
1

Parallel Key-Insulated Multi-user Searchable
Encryption for Industrial Internet of Things

Jie Cui, Jie Lu, Hong Zhong, Qingyang Zhang, Chengjie Gu, and Lu Liu

Abstract—With the rapid development of the industrial In-
ternet of Things (IIoT) and cloud computing, an increasing
number of companies outsource their data to cloud servers to
save costs. To protect data privacy, sensitive industrial data must
be encrypted before being outsourced to cloud servers. A multi-
user searchable encryption (MUSE) scheme was introduced to
ensure high efficiency of encrypted data retrieval. In an IIoT
system with numerous users, the existing MUSE schemes suffer
from certain key exposure problems owing to the limited key
protection of smart devices and frequent queries by users. In
this study, we propose a parallel key-insulated MUSE scheme
for IIoT. This scheme utilizes broadcast encryption technology
to implement MUSE. In addition, our scheme introduces a key-
insulated primitive to improve the tolerance to key exposure. The
security of our scheme is proved in the random oracle model.
The experimental results show that our scheme achieves high
computational efficiency.

Index Terms—Industrial Internet of Things, multi-user search-
able encryption, key exposure, key-insulated.

I. INTRODUCTION

W ITH the rise of “Industrial Revolution 4.0,” the indus-
trial Internet of Things (IIoT) [1], which is the result of

the rapid development and application of the Internet of Things
in the industrial field, has attracted widespread attention from
society. In IIoT, industrial data are monitored, collected, ex-
changed, and analyzed by connecting various physical devices,
such as sensors and actuators. The use of IIoT reduces the
cost of production and consumption of resources, improves
product quality and performance, and makes manufacturing
and industrial processes more intelligent. In addition, with
the rapid development of cloud computing via powerful data
processing and storage capabilities, an increasing amount of
IIoT data are outsourced to the cloud for storage. This reduces
the cost of data management and improves the efficiency of
industrial manufacturing.

Although data outsourcing presents several benefits to in-
dustrial management, it also introduces major issues concern-
ing data security and privacy [2] [3] in cloud-based IIoT.
The privacy of outsourced data depends entirely on the cloud

J. Cui, J. Lu, H. Zhong and Q. Zhang are with the Key Laboratory
of Intelligent Computing and Signal Processing of Ministry of Education,
School of Computer Science and Technology, Anhui University, Hefei 230039,
China, the Anhui Engineering Laboratory of IoT Security Technologies, Anhui
University, Hefei 230039, China, and the Institute of Physical Science and
Information Technology, Anhui University, Hefei 230039, China (e-mail:
zhongh@ahu.edu.cn).

C. Gu is with the Security Research Institute, New H3C Group, Hefei
230088, China (gu.chengjie@h3c.com).

L. Liu is with the School of Informatics, University of Leicester, LE1 7RH,
UK (email: l.liu@leicester.ac.uk).

servers. However, cloud servers are not completely trustwor-
thy. To protect data privacy, sensitive industrial data must be
encrypted before being outsourced to cloud servers. However,
traditional encryption schemes make it difficult to retrieve
data from the cloud servers. To overcome this challenge,
multiple secure keyword searchable encryption schemes [4]–
[8] have been proposed for effective ciphertext retrieval and
data sharing.

In an IIoT system with numerous users, the data owner
authorizes multiple users to share encrypted data and allows
them to perform keyword queries on the shared data in the
cloud server. This scenario is called multi-user searchable
encryption (MUSE). Fig. 1 illustrates the MUSE scenario
for IIoT. In an industrial production process, various physical
devices collect large amounts of data. The data owner encrypts
these data and keywords, and uploads them to the cloud server
via the Internet. Furthermore, data users can send keyword
queries to cloud servers. The cloud server verifies whether the
query matches the keyword ciphertext and then returns the
data ciphertext containing the keyword to the users.

Fig. 1. The MUSE scenario for IIoT

However, there exists a key exposure problem in the deploy-
ment and application of IIoT. In a large-scale IIoT system, an
increasing number of mobile smart terminal devices are used,
and the protection of keys by these devices is limited. Data
users often use their keys to perform query operations on these
insecure devices and then submit queries to the cloud server. In
this process, a malicious adversary can easily steal the user’s
key information, which can lead to key exposure problems.
Once the user’s private key is compromised, the adversary
may use the exposed private key to submit a legitimate request
to the cloud server. The cloud server successfully verifies it
and returns the previously encrypted data to the adversary.
Eventually, the adversary can use the exposed private key to
decrypt the encrypted data. This is a significant hazard.

Some existing searchable encryption schemes [9]–[12] re-
duce the hazard of key exposure through supporting forward

2

security. However, these schemes can only protect past keys
and cannot protect future keys. The introduction of a key
insulation primitive [13] [14] can effectively address the key
exposure problem. The idea of key insulation is to store long-
term keys in a physically secure but computationally limited
device called a helper. The short-term key is stored on a
powerful but insecure device, which is updated through the
helper every given time period. The key insulation scheme
ensures that keys before and after that exposure time period
cannot be deduced from the already exposed key, i.e., forward
and backward security is guaranteed. The MUSE scenarios
with numerous users are more vulnerable to key exposure, but
few MUSE schemes consider this security issue.

Another common problem in data sharing is that data
owners selectively share their data with the users. To protect
the privacy of shared data, the data owner needs to use
different keys to encrypt different files, which is called multi-
key searchable encryption (MKSE). Most existing MKSE
schemes [15] [16] do not implement access control. Any user
can search and decrypt files, which may lead to a breach in
the data privacy.

For the above issues, it is a challenge for IIoT to design a
MUSE that can solve the key exposure problem and support
multi-key encryption.

A. Related Work

An increasing number of individuals and enterprises store
large amounts of industrial data in the cloud, multiple search-
able encryption (SE) schemes [17] [18] have been proposed
to ensure efficient ciphertext retrieval.

Single-user Searchable Encryption. SE was first realized
through symmetric encryption, called symmetric searchable
encryption (SSE), proposed by Song et al. [19]. SSE allows
the cloud server to perform searches while protecting privacy,
but it has a high key management overhead in symmetric
settings. To solve this problem, Boneh et al. [20] first pro-
posed the public-key encryption with keyword search (PEKS)
scheme. The data owner encrypts the data and keywords with
the public key of the target receiver. The data receiver can use
his private key to generate a query trapdoor and submit it to
the cloud server to retrieve the ciphertext. Subsequently, many
variants of the PEKS were proposed.

Tian et al. [21] proposed an identity-based PEKS scheme
to simplify the management of public key and certificate in
traditional PEKS based on public-key infrastructure (PKI).
He et al. [22] and Ma et al. [23] proposed a certificate-less
PEKS scheme for IIoT that solves the key escrow problem,
respectively. However, most PEKS schemes include expensive
bilinear pairing operations and modular exponentiation oper-
ations, it is difficult to solve the ciphertext retrieval problem
in the multi-user scenario.

Multi-user Searchable Encryption. In MUSE, the data
owner can encrypt the same keyword for a group of users to
avoid unnecessary data redundancy. In the practical application
of IIoT, the multi-user scenario is more common.

Attrapadung et al. [24] introduced an encryption primitive
called Hierarchical Identity Coupled Broadcast Encryption

(HICBE), and constructed a public broadcast searchable en-
cryption scheme. Then, Ali et al. [25] proposed a broad-
cast searchable keyword encryption (BSKE) scheme. In the
scheme, the size of the ciphertext is fixed and does not
increase with the number of users. Kiayias et al. [26] proposed
a more effective multi-user searchable encryption scheme
based on previous research. This scheme implements multi-
key encryption, and users can decrypt the decryption keys of
the search results. But it is expensive because each user’s key
has 14 grouping elements. Lu et al. [27] proposed a certificate-
less PEKS scheme for multiple users. The scheme reduces a lot
of computational costs because it does not use bilinear pairing
operations. However, the computation cost will increase with
the number of users.

Key Exposure Problem. In the deployment and application
of IIoT, how to ensure the security of user keys is a major
challenge. In an IIoT system, numerous physical devices have
limited protection of keys. Users use their keys to frequently
perform queries on such insecure devices, key exposure may
occur. Dodis et al. [13] first proposed the concept of key-
insulated. By frequently updating the private key, the tolerance
to key exposure can be improved. But this also means frequent
connections between help devices and unsecured networks,
which increases the risk of help keys being exposed. There-
fore, Hanaoka et al. [28] proposed the parallel key-insulated
public key encryption (PKIE) scheme, which uses two secure
physical devices as helpers to update keys alternately. They
aim to reduce the risk of helpers’ key exposure by reducing
the frequency of their connections to insecure environments.

