
Parallel Key-Insulated Public Key Encryption

Goichiro Hanaoka1, Yumiko Hanaoka2, and Hideki Imai1,3

1 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology

1102 Akihabara Daibiru, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan.
hanaoka-goichiro@aist.go.jp

2 NTT DoCoMo, Inc.
3-5 Hikarino-oka, Yokosuka 239-8536, Japan.

hanaoka@nttdocomo.co.jp
3 Institute of Industrial Science, University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

imai@iis.u-tokyo.ac.jp

Abstract. Security is constantly been infringed by inadvertent loss of
secret keys, and as a solution, Dodis, Katz, Xu, and Yung [11], in Eu-
rocrypt 2002, proposed a new paradigm called key-insulated security
which provides tolerance against key exposures. Their scheme introduces
a “helper key” which is used to periodically update the decryption key.
The most attractive part of this scheme is that even if a decryption key
of a time period is exposed, the security of the rest of the periods are
unaffected. But how does this helper key managed? Can it be done effi-
ciently? As, to alleviate the damage caused by key exposures, decryption
key has to be updated at very short intervals, although frequent updating
will, in contrary, increase the risk of helper key exposure. In this paper,
we propose parallel key-insulated public key encryption in which two dis-
tinct helper keys alternately update a decryption key. The helper key of
one system is independent from the other. Not only does it decrease the
chance of helper key exposures, it also allows frequent updating of the
decryption key, and over all, increases the security of the system.

1 Introduction
Background. The problem of key exposure is an important issue in practice,
regardless. No matter how strong the encryption scheme is, if the key is exposed,
we lose the security. Leaving it just under users’ care and responsibility is too
high of a risk to take: Loss of important documents and personal information
that results from careless handling by humans happens nothing out of the or-
dinary, and the damage exerted, can be immeasurable. Classic approach was to
try to earn the time before system collapse, although not solving the problem
fundamentally, secret keys leaked eventually. Dodis, Katz, Xu and Yung looked
at this problem from a different prospective: Their idea was to minimize the
damage instead of just trying to gain time. Their proposed scheme was called,
key-insulated public-key encryption (KIPE) [11]. In their KIPE, a helper key
is introduced and is stored in the helper device which is kept isolated from the

network except for times it is used to update the decryption key. Encryption in
KIPE is carried out using a fixed public key and time (e.g. date), and so, the
need to announce new public key to others after each key updating (like what
the certificate authority does in PKI) can be omitted. Regarding its security,
security for all time periods except for time period exposed, both forward and
backward security, are guaranteed.

Now, to increase the system tolerance against key exposures for KIPE sys-
tem, the first thing that comes into mind is to update the decryption key at short
timing (i.e. frequent intervals), however, this will, in turn, increase the frequency
of helper device connection to the network and increase the risk of helper key
exposure. This is due to that the KIPE assumes helper key exposures to less
likely occur than decryption key exposures: Helper key and decryption key are
managed independently and helper device can be stored in a physically much
safer place as it is used only at key updates. Frequent updating of the decryp-
tion key will in turn put the helper key in a higher risk of exposure (as it will
be connected to the network more often). So, a trade-off between decryption
key and helper key exposures exists. For deeper understanding, let’s consider
the next example: Suppose you are a busy office worker who wishes to increase
system tolerance by frequently updating the key. You think that updating twice
each day is manageable. You decide to update the key once at home (at approx.
midnight) and once at the office (at approx. noon). Since you leave the helper
device at home, now, you will need to remind yourself not to forget to bring the
device to work each day, or otherwise, make a copy of the device and leave one
copy at your office for convenience. In either case, security of the decryption key
is increased but the risk of helper key exposure is also increased (doubled). So,
as we can see, unless the KIPE model is changed, it is impossible to increase the
security of both decryption key and helper key simultaneously.
Our Results. In this paper, we propose parallel key-insulated public key en-
cryption (PKIPE). Our PKIPE allows frequent updating of the decryption key,
and at the same time, reduces the risk of helper key exposure. PKIPE differs
from the original KIPE in that two distinct helper devices are introduced and
each device is alternately used to update a single decryption key (so, you don’t
have to carry your helper device to-and-from work and office each day).

