run-time per state update was measured for state vector sizes and measurement vector 
sizes between 2 and 40 inclusive, at increments of 2. 

Figure 1 gives a plot of the run-times for the three implementations as functions of the state vector size 
(with the measurement vector size equal to the state vector size). From the graphs, it can be seen that the 
run-times for the two serial implementations (i.e., on the single data processor and on the Sun) are roughly 

cubic functions of the state vector size n .  These agree with the complexity analysis of the serial algorithm. 
For the parallel implementation, the run-time is nearly linear in n (a rough estimate is 21n + 30). This is 
quite better than the 0 (nlog (n )) run-time derived from the complexity analysis of the parallel algorithm. We 
believe that the 0 (nlog(n)) behavior of the run-time will become noticeable only for very large n . 

Observe from the graphs that the parallel CM filter beats the serial filter on a single CM data processor 
for n 2 5 but beats the Sun filter only for larger state vector sizes, i.e., n 2 32. As elaborated in 6 6, the rea- 

son is that a single data processor has only a fraction of the computing speed of a Sun processor. For a SIMD 

architecture with more powerful processors than the CM, one would expect that the parallel algorithm will 

become faster than Sun filter at a lower value of n . 
Our parallel complexity analysis indicates that communication time will dominate computation time in 

the parallel implementation. This was also verified by the performance results, as shown in Figure 2. The 
graph plots the communication time, computation time, and total time as a function of n,  with m = n . As can 

be seen from the graph, the run-time is roughly 70% communication and 30% computation. 

52.  Performance Results for Multiple FiltersITargets 

We also considered a specific multiple target tracking application, using the 9-state, 3-measurement 
square root extended Kalman filter described by Baheti and his colleagues [10,17]. For this application, a 

large number of targets are to be tracked simultaneously, each using a separate filter. The tracking filter is 
based on the laws of motion and a stochastic acceleration model. The (9 x 1) state vector x, = 

[ x ,  y , r ,  x ,  j ,  i, x ,  j;, 21T gives the position, velocity, and acceleration of the target in the x ,  y , and r axes. 
The (3 x 1) measurement vector y, = [r , eT, eEIT contains the noisy measurements of the range, azimuth, and 

elevation angles, respectively. The discrete-time equation of target motion is similar to Equation 1 (Q 2.1), 

except that the term H,x, is replaced by the (3 x 1) vector h(x,) which transforms the Cartesian coordinates in 

x, to polar coordinates (a nonlinear transformation). 

The extended Kalman filter uses linearization of the nonlinear equations about current state estimates. 
The structure of the covariance and gain computation equations in the extended Kalman filter are similar to 

Equations 2 to 5 ( 2.1) except that: (1) in Equation 2 the term H,%, is replaced by the coordinate transforma- 
tion vector h(ji,), and (2) in all equations the matrix H ,  is used to denote the Jacobian matrix of h(x) evaluated 

at f,. Thus, the extended Kalman filter algorithm is the same as Algorithm K except that in ad&tion, the 
coordinate transformation vector h(%,) and the Jacobian matrix H ,  are computed at each update step. 

We developed and implemented two different mappings of the extended Kalman filter (for multiple tar- 

gets) on the CM. The first mapping assigns a single CM data processor to each filter. The data processor 
solves the filter equations concurrently with, and independently of, other data processors. The second mapping 
is based on the parallel Kalman filter algorithm: each filter is assigned a (12 x 10) subarray of CM data pro- 

cessors to solve the equations in data parallel fashion. The advantage of the fist mapping is that it requires no 
inter-processor communciation. However, because the filter equations are solved serially, the number of com- 
putation steps is larger than the second mapping. The serial extended Kalman filter algorithm was also 





implemented on a Sun 3/60. 

Both mappings share the desirable property that the time per state update remains constant regardless of 

the number of targets simultaneously tracked. In contrast, for a serial implementation the time per state update 

increases linearly with the number of targets. These were verified by our performance results. For the first 

mapping (one processor per filter), the run-time was roughly constant at 192 milliseconds for any number of 

targets. The second mapping ((12 x 10)-processor subarray per filter) was slightly faster at 178 milliseconds. 
On the other hand, the serial algorithm on the Sun took approximately 9.251, milliseconds, where n, is the 

number of targets. Figure 3 shows a plot of the speedup for the two mappings over the serial Sun algorithm. 
As shown in the figure, the first mapping was faster than the Sun filter for 21 or more targets while the second 

mapping was faster than the Sun filter for 19 or more targets. 