SE allows users in different geographical locations to share
data, but inevitably suffers from the problem of key expo-
sure. Recently, some SSE schemes [9] [10] have addressed
this security issue by supporting forward security. Later, the
scheme proposed by Zhang et al. [11] uses the lattice basis
delegation mechanism to achieve the forward security of the
system. Recently, Kim et al. [12] proposed a forward-secure
PEKS scheme based on hierarchical identity-based encryption.
However, few MUSE schemes address the problem of key
exposure in previous studies.

B. Our Contribution

To solve the above problems, we propose a parallel key-
insulated MUSE (PKI-MUSE) scheme for IIoT. First, the
PKI-MUSE scheme is based on the broadcast searchable key-
word encryption scheme [25] to realize multi-user searchable
encryption. Second, our scheme integrates the key-insulated
primitive and improves the tolerance to key exposure. In
addition, the parallel mechanism allows frequent updates of the
user key while reducing the opportunity to expose the helper
key, thus improving the security of the system. Specifically,
our contributions are as follows:

• The PKI-MUSE scheme integrates the key-insulated
primitive to improve the tolerance to key exposure
through user key updates in each time period. In addition,
the user key update does not require re-encrypting the
data, which significantly reduces the encryption overhead.

3

• The PKI-MUSE scheme combines multi-key encryption
and access control to improve the efficiency and security
of search and decryption.

• We provide security proof of our PKI-MUSE scheme in
the random oracle model [29]. In addition, through the
experimental simulation, we show the high efficiency and
practicability of our scheme.

C. Organization

The rest of this paper is organized as follows: Section II
introduces the preliminaries. Section III describes the scheme
model and its security definition. In Section IV, we we describe
the proposed scheme and prove its security in in Section V.
Section VI provides some performance evaluations. In Section
VII, we summarize the study.

II. PRELIMINARIES

In this section, we introduce some preliminaries, including
the properties of bilinear mapping and the security assump-
tions of the proposed scheme.

A. Bilinear Mapping

Let 𝐺1 and 𝐺2 be additive cyclic groups of order 𝑝, 𝐺𝑇 be
a multiplicative group of order 𝑝. 𝑝 is a prime number, 𝑔 and ℎ
are generators of 𝐺1 and 𝐺2, respectively. A bilinear mapping
𝑒 : 𝐺1 × 𝐺2 → 𝐺𝑇 must satisfy the following properties:

1) Bilinearity: Given any 𝑎, 𝑏 ∈ 𝑍∗
𝑝 , 𝑒(𝑔𝑎, ℎ𝑏)=

𝑒(𝑔, ℎ)𝑎𝑏 ∈ 𝐺𝑇 ;
2) Non-Degenerate: 𝑒(𝑔, ℎ) ≠ 1;
3) Computability: There is polynomial time algorithm by

given any 𝑔 ∈ 𝐺1, ℎ ∈ 𝐺2 that can calculate 𝑒(𝑔, ℎ) ∈
𝐺𝑇 .

B. Security Assumptions

We present a Bilinear Diffie-Hellman Exponent ((𝑙, 𝑙)-
𝐵𝐷𝐻𝐸) problem [30].

Let 𝑙 be an integer and 𝑒 : 𝐺1×𝐺2 → 𝐺𝑇 be a bilinear map-
ping, where 𝐺1 and 𝐺2 be additive cyclic groups of prime or-
der 𝑝, 𝐺𝑇 be a multiplicative group of order 𝑝. Given 3𝑙+2 ele-
ments (𝑣, 𝑔, ℎ, 𝑔𝛼, 𝑔𝛼2

, ..., 𝑔𝛼
𝑙

, 𝑔𝛼
𝑙+2
, ..., 𝑔𝛼

2𝑙
, ℎ𝛼, ℎ𝛼

2
, ..., ℎ𝛼

𝑙)
as input, output vector 𝑒(𝑔, 𝑣)𝛼𝑙+1 ∈ 𝐺𝑇 , where 𝑔, 𝑔𝛼

𝑖 ∈ 𝐺1
and 𝑣, ℎ, ℎ𝛼

𝑖 ∈ 𝐺2.
For convenience, let 𝑔𝑖 = 𝑔𝛼

𝑖

, ℎ𝑖 = ℎ𝛼
𝑖

. Let A be a 𝜏-
time algorithm that takes an input challenge for (𝑙, 𝑙)-𝐵𝐷𝐻𝐸
and outputs a decision bit 𝑏 ∈ {0, 1}. We say that A has an
advantage Y to solve problem (𝑙, 𝑙)-𝐵𝐷𝐻𝐸 if

Pr[A(𝑣, 𝑔, ℎ, 𝑔1, 𝑔2, ..., 𝑔𝑙 , 𝑔𝑙+2, ..., 𝑔2𝑙 , ℎ1, ℎ2, ..., ℎ𝑙)
= 𝑒(𝑔𝑙+1, 𝑣)] ≥ Y

(1)

where probability is distributed over a random selection of
𝑔 ∈ 𝐺1 and 𝑣, ℎ ∈ 𝐺2, random choice of 𝛼 ∈ 𝑍∗

𝑝 , random of
choice of 𝑇 ∈ 𝐺𝑇 and random bits selected by A.

Definition 1. 𝑇ℎ𝑒 (𝜏, Y, 𝑙, 𝑙)-𝐵𝐷𝐻𝐸 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠 𝑖𝑛

(𝐺1, 𝐺2) if no 𝜏-𝑡𝑖𝑚𝑒 algorithm has advantage at least Y

in solving the (𝑙, 𝑙)-𝐵𝐷𝐻𝐸 problem in (𝐺1, 𝐺2).

III. SYSTEM MODEL AND SECURITY DEFINITION

In this section, we present the system model and security
definition of the PKI-MUSE scheme.

A. System Model

As shown in Fig. 2, the scheme consists of five entities,
namely: a trusted authority (TA), a cloud server (CS), a data
owner (DO), multiple data users (DU), and two help devices
(HD) for each data user.

TA: The TA is responsible for generating a set of system
parameters and a system master key. At the same time, it is
responsible for distributing an initial key to each data user and
two helper master keys to each help device.

DO: The DO is responsible for encrypting IIoT data and
keywords, and setting a subset of authorized users, then
uploading the ciphertext and subset to the cloud server. It is
also responsible for adding and removing users.

DU: The DU is responsible for generating trapdoors for the
keywords he/she wants to search for and sending them to the
cloud server for query requests.

HD: The HD is responsible for generating a helper key to
update the private key of the data user.

CS: The CS locates all the matching ciphertext using the
search trapdoor and returns them to the user.

Fig. 2. System model of PKI-MUSE

In our scheme, the TA will first run the 𝑆𝑒𝑡𝑢𝑝, generate
the system master key 𝑚𝑠𝑡, public parameter 𝑝𝑎𝑟𝑎𝑚, and the
helper master key {𝑠𝑖,0, 𝑠𝑖,1}. Then the TA runs the 𝐾𝑒𝑦𝐺𝑒𝑛
to generate the initial key 𝑢𝑠𝑘𝑖,0, sends 𝑢𝑠𝑘𝑖,0 to each user and
sends {𝑠𝑖,0, 𝑠𝑖,1} to each help device respectively. Next, the DO
runs the 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 to generate ciphertext 𝐶 and subset 𝑆 and
sends them to the CS. The DU runs the 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 to generate
a trapdoor and submits it to the CS for a query request. Finally,
the CS runs the 𝑆𝑒𝑎𝑟𝑐ℎ and sends all matching ciphertexts to
the user. The DU can run the 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 to get data. If necessary,
the DU will run the 𝑈𝑝𝑑𝑎𝑡𝑒 to update his private key with
the HD’s key.