Initialization in PKIPE involves providing two auxiliary helpers H1 and H2

with master helper keys mst1 and mst2, respectively, and the user’s terminal
with a stage 0 user secret key usk0. Similarly to the original KIPE, user’s public
encryption key pk is treated like that of an ordinary encryption scheme with
regard to certification, but its lifetime is divided into stages i = 1, 2, ..., N(= 2n)
with encryption in stage i performed as a function of pk, i and the plaintext, and
decryption in stage i performed by using a stage i user secret key uski obtained
by the following key-update process performed at the beginning of stage i:

– If i = 2k−1 for k ∈ {1, 2, ..., n}, H1 sends to the user’s terminal over a secure
channel, a stage i helper key hski computed as a function of mst1 and i,

– If i = 2k for k ∈ {1, 2, ..., n}, similarly to the above, H2 sends hski computed
as a function of mst2 and i,

the user computes uski as a function of uski−1 and hski, and erases uski−1. Like
the original KIPE, our PKIPE also address random access key update [11] in
which the user computes an arbitrary stage user secret key (that could also be
a past key).

The security intentions are:

1. If none of the helpers is compromised, similar to the original KIPE, ex-
posure of any of user secret keys does not compromise the security of the
non-exposed stages, and
2. even if one of H1 and H2 is compromised in addition to the exposure of
any of user secret keys, it still does not compromise the security of the non-
exposed stages except for the ones whose corresponding user secret keys can
be trivially determined from the exposed keys.

For case 2., consider a situation where an adversary obtains mst1, uski0 and
uski1 such that i0 and i1 are even and odd, respectively. Obviously, stages i0 and
i1 are compromised. The security of stage i0 + 1 may also be compromised since
uski0+1 is easily computable from uski0 and mst1. Similarly, security of stage
i1 − 1, too, may be compromised. (Notice that we address random access key
update and so we can recover past keys). On the other hand, for example, the
security of stage i1 +1 is not compromised as uski1+1 is computed as a function
of uski1 and mst2, and not mst1. So, in this case, security of all stages except
for i0, i0 + 1, i1 and i1 − 1 remain secure. Furthermore, if only one of H1 or
H2 is compromised but none of the user secret key is exposed, then all stages
remain secure. In other words, even for the case when one of helper keys, mst1
and mst2 is exposed, the security of our PKIPE is guaranteed to maintain at
least the security level of the original KIPE.

Similar to the original KIPE, we can further address the case when all of the
helper keys are exposed:

3. Even if both helpers H1 and H2 are compromised, security of all stages re-
main secure as long as user secret key (of even one stage) is not compromised
in addition to the helper keys.

Our proposed schemes are proven to be semantically secure in the random
oracle model.
Related Works. Followed by the earlier proposal made by Dodis, Katz, Xu
and Yung [11], Dodis, Franklin, Katz, Miyaji and Yung proposed an intrusion-
resilient public key encryption (IRPKE) [13] which strengthened the forward
security of KIPE. The security of IRPKE has enhanced, only, it became less
convenient as it did not allow random access key update. There were proposal of
signature schemes as well with the same intention to provide tolerance against
key exposures: Key-insulated signature [12] and intrusion-resilient signature [17].
On the other hand, as an encryption scheme that allows key update, there is,
the KIPE and also, forward secure public key encryption (FSPKE). FSPKE was
introduced by Anderson [1] and the first efficient construction was proposed by
Canetti, Halevi and Katz [10]. Dodis, Franklin, Katz, Miyaji and Yung showed

that by using FSPKE with a homomorphic property, a generic IRPKE can be
constructed [14]. Not to mention, many variations of forward secure signatures
have also been introduced, e.g. [8, 2].

Identity-based encryption (IBE) [18, 5, 9] works as a crucial building block in
the construction of KIPE. Bellare and Palacio showed in [7] that a KIPE (OT-
KIPE)1 which allows unlimited number of key updating is equivalent to an IBE,
and so, constructing a provably secure OT-KIPE in the standard model with
[3], [4] or [19] can be done also. In this paper, we show that [5] is used as a basic
building block to construct PKIPE.

2 Definitions
First, we give the model of PKIPE and the security notion. We follow by showing
the characteristics of bilinear maps and a related computational assumption.

2.1 Model: Parallel Key-Insulated Public Key Encryption
A PKIPE scheme E consists of five efficient algorithms (KeyGen, ∆-Gen,
Update, Encrypt, Decrypt).

KeyGen: Takes a security parameter k and returns mst1, mst2, usk0 and pk.
Public key pk includes a description of finite message space M, and descrip-
tion of finite ciphertext space C.

∆-Gen: Takes as inputs, mstj and i, and returns stage i helper key hski if
j = i mod 2, or ⊥ otherwise.

Update: Takes as inputs, uski−1, hski and i, and returns stage i user secret
key uski.