53. Combined Performance Results 

The performance results described in the last two subsections can be combined to compare the perfor- 

mance of the parallel CM filter and the serial Sun filter when the filter size and the number of targets are 
varied simultaneously. This is shown in Figure 4. In the region marked X, the CM is faster than the Sun for 

X or more targets. For example, for a 10-state, 10-measurement filter, the CM is faster than the Sun if the 
number of targets is 16 or more. For a 20-state, 20-measurement filter, the CM is faster than the Sun for 4 or 

more targets. In general, the CM beats the Sun for less number of targets as the filter size increases. 

6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 

The results of our investigation demonstrate that the square root Kalman filter can be conveniently 

mapped to SIMD array architectures like the CM. On a twedimensional SIMD array, the parallel Kalman 
filter algorithm achieves greater parallelism than the one-dimensional array algorithm reported in [10,17]. The 

CM, in particular, has primitive parallel prefix or scan operations which facilitate the derivation of a relatively 

simple, yet efficient, parallel algorithm. Moreover, because of the CM's scalability, the same algorithm is 
applicable to filters of different sizes. 

The CM is best suited for Kalman filter applications that process large data sets. Examples are applica- 
tions with large state vector sizes, e.g., satellite estimation, which may use 40 to 200 states, and missile gui- 

dance which may use 10 to 20 states plus many bias variables. Another application is multiple target tracking, 
in which up to 100 targets may have to be tracked simultaneously, each target requiring the use of 3 or more 

different Kalman filters. Thus, up to 300 different Kalman filters may have to processed simultaneously. 

That the CM filter is superior to the Sun filter only for large filter sizes stems from the fact that, 
although the CM has a large number of data processors, each data processor has limited processing capability. 

In particular, computation and communication in the CM is bit-serial and hence quite slow. Even with 
floating-pont hardware, a CM data processor is still much slower than the Sun processor. The reason is that in 
the CM, 32 data processors share a single floating-point coprocessor, so that a parallel floating-point operation 
supposedly performed in parallel by 32 data processors is in fact done serially by the floating-point hardware. 
Clearly, the performance of the parallel Kalman filter algorithm will be superior on a SIMD array with better 
processing capability than the CM, e.g., one with powerful individual floating-point processors and bit-parallel 

communication. On such an architecture, one should expect the regions in Figure 4 to shift upwards towards 
the origin. That is, for the same filter size, the SIMD array implementation will become faster than the Sun 



implementation for smaller number of targets. 

Our preliminary investigation suggests directions for future study. The two mappings we developed for 

the CM represent two extremes of a range of possible mappings. The serial mapping assigns only one CM 
data processor to a filter, while the parallel mapping assigns a separate processor to each matrix element. 
Even though the parallel mapping spent about 70% of the time communicating and only 30% computing, it 
still ran faster than the serial mapping. We believe that even faster run-times can be obtained using a "hybrid" 
mapping that assigns small blocks of matrix elements to single processors but still distributes the matrix over 

multiple processors. This way, communication is reduced at the expense of greater computation. The key 

idea is to find the right partitioning that balances computation and communication. 

There is also room for improvement in the parallel algorithm we developed for the CM. The presence 

of parallel prefix operations as primitive instructions in the CM was instrumental in deriving a relatively sim- 
ple parallel algorithm. However, the theoretical time complexity of the parallel algorithm is O(nlog(n)) 

(where n is the state vector size), which is a logarithmic factor slower than proposed systolic algorithms. One 
interesting problem is to implement an O(n) systolic algorithm on the CM [14]. This problem is not trivial 

because of the need to simulate the YO-computation overlap frequently occurring in systolic algorithms. 

Finally, we would like to see similar performance measurements for the Kalman filter on other commer- 

cially available architectures. Of immediate interest is extending the work of Baheti et. a1 in [10,17] on the 

10-cell Warp computer. They reported performance measurements only for a single 9-state, 3-measurement 
extended Kalman filter. It would be nice to compare the performance of their Warp algorithm with our CM 
algorithm for different filter sizes and for multiple filters. 
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