4

B. Scheme Framework

The PKI-MUSE scheme is as follows:
𝑆𝑒𝑡𝑢𝑝(_, 𝑛) → {𝑚𝑠𝑡, 𝑠𝑖,0, 𝑠𝑖,1, 𝑝𝑎𝑟𝑎𝑚}: Input a security

parameter _ and the maximum number of users 𝑛, return
the system master key 𝑚𝑠𝑡 and the public parameter 𝑝𝑎𝑟𝑎𝑚
and generate the helper master key {𝑠𝑖,0, 𝑠𝑖,1}, where 𝑖 ∈
{1, 2, ..., 𝑛}.
𝐾𝑒𝑦𝐺𝑒𝑛(𝑖, 𝑚𝑠𝑡, 𝑠𝑖,0, 𝑠𝑖,1) → {𝑢𝑠𝑘𝑖,0}: TA generates an

initial key 𝑢𝑠𝑘𝑖,0 for user 𝑖 and sends 𝑢𝑠𝑘𝑖,0 to user 𝑖 through
a secure channel. Then TA sends {𝑠𝑖,0, 𝑠𝑖,1} to the two help
devices of user 𝑖 through a secure channel respectively.
𝑈𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑢𝑠𝑘𝑖,𝑡−1, 𝑠𝑖,𝑘) → {𝑢𝑠𝑘𝑖,𝑡 }: The data user inputs

time period 𝑡, where 𝑡 ∈ {1, 2, ..., 𝑁}. The help device 𝑘 (𝑘 ≡ 𝑡
(mod 2)) updates helper key ℎ𝑠𝑘𝑖,𝑡 and sends to the user. The
user then updates the key 𝑢𝑠𝑘𝑖,𝑡 for the period 𝑡.
𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝐹,𝑊) → {𝐶, 𝑆}: The data owner selects dif-

ferent symmetric keys to encrypt files 𝐹 = { 𝑓1, 𝑓2, ..., 𝑓𝑚},
generates file ciphertext 𝐶 𝑓 and extractes keywords 𝑊 =

{𝑤1, 𝑤2, ..., 𝑤𝑞} to generate keyword ciphertext 𝐶𝑤 . Set up
a subset of authorized users 𝑆 ⊆ {1, 2, ..., 𝑛} and upload
𝐶 = (𝐶 𝑓 , 𝐶𝑤) and 𝑆 to the cloud server for storage.
𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 (𝑡, 𝑢𝑠𝑘𝑖,𝑡 , 𝑤′, 𝑆) → {𝑇𝑖,𝑡 }: The data user uses the

key 𝑢𝑠𝑘𝑖,𝑡 and the keyword 𝑤′ that you want to search to
generate trapdoor 𝑇𝑖,𝑡 and submits it to the cloud server for
query requests.
𝑆𝑒𝑎𝑟𝑐ℎ(𝑖, 𝑡, 𝐶, 𝑇𝑖,𝑡 , 𝑆) → {𝐶 ′}: The cloud server first

checks whether the user 𝑖 is valid (included in 𝑆), then verify
whether the keyword ciphertext matches the query trapdoor.
Finally, the server sends all matching ciphertext 𝐶 ′ to the user.
𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑢𝑠𝑘𝑖,𝑡 , 𝐶 ′) → {𝐹 ′}: The user uses 𝑢𝑠𝑘𝑖,𝑡 to

decrypt the symmetric key and then uses the symmetric key
to decrypt the ciphertext to obtain the files 𝐹 ′.
𝐴𝑑𝑑𝑈𝑠𝑒𝑟 (𝑥): When adding a user 𝑥, the data owner first

adds user 𝑥 to the authorized user subset 𝑆 and then modifies
𝐶2 in the keyword ciphertext 𝐶𝑤 .
𝑅𝑒𝑣𝑜𝑘𝑒𝑈𝑠𝑒𝑟 (𝑥): When revoking a user 𝑥, the data owner

first deletes the user 𝑥 from the authorized user subset 𝑆 and
then modifies the 𝐶2 in the keyword ciphertext 𝐶𝑤 .

C. Security Definition

Here, we define semantic security for the PKI-MUSE
scheme. This is based on the security definition of [13] and
[25].
Setup. Challenger C runs the 𝑆𝑒𝑡𝑢𝑝 to generate 𝑝𝑎𝑟𝑎𝑚, 𝑚𝑠𝑡
and {𝑠𝑖,0, 𝑠𝑖,1}. He sends 𝑝𝑎𝑟𝑎𝑚 to adversary A, keeping 𝑚𝑠𝑡
and {𝑠𝑖,0, 𝑠𝑖,1} only known by himself.
Phase1. Adversary A publishes the following series of
queries:
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 〈𝑖, 𝑡, 𝑐𝑙𝑎𝑠𝑠〉: If 𝑐𝑙𝑎𝑠𝑠 = 𝑢𝑠𝑒𝑟, C runs the

𝐾𝑒𝑦𝐺𝑒𝑛 and the 𝑈𝑝𝑑𝑎𝑡𝑒 and gets a temporary key 𝑢𝑠𝑘𝑖,𝑡 ,
then returns it to A. If 𝑐𝑙𝑎𝑠𝑠 = ℎ𝑒𝑙 𝑝𝑒𝑟, C sends the helper
key 𝑠𝑖,𝑘 (𝑘 ≡ 𝑡 (mod 2)) to A.
𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 〈𝑖, 𝑡, 𝑤, 𝑆〉: C runs the 𝐾𝑒𝑦𝐺𝑒𝑛 and the

𝑈𝑝𝑑𝑎𝑡𝑒 to obtain a temporary key 𝑢𝑠𝑘𝑖,𝑡 . Then he runs the
𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 to obtain a trapdoor 𝑇𝑖,𝑡 and returns it to A.
Challenge. A selects two challenge keywords of the same
length 𝑤0, 𝑤1 and time period 𝑡∗ ∈ {1, 2..., 𝑁} and sends it to

challenger C. The challenger randomly selects 𝑏 ∈ {0, 1} and
generates the challenge ciphertext 𝐶𝑏 with the keyword 𝑤𝑏 ,
then sends it to A.
Phase2. A makes the second round of Exposure queries and
Trapdoor queries as in phase 1. Note that in phase 1 and phase
2, challenge user 𝑖 ∉ 𝑆 and 〈𝑖, 𝑡∗, 𝑤𝑏 , 𝑆〉 cannot appear in
Trapdoor query lists.
Guess. A runs the 𝑆𝑒𝑎𝑟𝑐ℎ to do a test. Finally A sends a
guess 𝑏′ ∈ {0, 1} to the challenger. A wins the game if 𝑏 = 𝑏′.

Let’s define the advantage of A

𝐴𝑑𝑣𝑃𝐾 𝐼−𝑀𝑈𝑆𝐸 (A) = Pr[𝑏 = 𝑏′] − 1
2

(2)

IV. THE PROPOSED PKI-MUSE SCHEME

In this section, we show the specific construction of the
PKI-MUSE scheme.

A. System Setup

𝑆𝑒𝑡𝑢𝑝(_, 𝑛) → {𝑚𝑠𝑡, 𝑠𝑖,0, 𝑠𝑖,1, 𝑝𝑎𝑟𝑎𝑚}: Input a security pa-
rameter _ and the maximum number of users 𝑛, then generate a
bilinear set of parameters (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑒). The TA chooses
two generators 𝑔 ∈ 𝐺1, ℎ ∈ 𝐺2, a random number 𝛼 ∈ 𝑍∗

𝑝 , and
calculates 𝑔𝑖 = 𝑔𝛼

𝑖

, ℎ𝑖 = ℎ𝛼
𝑖

for 𝑖 = (1, 2, ..., 𝑛, 𝑛 + 2, ..., 2𝑛).
Then, the TA chooses a random number 𝛾 ∈ 𝑍∗

𝑝 and generates
the helper master keys {𝑠𝑖,0, 𝑠𝑖,1} for the two help devices of
user 𝑖 respectively, where 𝑖 ∈ {1, 2, ..., 𝑛}. Calculate system
public key 𝑝𝑘 = 𝑔𝛾 , the public key of each help device
𝑝𝑘𝑖,0 = ℎ𝑠𝑖,0 , 𝑝𝑘𝑖,1 = ℎ𝑠𝑖,1 . Choose two collision resistant
hash functions 𝐻1 : {0, 1}∗ → 𝑍∗

𝑝 and 𝐻2 : {0, 1}∗ → 𝐺1,
then calculate 𝑢−1 = 𝑔𝐻1 (−1) , 𝑢0 = 𝑔𝐻1 (0) . Finally, the TA
chooses a pair of semantically secure symmetric encryption
and decryption algorithms 𝐸 and 𝐷. The public parameter
and system master key are 𝑝𝑎𝑟𝑎𝑚 = {{𝑔𝑖} (𝑖=1,2,...,𝑛,𝑛+2,...,2𝑛) ,
{ℎ𝑖} (𝑖=1,2,...,𝑛,𝑛+2,...,2𝑛) , 𝑝𝑘, 𝑝𝑘𝑖,0, 𝑝𝑘𝑖,1, 𝐻1, 𝐻2, 𝑢−1, 𝑢0} and
𝑚𝑠𝑡 = 𝛾, respectively.