Encrypt: Takes as inputs, pk, i and M ∈ M, and returns ciphertext C ∈ C.
Decrypt: Takes as inputs, pk, uski and C ∈ C, and returns M ∈ M or ⊥.

These algorithms satisfy ∀i ∈ {1, ..., N}, ∀M ∈ M, Decrypt(pk, uski, C) =
M where C = Encrypt(pk, i, M).

2.2 Security Notion
Here, we define the notion of semantic security for PKIPE. This is based on
the security definition in the original KIPE [11, 7]. It should be noticed that the
definition in [7] looks simpler than in [11] but they are essentially the same.

We say that a PKIPE scheme E is semantically secure against an adaptive
chosen ciphertext attack under an adaptive chosen key exposure attack (IND-KE-
CCA) if no polynomially bounded adversary A has a non-negligible advantage
against the challenger in the following IND-KE-CCA game:

Setup: The challenger takes a security parameter k and runs the KeyGen
algorithm. He gives pk to A and keeps usk0, mst1 and mst2 to himself.

Phase 1: A issues queries q1, · · · , qm where each of the queries qi is one of:
– Exposure query 〈j, class〉: If class = “user”, the challenger responds

by running the algorithms ∆-Gen and Update to generate uskj and
sends it to A. If class = “helper”, the challenger sends mstj to A.

1 key-insulated public key encryption with optimum threshold

– Decryption query 〈j, C〉: The challenger responds by running the algo-
rithms ∆-Gen and Update to generate uskj . He then runs Decrypt
to decrypt the ciphertext C using uskj and sends the result to A.

These queries may be asked adaptively, that is, each query qi may depend
on the replies to q1, · · · , qi−1.

Challenge: Once A decides that Phase 1 is over, she outputs two equal length
plaintexts M0, M1 ∈ M and j∗ ∈ {1, 2, ..., N} on which she wishes to be
challenged. The challenger picks a random bit β ∈ {0, 1} and sets C∗ =
Encrypt(pk, j∗, Mβ). The challenger sends C∗ as the challenge to A.

Phase 2: A issues additional queries qm+1, · · · , qmax where each of the queries
is one of:
– Exposure query 〈j, class〉: Challenger responds as in Phase 1.
– Decryption query 〈j, C〉: Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, A outputs β′ ∈ {0, 1}. She wins the game if β′ = β and

1. 〈j∗, C∗〉 does not appear in Decryption queries,
2. 〈j∗, “user”〉 does not appear in Exposure queries,
3. both 〈j∗−1, “user”〉 and 〈2−(j∗ mod 2), “helper”〉 do not simultaneously

appear in Exposure queries,
4. both 〈j∗+1, “user”〉 and 〈(j∗ mod 2)+1, “helper”〉 do not simultaneously

appear in Exposure queries,
5. both 〈1, “helper”〉 and 〈2, “helper”〉 do not simultaneously appear in Ex-

posure queries.

We refer to such an adversary A as an IND-KE-CCA adversary. We define
A’s advantage in attacking the scheme E as AdvE,A = Pr[β′ = β] − 1/2. The
provability is over the random bits used by the challenger and A. As usual, we
can define chosen plaintext security similarly to the game above except that the
adversary is not allowed to issue any Decryption queries. We call this adversary
IND-KE-CPA adversary.

Definition 1 We say that a PKIPE system E is (t, ε)-adaptive chosen ciphertext
secure under adaptive chosen key exposure attacks if for any t-time IND-KE-CCA
adversary A, we have AdvE,A < ε. As shorthand, we say that E is IND-KE-
CCA secure. Also, we say that E is (t, ε)-adaptive chosen plaintext secure under
adaptive chosen key exposure attacks if for any t-time IND-KE-CPA adversary A,
we have AdvE,A < ε. As shorthand, we say that E is IND-KE-CPA secure.

IND-KE-CCA is already a strong security notion, but its security can be en-
hanced further to cover the compromise of both the helper keys. Concretely, as
a constraint on the above adversary’s Exposure query, we can modify 5. so that:

5′. 〈1, “helper”〉, 〈2, “helper”〉, and 〈j, “user”〉 do not simultaneously appear
in Exposure queries for any j ∈ {1, 2, ..., N}.

Such modification allows A to obtain both mst1 and mst2 if A doesn’t ask
any of user secret keys. Let this adversary be a strong IND-KE-CCA adversary.
Similarly, we can define strong IND-KE-CPA adversary, and here as well, she is
not allowed to issue any Decryption queries.