B. Key Generation

𝐾𝑒𝑦𝐺𝑒𝑛(𝑖, 𝑚𝑠𝑡, 𝑠𝑖,0, 𝑠𝑖,1) → {𝑢𝑠𝑘𝑖,0}: The TA first calcu-
lates 𝑑𝑖,−1 = 𝑢

𝑠𝑖,1
−1 , 𝑑𝑖,0 = 𝑢

𝑠𝑖,0
0 and generates an initial key

𝑢𝑠𝑘𝑖,0 = (𝑔𝑖)𝛾𝑑𝑖,−1𝑑𝑖,0. Then, the TA sends 𝑢𝑠𝑘𝑖,0 to user 𝑖
through a secure channel and sends {𝑠𝑖,0, 𝑠𝑖,1} to the two help
devices of user 𝑖 through a secure channel respectively.

C. Key Update

𝑈𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑢𝑠𝑘𝑖,𝑡−1, 𝑠𝑖,𝑘) → {𝑢𝑠𝑘𝑖,𝑡 }: Input a time period
𝑡, where 𝑡 ∈ {1, 2, ..., 𝑁}, the help device 𝑘 (𝑘 ≡ 𝑡 (mod 2))
calculates 𝑢𝑡−2 = 𝑔𝐻1 (𝑡−2) , 𝑑𝑖,𝑡−2 = 𝑢

𝑠𝑖,𝑘
𝑡−2 , 𝑑𝑖,𝑡 = 𝑢

𝑠𝑖,𝑘
𝑡 . Then,

the help device 𝑘 (𝑘 ≡ 𝑡 (mod 2)) updates helper key ℎ𝑠𝑘𝑖,𝑡 =
𝑑−1
𝑖,𝑡−2𝑑𝑖,𝑡 and sends to the user. Finally, the user calculates
𝑢𝑠𝑘𝑖,𝑡 = 𝑢𝑠𝑘𝑖,𝑡−1ℎ𝑠𝑘𝑖,𝑡 , deletes 𝑢𝑠𝑘𝑖,𝑡−1 and ℎ𝑠𝑘𝑖,𝑡 .

5

D. Data Encryption

𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝐹,𝑊) → {𝐶, 𝑆}: For files 𝐹 = { 𝑓1, 𝑓2, ..., 𝑓𝑚}, the
data owner first selects different symmetric keys 𝐾𝑥 , calculates
file ciphertext 𝐶𝑥 = 𝐸 (𝐾𝑥 , 𝑓𝑥). Then, the data owner extracts
the keywords 𝑊 = {𝑤1, 𝑤2, ..., 𝑤𝑞} and sets authorized user
subset 𝑆 ⊆ {1, 2, ..., 𝑛} to access files 𝐹. The data owner
selects a random number 𝑟 ∈ 𝑍∗

𝑝 and calculates 𝐶0 = ℎ𝑟 ,
𝐶1 = ℎ𝑟1 , 𝐶2 = (𝑝𝑘

∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗)𝑟 , 𝐶3,𝑦 = 𝐻2 (𝑤𝑦)𝑟 , 𝐶4 = 𝑢𝑟−1,

𝐶5 = 𝑢𝑟0 , 𝐶 𝑓 ,𝑥 = 𝐾𝑥𝑒(𝑔1, ℎ𝑛)𝑟 . Finally, the data owner
uploads ciphertext 𝐶 = (𝐶 𝑓 , 𝐶𝑤) to the cloud storage and
publishes 𝑆 to the authorized users and the cloud server, where
𝐶 𝑓 = (𝐶𝑥 , 𝐶 𝑓 ,𝑥), 𝐶𝑤 = (𝐶0, 𝐶1, 𝐶2, 𝐶3,𝑦 , 𝐶4, 𝐶5).

E. Trapdoor Generation

𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 (𝑡, 𝑢𝑠𝑘𝑖,𝑡 , 𝑤′, 𝑆) → {𝑇𝑖,𝑡 }: The data user selects
a random number 𝑧 ∈ 𝑍∗

𝑝 and generates the trapdoor 𝑇𝑖,𝑡 in
time period 𝑡 by calculating 𝑇0 = ℎ𝑧 , 𝑇1 = ℎ𝑧

𝑖
, 𝑇2 = 𝑔𝑧𝑛, 𝑇3 =

(𝑢𝑠𝑘𝑖,𝑡𝐻2 (𝑤′)
∏
𝑗∈𝑆, 𝑗≠𝑖 𝑔𝑛+1− 𝑗+𝑖)𝑧 , 𝑇4 = 𝑝𝑘 𝑧

𝑖,0, 𝑇5 = 𝑝𝑘 𝑧
𝑖,1.

Then, the data user sends 𝑇𝑖,𝑡 = (𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5) to the
cloud server for a query.

F. Search

𝑆𝑒𝑎𝑟𝑐ℎ(𝑖, 𝑡, 𝐶, 𝑇𝑖,𝑡 , 𝑆) → {𝐶 ′}: The cloud server first
checks whether user 𝑖 is valid (included in 𝑆) and then
calculates:

If 𝑡 ≡ 0 (mod 2),

𝐾 = 𝑒(𝑇4, 𝐶5)𝐻1 (𝑡)/𝐻1 (0)𝑒(𝑇5, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1) (3)

Otherwise 𝑡 ≡ 1 (mod 2),

𝐾 = 𝑒(𝑇4, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1))𝑒(𝑇5, 𝐶5)𝐻1 (𝑡)/𝐻1 (0) (4)

They verify whether the equation (5) holds. If the equation
holds, output "true", the cloud server sends the matching
ciphertext 𝐶 ′ to the user, otherwise output "false". Note that
𝐶 ′ ⊆ 𝐶.

𝐾
?
=

𝑒(𝑇3, 𝐶0)𝑒(𝑇2, 𝐶1)
𝑒(𝑇1, 𝐶2)𝑒(𝐶3,𝑦 , 𝑇0)

(5)

G. Data Decryption

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑢𝑠𝑘𝑖,𝑡 , 𝐶 ′) → {𝐹 ′}: After receiving 𝐶 ′, the data
user calculates:

If 𝑡 ≡ 0 (mod 2),

𝐾 ′ = 𝑒(𝑝𝑘𝑖,0, 𝐶5)𝐻1 (𝑡)/𝐻1 (0)𝑒(𝑝𝑘𝑖,1, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1) (6)

Otherwise 𝑡 ≡ 1 (mod 2),

𝐾 ′ = 𝑒(𝑝𝑘𝑖,0, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1)𝑒(𝑝𝑘𝑖,1, 𝐶5)𝐻1 (𝑡)/𝐻1 (0) (7)

Obtain the symmetric key 𝐾𝑥 by the equation (8), then
the user decrypts the file 𝑓𝑥 = 𝐷 (𝐾𝑥 , 𝐶𝑥). Where 𝑝𝑢𝑏 =∏

𝑗∈𝑆, 𝑗≠𝑖 𝑔𝑛+1− 𝑗+𝑖 . Note that the 𝑝𝑢𝑏 of the set 𝑆 can only
be calculated once for efficiency.

𝐾𝑥 =
𝑒(𝑢𝑠𝑘𝑖,𝑡 𝑝𝑢𝑏, 𝐶0)𝐶 𝑓 ,𝑥

𝑒(ℎ𝑖 , 𝐶2)𝐾 ′ (8)

H. User Addition and Revocation

𝐴𝑑𝑑𝑈𝑠𝑒𝑟 (𝑥): When adding a user 𝑥, the data owner first
adds user 𝑥 to the authorized user subset 𝑆 and then modifies
𝐶2 = 𝐶2 · (𝑔𝑛+1−𝑥)𝑟 in the keyword ciphertext 𝐶𝑤 .
𝑅𝑒𝑣𝑜𝑘𝑒𝑈𝑠𝑒𝑟 (𝑥): When revoking a user 𝑥, the data owner

first deletes the user 𝑥 from the authorized user subset 𝑆 and
then modifies 𝐶2 = 𝐶2/(𝑔𝑛+1−𝑥)𝑟 in the keyword ciphertext
𝐶𝑤 .

V. SECURITY PROOF

In this section, we present the correctness verification and
security proof of the scheme.

A. Correctness Verification

We first verify the 𝑆𝑒𝑎𝑟𝑐ℎ. For the equation (3) and the
equation (4), we expand the calculations in the equation (9)
and the equation (10), then verify the correctness of the
equation (5) in the equation (11).

If 𝑡 ≡ 0 (mod 2),

𝐾 = 𝑒(𝑇4, 𝐶5)𝐻1 (𝑡)/𝐻1 (0)𝑒(𝑇5, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1)

= 𝑒(𝑝𝑘 𝑧
𝑖,0, 𝑢

𝑟
0)
𝐻1 (𝑡)/𝐻1 (0)𝑒(𝑝𝑘 𝑧

𝑖,1, 𝑢
𝑟
−1)

𝐻1 (𝑡−1))/𝐻1 (−1)

= 𝑒(𝑝𝑘 𝑧
𝑖,0, 𝑢

𝑟
𝑡)𝑒(𝑝𝑘 𝑧𝑖,1, 𝑢

𝑟
𝑡−1)

(9)

Otherwise 𝑡 ≡ 1 (mod 2),

𝐾 = 𝑒(𝑇4, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1))𝑒(𝑇5, 𝐶5)𝐻1 (𝑡)/𝐻1 (0)

= 𝑒(𝑝𝑘 𝑧
𝑖,0, 𝑢

𝑟
−1)

𝐻1 (𝑡−1)/𝐻1 (−1)𝑒(𝑝𝑘 𝑧
𝑖,1, 𝑢

𝑟
0)
𝐻1 (𝑡)/𝐻1 (0)

= 𝑒(𝑝𝑘 𝑧
𝑖,0, 𝑢

𝑟
𝑡−1)𝑒(𝑝𝑘

𝑧
𝑖,1, 𝑢

𝑟
𝑡)

(10)

𝑒(𝑇3, 𝐶0)𝑒(𝑇2, 𝐶1)
𝑒(𝑇1, 𝐶2)𝑒(𝐶3,𝑦 , 𝑇0)

=
𝑒((𝑢𝑠𝑘𝑖,𝑡𝐻2 (𝑤′)∏ 𝑗∈𝑆, 𝑗≠𝑖 𝑔𝑛+1− 𝑗+𝑖)𝑧 , ℎ𝑟)𝑒(𝑔𝑧𝑛, ℎ𝑟1)

𝑒(ℎ𝑧
𝑖
, (𝑝𝑘∏ 𝑗∈𝑆 𝑔𝑛+1− 𝑗)𝑟)𝑒(𝐻2 (𝑤𝑦)𝑟 , ℎ𝑧)

=
𝑒((𝑢𝑠𝑘𝑖,𝑡𝐻2 (𝑤′))𝑧 ,ℎ𝑟)𝑒(∏ 𝑗∈𝑆 𝑔𝑛+1− 𝑗+𝑖 ,ℎ𝑟)𝑧𝑒(𝑔𝑧𝑛, ℎ𝑟1)
𝑒(ℎ𝑧

𝑖
, (𝑝𝑘

∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗)𝑟)𝑒(𝐻2 (𝑤𝑦)𝑟 , ℎ𝑧)𝑒(𝑔𝑧𝑛+1, ℎ

𝑟)

=
𝑒(𝑢𝑠𝑘𝑖,𝑡 , ℎ𝑟)𝑧𝑒(𝐻2 (𝑤′), ℎ𝑟)𝑧𝑒(

∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗+𝑖 , ℎ𝑟)𝑧

𝑒(ℎ𝑧
𝑖
, 𝑝𝑘)𝑟 𝑒(ℎ𝑧

𝑖
,
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗)𝑟 𝑒(𝐻2 (𝑤𝑦)𝑟 , ℎ𝑧)

=
𝑒(𝑔𝛾

𝑖
, ℎ𝑟)𝑧𝑒(𝑑𝑖,𝑡−1, ℎ

𝑟)𝑧𝑒(𝑑𝑖,𝑡 , ℎ𝑟)𝑧

𝑒(ℎ𝑧
𝑖
, 𝑔𝛾)𝑟

=𝑒(𝑢𝑠𝑖,𝑘
𝑡−1 , ℎ

𝑟)𝑧𝑒(𝑢𝑠𝑖,𝑘𝑡 , ℎ𝑟)𝑧

=𝑒(𝑢𝑟𝑡−1, ℎ
𝑠𝑖,𝑘)𝑧𝑒(𝑢𝑟𝑡 , ℎ𝑠𝑖,𝑘)𝑧

=𝐾

(11)

Then we verify the 𝐷𝑒𝑐𝑟𝑦𝑝𝑡. For the equation (6) and
the equation (7), we expand the calculations in the equation
(12) and the equation (13), then verify the correctness of the
equation (8) in the equation (14).

If 𝑡 ≡ 0 (mod 2),

𝐾 ′ = 𝑒(𝑝𝑘𝑖,0, 𝐶5)𝐻1 (𝑡)/𝐻1 (0)𝑒(𝑝𝑘𝑖,1, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1)

= 𝑒(𝑝𝑘𝑖,0, 𝑢𝑟0)
𝐻1 (𝑡)/𝐻1 (0)𝑒(𝑝𝑘𝑖,1, 𝑢𝑟−1)

𝐻1 (𝑡−1)/𝐻1 (−1)

= 𝑒(𝑝𝑘𝑖,0, 𝑢𝑟𝑡)𝑒(𝑝𝑘𝑖,1, 𝑢𝑟𝑡−1)
(12)

6

Otherwise 𝑡 ≡ 1 (mod 2),

𝐾 ′ = 𝑒(𝑝𝑘𝑖,0, 𝐶4)𝐻1 (𝑡−1)/𝐻1 (−1)𝑒(𝑝𝑘𝑖,1, 𝐶5)𝐻1 (𝑡)/𝐻1 (0)

= 𝑒(𝑝𝑘𝑖,0, 𝑢𝑟−1)
𝐻1 (𝑡−1)/𝐻1 (−1)𝑒(𝑝𝑘𝑖,1, 𝑢𝑟0)

𝐻1 (𝑡)/𝐻1 (0)

= 𝑒(𝑝𝑘𝑖,0, 𝑢𝑟𝑡−1) · 𝑒(𝑝𝑘𝑖,1, 𝑢
𝑟
𝑡)

(13)

𝑒(𝑢𝑠𝑘𝑖,𝑡 𝑝𝑢𝑏, 𝐶0)𝐶 𝑓 ,𝑥
𝑒(ℎ𝑖 , 𝐶2)𝐾 ′

=
𝑒(𝑔𝛾

𝑖
𝑑𝑖,𝑡−1𝑑𝑖,𝑡 , ℎ

𝑟)𝑒(
∏
𝑗∈𝑆, 𝑗≠𝑖 𝑔𝑛+1− 𝑗+𝑖 , ℎ𝑟)𝐶 𝑓 ,𝑥

𝑒(ℎ𝑖 , (𝑝𝑘
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗)𝑟)𝐾 ′

=
𝑒(𝑔𝛾

𝑖
𝑑𝑖,𝑡−1𝑑𝑖,𝑡 , ℎ

𝑟)𝑒(
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗+𝑖 , ℎ𝑟)𝐾𝑥𝑒(ℎ𝑛, 𝑔1)𝑟

𝑒(ℎ𝑖 , 𝑔𝛾)𝑟 𝑒(ℎ𝑖 ,
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗)𝑟 𝑒(𝑔𝑛+1, ℎ𝑟)𝐾 ′

=
𝑒(𝑔𝛾

𝑖
, ℎ𝑟)𝑒(𝑑𝑖,𝑡−1, ℎ

𝑟)𝑒(𝑑𝑖,𝑡 , ℎ𝑟)𝐾𝑥𝑒(ℎ𝑛, 𝑔1)𝑟

𝑒(ℎ𝑖 , 𝑔𝛾)𝑟 𝑒(𝑔𝑛+1, ℎ𝑟)𝐾 ′

=
𝑒(𝑑𝑖,𝑡−1, ℎ

𝑟)𝑒(𝑑𝑖,𝑡 , ℎ𝑟)𝐾𝑥𝑒(ℎ𝑛, 𝑔1)𝑟
𝑒(𝑔𝑛+1, ℎ𝑟)𝐾 ′

=𝐾𝑥

(14)

We can clearly see that if 𝑤𝑦 = 𝑤′, our scheme is correct
and users can successfully get the searched files.

B. Security Proof

Suppose there is an adversary A with an advantage Y to
destroy the (𝑙, 𝑙)-𝐵𝐷𝐻𝐸 problem. We set up a challenger C,
which has a running time close to A’s running time.

Here, we assume that the adversary does not require Expo-
sure queries 〈𝑖, 𝑡, ℎ𝑒𝑙 𝑝𝑒𝑟〉 for any period 𝑡.

Challenger C responds to adversary A’s queries as follows:
Setup. To generate 𝑝𝑎𝑟𝑎𝑚, challenger C randomly selects
𝛽 ∈ 𝑍∗

𝑝 , calculates

𝑝𝑘 = 𝑔𝛽 · (
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗)−1 (15)

𝑝𝑎𝑟𝑎𝑚 = {{𝑔𝑖} (𝑖=1,2,...,𝑛,𝑛+2,...,2𝑛) , 𝑝𝑘, 𝑝𝑘𝑖,0, 𝑝𝑘𝑖,1,

{ℎ𝑖} (𝑖=1,2,...,𝑛,𝑛+2,...,2𝑛) , 𝐻1, 𝐻2}
(16)

and gives 𝑝𝑎𝑟𝑎𝑚 to A.
H1-queries. A publishes 𝑞𝐻1 H1-queries. C prepares a list of
tuples 〈𝑡, 𝑧〉 to simulate the H1 function, called H1-list. The
list is initially empty. When A asks a query 𝑡 to challenger:

1) Search the entire H1-list and return 𝐻1 (𝑡) = 𝑧 to A
when the query 𝑡 is in the H1-list.

2) Otherwise, the challenger randomly selects 𝑧 ∈ 𝑍∗
𝑝 ,

returns 𝐻1 (𝑡) = 𝑧 to A and adds the tuple 〈𝑡, 𝑧〉 to the
H1-list.

H2-queries. A publishes 𝑞𝐻2 H2-queries. C prepares a list
of tuples

〈
𝑤 𝑗 , ℎ 𝑗 , 𝑥 𝑗 , 𝑦 𝑗

〉
to simulate the H2 function, called

H2-list. When A asks user 𝑖 for the hash value of keyword
𝑤, C responds as follows:

1) Search the entire H2-list and return 𝐻2 (𝑤) = ℎ𝑖 to A if
𝑤𝑖 is found.

2) Otherwise, C randomly selects (𝑢𝑖 , 𝑥𝑖), 𝑢𝑖 ∈ {0, 1}, 𝑥𝑖 ∈
𝑍∗
𝑝 . If 𝑢𝑖 = 0, calculates

ℎ𝑖 = 𝑔
𝑥𝑖
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗 (17)

Otherwise 𝑢𝑖 = 1, calculates

ℎ𝑖 = (𝑔𝑥𝑖)𝛼𝑦𝑖∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗 (18)

where 𝑦𝑖 ∈ 𝑍∗
𝑝 .

3) Add the tuple 〈𝑤𝑖 , ℎ𝑖 , 𝑥𝑖 , 𝑦𝑖〉 to the H2-list and return
𝐻2 (𝑤) = ℎ𝑖 to A.

Exposure queries phase1. A publishes 𝑞𝐸 exposure queries.
When A sends a query 〈𝑖, 𝑡, 𝑐𝑙𝑎𝑠𝑠〉 to the challenger:

1) If 𝑐𝑙𝑎𝑠𝑠 = ℎ𝑒𝑙 𝑝𝑒𝑟, terminates the query.
2) Otherwise for 𝑖 ∉ 𝑆, C runs H1-query and gets 𝐻1 (𝑡)

from the H1-list, then calculates the temporary key

𝑢𝑠𝑘𝑖,𝑡 = (𝑔𝑖)𝛽𝑑𝑖,𝑡−1𝑑𝑖,𝑡 (
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗+𝑖)−1 (19)

Trapdoor queries phase1. A publishes 𝑞𝑇 trapdoor queries.
The adversary sends the trapdoor query of keyword 𝑤 to the
Challenger, where user 𝑖(𝑖 ∉ 𝑆) private key is 𝑢𝑠𝑘𝑖,𝑡 , then
Challenger will respond as follows:

1) C runs H2-query and gets 𝐻2 (𝑤) from the H2-list. If
𝑢𝑖 = 1, terminates the query.

2) Otherwise, when 𝑢𝑖 = 0, C calculates

ℎ𝑖 = 𝑔
𝑥𝑖
∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗 = 𝐻2 (𝑤) (20)

The challenger randomly selects 𝑠 ∈ 𝑍∗
𝑝 and calcu-

lates 𝑇0 = (ℎ𝑠)𝛼𝑖−𝑦𝑖 , 𝑇1 = ℎ𝑠
𝑖
, 𝑇2 = 𝑔𝑠𝑛, 𝑇3 =

(𝑢𝑠𝑘𝑖,𝑡 (𝐻2 (𝑤))𝛼
𝑖∏

𝑗∈𝑆, 𝑗≠𝑖 𝑔𝑛+1− 𝑗+𝑖)𝑠 , 𝑇4 = 𝑝𝑘𝑠
𝑖,0, 𝑇5 = 𝑝𝑘𝑠

𝑖,1.
Then C returns 𝑇𝑖,𝑡 = (𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5) to A.
Challenge. A selects two challenge keywords of the same
length 𝑤0, 𝑤1 and period 𝑡∗ ∈ {1, 2..., 𝑁} and sends to C. C
responds as follows:

1) C runs the H2-query twice and gets the values ℎ0, ℎ1
of 𝐻2 (𝑤0) and 𝐻2 (𝑤1) from the H2-list. For 𝑖 = 0, 1,
〈𝑤𝑖 , ℎ𝑖 , 𝑥𝑖 , 𝑦𝑖〉 is the corresponding tuple in H2-list.

2) If 𝑢0 = 0 and 𝑢1 = 0, the query terminates.
3) If 𝑢0 = 1 and 𝑢1 = 1, C randomly selects 𝑏 ∈ {0, 1} to

select the values of 𝐻2 (𝑤0) and 𝐻2 (𝑤1).
4) Otherwise, the values of 𝐻2 (𝑤0) and 𝐻2 (𝑤1) are se-

lected based on 𝑢0 and 𝑢1.
5) The challenger randomly selects 𝑟 ∈ 𝑍∗

𝑝 , then calculates
𝐶0 = ℎ𝑟 , 𝐶1 = ℎ𝑟1 , 𝐶2 = (𝑝𝑘

∏
𝑗∈𝑆 𝑔𝑛+1− 𝑗)𝑟 = 𝑔𝛽 , 𝐶3 =

𝐻2 (𝑤𝑏)𝑟 , 𝐶4 = 𝑢𝑟−1, 𝐶5 = 𝑢𝑟0 . Then C returns 𝐶𝑤 =

(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5) to A.
Phase 2. A makes the second round of Exposure queries and
Trapdoor queries as in phase 1, but the restriction is that the
queried keyword cannot be mentioned in the challenge phase.
Guess. A runs the 𝑆𝑒𝑎𝑟𝑐ℎ to do a test. Finally A sends a
guess 𝑏′ ∈ {0, 1} to the challenger. A wins the game if 𝑏 = 𝑏′.

Now, we analyze the probability that C can solve the (𝑙, 𝑙)-
𝐵𝐷𝐻𝐸 problem. First, we define the following three events
to simplify the probability analysis:
𝐸1: C will not terminate during the exposure queries phase.
𝐸2: C will not terminate during the trapdoor queries phase.
𝐸3: C will not terminate during the challenge phase.
𝐸4: C will not terminate during the simulation and it will

produce the correct answer.
During the exposure queries phase, C will terminate if

𝑐𝑙𝑎𝑠𝑠 = ℎ𝑒𝑙 𝑝𝑒𝑟 . The probability that A chooses 𝑐𝑙𝑎𝑠𝑠 =

7

ℎ𝑒𝑙 𝑝𝑒𝑟 is 1/2𝑞𝐸 , then Pr[𝑐𝑙𝑎𝑠𝑠 ≠ ℎ𝑒𝑙 𝑝𝑒𝑟] = 1 − 1/2𝑞𝐸 ≥
1/𝑞𝐸 . The probability that C will not terminate is at least
1/𝑞𝐸 .

Meanwhile, from [20], we know that
Pr[𝐸2] ≥ 1/𝑒, Pr[𝐸3] ≥ 1/𝑞𝑇 , Pr[𝐸4] ≥ Y/𝑞𝐻2

Y′ = Pr[𝐸1] ∩ Pr[𝐸2] ∩ Pr[𝐸3] ∩ Pr[𝐸4]
= Y/𝑒𝑞𝐸𝑞𝐻2𝑞𝑇

(21)

Since C’s success probability is at least Y/𝑒𝑞𝐸𝑞𝐻2𝑞𝑇 ,
where 𝑒 is base of natural logarithm.

VI. PERFORMANCE EVALUATION

We implement the scheme by using the MIRACL Core
cryptography library in C++. The cloud server and devices
are simulated on Ubuntu 18.04.3 with Intel Core i5-7500
CPU@3.40 GHz and 16 GB of memory. We choose a pairing-
friendly elliptic curve 𝐵𝐿𝑆12-381 with embedding degree 12.
Specifically, 𝐺1 is the 𝑝-order subgroup of 𝐸 (𝐹𝑝) : 𝑦2 = 𝑥3+4
and 𝐺2 is the 𝑝-order subgroup of 𝐸 ′(𝐹𝑝2) : 𝑦2 = 𝑥3+4(𝑢+1)
where the extension field 𝐹𝑝2 is defined as 𝐹𝑝 (𝑢)/(𝑢2+1). And
it can achieve 128-bit security level.

A. Functional Comparison

In Table I, we compare the functions with several typical
searchable encryption schemes. Mainly from these several
aspects: multi-user (MU), forward security (FS), backward
security (BS), access control (AC), and multi-key encryption
(MK). From the Table I, we can see that our scheme realizes
multi-user keyword searchable encryption, improves the toler-
ance to key exposure through key-insulated. In addition, our
scheme combines access control and multi-key encryption to
achieve secure and effective search and decryption.

TABLE I
FUNCTION COMPARISON

Scheme MU FS BS AC MK

LFS-PEKS [11] No Yes No No No
FS-PEKS [12] No Yes No No No
BSKE [25] Yes No No Yes No
SEMEKS [26] Yes No No Yes Yes
MRCLKS [27] Yes No No No No
Our Scheme Yes Yes Yes Yes Yes

B. Computation Cost

In order to evaluate the performance of our scheme, we
implement SEMEKS [26] and MRCLKS [27] in the same
experimental environment. Because the comparison schemes
lack some functions, we mainly compare the running time
of encryption, trapdoor, search and decryption. Table II shows
the running times for our scheme with the different number of
users. The average running time of the key update is 1.0852ms.

TABLE II
RUNNING TIME(MS)

Users Update Encryt Trapdoor Search Decrypt

10 1.085 8.805 3.978 15.601 11.315
12 1.085 8.833 3.972 15.59 11.33
14 1.097 8.818 3.981 15.635 11.3413
16 1.086 8.829 3.972 15.597 11.327
18 1.087 8.822 3.98 15.591 11.32
20 1.084 8.797 3.985 15.611 11.325
22 1.089 8.831 3.985 15.595 11.33
24 1.083 8.823 3.99 15.597 11.33
Average 1.0852 8.8197 3.9803 15.6021 11.3283

Fig. 3. Time cost of Encrypt

Fig. 4. Time cost of Trapdoor

Fig. 5. Time cost of Search

Fig. 3 illustrates the time cost for the data owner to run the
𝐸𝑛𝑐𝑟𝑦𝑝𝑡. The encryption time of MRCLKS [27] is linearly
related to the maximum number of users, while our scheme

8

Fig. 6. Time cost of Decrypt

and SEMEKS [26] are not affected, which is approximately
constant. When 𝑛 = 24, the time cost of our scheme is
about 8.823𝑚𝑠, while that in SEMEKS [26] and MRCLKS
[27] is 14.201𝑚𝑠 and 25.947𝑚𝑠, respectively. By comparison,
our scheme takes the least encryption time. Both our scheme
and SEMEKS [26] utilize broadcast encryption to implement
MUSE, while MRCLKS [27] uses the public key of all users
to encrypt keywords, and the encryption overhead increases
with the number of users. Therefore, for an IIoT system with
numerous users but resource-constrained physical devices, our
scheme has significant advantages.

Fig. 4 illustrates the time cost of the user to run the
𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 . The time of generating the trapdoor of the three
schemes is linearly related to the number of search keywords.
When the number of keywords is 10, our scheme is about
39.9𝑚𝑠, SEMEKS [26] and MRCLKS [27] is about 78.978𝑚𝑠
and 7.069𝑚𝑠 respectively. In order to resist the harm of key
exposure, our scheme takes more time to generate trapdoors
than MRCLKS [27], but it is more effective than SEMEKS
[26].

Then, we compare the time cost of the 𝑆𝑒𝑎𝑟𝑐ℎ at the cloud
server-side. Fig. 5 illustrates the search time of MRCLKS [27]
increases with the number of users, while the search time of
our scheme and SEMEKS [26] is approximately constant, and
the time cost of our scheme is only a little more than the
latter. When 𝑛 = 24, the time is about 3.392𝑚𝑠, 15.597𝑚𝑠,
and 13.371𝑚𝑠 respectively. When the user key is updated, our
scheme gives the permission of ciphertext update to the cloud
server, which does not require the data owner to re-encrypt
the data online at all times. However, the cost is to increase
the search time within an acceptable range.

Finally, from Fig. 6, we can see that the decryption time cost
of our scheme and SEMEKS [26] is approximately constant.
The main goal of this study is to improve the tolerance to key
exposure by introducing a key-insulated primitive. Therefore,
the decryption efficiency of our scheme is slightly lower than
SEMEKS [26].

C. Communication Cost

Table III shows the contrast scheme communication cost,
where |𝐺1 |, |𝐺2 |, |𝐺𝑇 |,

��𝑍∗
𝑝

�� and ℎ are the size of the elements
in the elliptic curve group 𝐺1 and 𝐺2, an element in the
bilinear target group 𝐺𝑇 , an integer in 𝑍∗

𝑝 and a hash value
respectively. The sizes are 48 bytes, 192 bytes, 576 bytes, 48
bytes, and 20 bytes respectively. During the encryption phase,
for an increasing number of users, our scheme has greater

advantages. Although it is slightly larger than the others for
generating the trapdoor, our scheme provides a more secure
search experience.

TABLE III
COMPARISON OF COMMUNICATION COST

Scheme Encrypt size Trapdoor size

SEMEKS [26] 6 |𝐺1 | + 2 |𝐺2 | + 2 |𝐺𝑇 | |𝐺1 | + 4 |𝐺2 |
MRCLKS [27] |𝐺1 | + 𝑛

��𝑍 ∗
𝑝

�� + ℎ |𝐺1 | +
��𝑍 ∗

𝑝

��
Our Scheme 4 |𝐺1 | + 2 |𝐺2 | + |𝐺𝑇 | 2 |𝐺1 | + 4 |𝐺2 |

VII. CONCLUSION

In this study, we proposed a PKI-MUSE scheme suitable
for IIoT, which can solve the problem of ciphertext retrieval
in a multi-user environment. We first introduce a key-insulated
primitive in the MUSE and improve the tolerance to key
exposure. Through experimental evaluation, our scheme was
proven to have a higher computational efficiency and lower
communication overhead during encryption. However, there
is another limitation that the size of the master public key
is considerably large, which linearly increases with the total
number of users, and the total number of users is limited.
These aspects need to be improved in the future.

ACKNOWLEDGMENT

The work was supported by the National Natural Science
Foundation of China (No. 61872001, No. 62011530046, No.
U1936220), and the Special Fund for Key Program of Sci-
ence and Technology of Anhui Province, China (Grant No.
202003A05020043). The authors are very grateful to the
anonymous referees for their detailed comments and sugges-
tions regarding this paper.

REFERENCES

[1] Y. Liao, E. d. F. R. Loures, and F. Deschamps, “Industrial internet of
things: A systematic literature review and insights,” IEEE Internet of
Things Journal, vol. 5, no. 6, pp. 4515–4525, 2018.

[2] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer
networks, vol. 76, pp. 146–164, 2015.

[3] J. Cui, F. Wang, Q. Zhang, Y. Xu, and H. Zhong, “An anonymous
message authentication scheme for semi-trusted edge-enabled iiot,”
IEEE Transactions on Industrial Electronics, 2020.

[4] M. Ma, D. He, M. K. Khan, and J. Chen, “Certificateless searchable
public key encryption scheme for mobile healthcare system,” Computers
& Electrical Engineering, vol. 65, pp. 413–424, 2018.

[5] L. Wu, B. Chen, K.-K. R. Choo, and D. He, “Efficient and secure
searchable encryption protocol for cloud-based internet of things,”
Journal of Parallel and Distributed Computing, vol. 111, pp. 152–161,
2018.

[6] J. Cui, Y. Sun, Y. Xu, M. Tian, and H. Zhong, “Forward and backward
secure searchable encryption with multi-keyword search and result
verification,” SCIENCE CHINA Information Sciences.

[7] H. Zhong, Z. Li, J. Cui, Y. Sun, and L. Liu, “Efficient dynamic multi-
keyword fuzzy search over encrypted cloud data,” Journal of Network
and Computer Applications, vol. 149, p. 102469, 2020.

[8] H. Zhong, Z. Li, Y. Xu, Z. Chen, and J. Cui, “Two-stage index-based
central keyword-ranked searches over encrypted cloud data,” Science
China Information Sciences, vol. 63, no. 3, pp. 1–3, 2020.

9

[9] Y. Wei, S. Lv, X. Guo, Z. Liu, Y. Huang, and B. Li, “Fsse: Forward
secure searchable encryption with keyed-block chains,” Information
Sciences, vol. 500, pp. 113–126, 2019.

[10] Z. Zhang, J. Wang, Y. Wang, Y. Su, and X. Chen, “Towards efficient
verifiable forward secure searchable symmetric encryption,” in European
Symposium on Research in Computer Security. Springer, 2019, pp.
304–321.

[11] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “Fs-peks: Lattice-
based forward secure public-key encryption with keyword search for
cloud-assisted industrial internet of things,” IEEE Transactions on
Dependable and Secure Computing, 2019.

[12] H. Kim, C. Hahn, and J. Hur, “Forward secure public key encryption
with keyword search for cloud-assisted iot,” in 2020 IEEE 13th Inter-
national Conference on Cloud Computing (CLOUD). IEEE, 2020, pp.
549–556.

[13] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-insulated public key cryp-
tosystems,” in International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2002, pp. 65–82.

[14] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Strong key-insulated signature
schemes,” in International Workshop on Public Key Cryptography.
Springer, 2003, pp. 130–144.

[15] R. A. Popa and N. Zeldovich, “Multi-key searchable encryption.” IACR
Cryptol. ePrint Arch., vol. 2013, p. 508, 2013.

[16] Y. Miao, Q. Tong, R. Deng, K.-K. R. Choo, X. Liu, and H. Li, “Verifi-
able searchable encryption framework against insider keyword-guessing
attack in cloud storage,” IEEE Transactions on Cloud Computing, 2020.

[17] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably se-
cure searchable encryption,” ACM Computing Surveys (CSUR), vol. 47,
no. 2, pp. 1–51, 2014.

[18] Y. Wang, J. Wang, and X. Chen, “Secure searchable encryption: a
survey,” Journal of communications and information networks, vol. 1,
no. 4, pp. 52–65, 2016.

[19] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceeding 2000 IEEE Symposium on Security
and Privacy. S&P 2000. IEEE, 2000, pp. 44–55.

[20] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in International conference on the
theory and applications of cryptographic techniques. Springer, 2004,
pp. 506–522.

[21] X. Tian and Y. Wang, “Id-based encryption with keyword search scheme
from bilinear pairings,” in 2008 4th International Conference on Wireless
Communications, Networking and Mobile Computing. IEEE, 2008, pp.
1–4.

[22] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certificateless
public key authenticated encryption with keyword search for industrial
internet of things,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 8, pp. 3618–3627, 2018.

[23] M. Ma, D. He, N. Kumar, K.-K. R. Choo, and J. Chen, “Certificateless
searchable public key encryption scheme for industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 2,
pp. 759–767, 2017.

[24] N. Attrapadung, J. Furukawa, and H. Imai, “Forward-secure and search-
able broadcast encryption with short ciphertexts and private keys,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2006, pp. 161–177.

[25] M. Ali, H. Ali, T. Zhong, F. Li, Z. Qin, and A. A. AA, “Broadcast
searchable keyword encryption,” in 2014 IEEE 17th International Con-
ference on Computational Science and Engineering. IEEE, 2014, pp.
1010–1016.

[26] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, “Efficient
encrypted keyword search for multi-user data sharing,” in European
symposium on research in computer security. Springer, 2016, pp. 173–
195.

[27] Y. Lu, J. Li, and Y. Zhang, “Privacy-preserving and pairing-free multire-
cipient certificateless encryption with keyword search for cloud-assisted
iiot,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2553–2562,
2019.

[28] G. Hanaoka, Y. Hanaoka, and H. Imai, “Parallel key-insulated public
key encryption,” in International Workshop on Public Key Cryptography.
Springer, 2006, pp. 105–122.

[29] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM
Conference on Computer and Communications Security, 1993, pp. 62–
73.

[30] S. Patranabis, Y. Shrivastava, and D. Mukhopadhyay, “Dynamic key-
aggregate cryptosystem on elliptic curves for online data sharing,” in

International Conference on Cryptology in India. Springer, 2015, pp.
25–44.

Jie Cui was born in Henan Province, China, in
1980. He received his Ph.D. degree in University
of Science and Technology of China in 2012. He
is currently a professor and Ph.D. supervisor of
the School of Computer Science and Technology
at Anhui University. His current research interests
include applied cryptography, IoT security, vehicu-
lar ad hoc network, cloud computing security and
software-defined networking (SDN). He has over
120 scientific publications in reputable journals (e.g.
IEEE Transactions on Dependable and Secure Com-

puting, IEEE Transactions on Information Forensics and Security, IEEE
Journal on Selected Areas in Communications, IEEE Transactions on Mobile
Computing, IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Computers, IEEE Transactions on Vehicular Technology,
IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions
on Network and Service Management, IEEE Transactions on Emerging Topics
in Computing, IEEE Transactions on Cloud Computing and IEEE Transactions
on Multimedia), academic books and international conferences.

Jie Lu is now a research student in the School
of Computer Science and Technology, Anhui Uni-
versity. Her research focuses on the security of
Industrial Internet of Things.

Hong Zhong was born in Anhui Province, China,
in 1965. She received her PhD degree in computer
science from University of Science and Technology
of China in 2005. She is currently a professor and
Ph.D. supervisor of the School of Computer Science
and Technology at Anhui University. Her research
interests include applied cryptography, IoT security,
vehicular ad hoc network, cloud computing security
and software-defined networking (SDN). She has
over 150 scientific publications in reputable journals
(e.g. IEEE Transactions on Parallel and Distributed

Systems, IEEE Transactions on Mobile Computing, IEEE Transactions on
Dependable and Secure Computing, IEEE Transactions on Information Foren-
sics and Security, IEEE Journal on Selected Areas in Communications, IEEE
Transactions on Intelligent Transportation Systems, IEEE Transactions on
Multimedia, IEEE Transactions on Vehicular Technology, IEEE Transactions
on Network and Service Management, IEEE Transactions on Cloud Comput-
ing and IEEE Transactions on Big Data), academic books and international
conferences.

10

Qingyang Zhang was born in Anhui Province,
China, in 1992. He received his B. Eng. degree
and Ph.D. degree in computer science from Anhui
University in 2021. He is currently a lecture of
School of Computer Science and Technology at
Anhui University. His research interest includes edge
computing, computer systems, and security.

Chengjie Gu received his Ph.D. degree in Nan-
jing University of Posts and Telecommunications in
2012. From 2012 to 2017, he was an innovation
team leader in the 38th Research Institute of CETC
and conducted research and development in the
communication and networking sector. Currently he
is a president of security research institute in new
H3C group. He is also studying for postdoctoral fel-
lowship at the USTC. He is a high-level innovation
leader of Anhui province and a cybersecurity expert
of Zhejiang province in China. His research interest

includes network security and trusted network architecture, etc.

Lu Liu is the Professor of Informatics and Head of
School of Informatics in the University of Leicester,
UK. Prof Liu received the Ph.D. degree from Univer-
sity of Surrey, UK and MSc in Data Communication
Systems from Brunel University, UK. Prof Liu’s
research interests are in areas of cloud computing,
service computing, computer networks and peer-to-
peer networking. He is a Fellow of British Computer
Society (BCS).