Definition 2 We say that a PKIPE system E is (t, ε)-adaptive chosen cipher-
text secure under strongly adaptive chosen key exposure attacks if for any t-time
strong IND-KE-CCA adversary A, we have AdvE,A < ε. As shorthand, we say
that E is strongly IND-KE-CCA secure. Also, we say that E is (t, ε)-adaptive cho-
sen plaintext secure under strongly adaptive chosen key exposure attacks if for
any t-time strong IND-KE-CPA adversary A, we have AdvE,A < ε. As shorthand,
we say that E is strongly IND-KE-CPA secure.

A Remark. In the discussion we had so far, it may seem like we may have
overlooked the exposure of stage i helper key, but actually, we haven’t. It is
obvious that if hski can be computed from uski−1 and uski for any stage i,
then exposure of hski can be emulated by using the responses to the Exposure
queries. So, the security definition so far given is sufficient as it is even against
exposure of stage i helper keys for any i, if we assume that such property holds.
As a matter of fact, all of our constructions satisfy this property.

2.3 Bilinear Maps and the CBDH Assumption
Throughout this paper, we let G1 and G2 be two multiplicative cyclic groups of
prime order q, and g be a generator of G1. A bilinear map e : G1 × G1 → G2

satisfies the following properties: (i) For all u, v ∈ G1 and a, b ∈ Z, e(ua, vb) =
e(u, v)ab. (ii) e(g, g))= 1. (iii) There is an efficient algorithm to compute e(u, v)
for all u, v ∈ G1. The Computational Bilinear Diffie-Hellman (CBDH) problem
[5] in 〈G1, G2, e〉 is as follows: given a tuple (g, ga, gb, gc) ∈ (G1)4 as input, output
e(g, g)abc ∈ G2. An algorithm Acbdh solves CBDH problem in 〈G1, G2, e〉 with
the probability εcbdh if Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εcbdh, where the
probability is over the random choice of generator g ∈ G1\{1}, and a, b, c ∈ Zq

and random coins consumed by Acbdh.

Definition 3 We say that the (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉
if no tcbdh-time algorithm has advantage of at least εcbdh in solving the CBDH
problem in 〈G1, G2, e〉.

3 Chosen Plaintext Secure Construction

In this section, we propose our PKIPE schemes and prove its security under
CBDH assumption in the random oracle model. Intuitively, picture two inde-
pendent Boneh-Franklin IBEs (BF-IBE) [5, 6] integrated to one another and the
master key of one BF-IBE is free to leak. Applying a straightforward 2-out-of-
2 threshold key generation of BF-IBE [5] is not the correct answer since then
the master keys of both BF-IBEs will be required to update a decryption key.
Instead, in our PKIPE schemes, master keys of the two independent BF-IBEs
are alternately used to update a single key (so, only one master key is used
at a time). Furthermore, interestingly, decryption key size, ciphertext size and
computational cost for decryption in our PKIPE remain unchanged (and public
key size and encryption cost is increased but only slightly for one element in
G1 and one pairing computation, respectively) as in the original BF-IBE. In our
schemes, we let N = O(poly(k)).

3.1 Construction
Let G1 and G2 be two groups of order q of size k, and g be a generator of G1. Let
e : G1 × G1 → G2 be a bilinear map. Let G,H be cryptographic hash functions
G : G2 → {0, 1}n for some n, H : {0, 1}∗ → G1, respectively. The message space
is M = {0, 1}n. The PKIPE1 scheme consists of the following algorithms:

PKIPE1: IND-KE-CPA Construction

KeyGen: Given a security parameter k, KeyGen algorithm:
1. generates G1, G2, g and e.
2. picks s1, s2 ∈ Z∗

q uniformly at random, and sets h1 = gs1 and h2 = gs2 ,
3. chooses cryptographic hash functions G and H ,
4. computes u−1 = H(−1) and u0 = H(0),
5. computes d−1 = us1

−1 and d0 = us2
0 ,

6. outputs pk = 〈q, G1, G2, e, n, g, h1, h2, G, H〉, mst1 = s1, mst2 = s2 and
usk0 = d−1 · d0.

∆-Gen: For given mstj and i ∈ {1, 2, ..., N}, ∆-Gen algorithm:
1. outputs ⊥ if i)≡ j mod 2,
2. computes ui−2 = H(i − 2) and ui = H(i),
3. computes di−2 = u

sj

i−2 and di = u
sj

i ,
4. outputs hski = d−1

i−2 · di.
Update: For given uski−1, hski and i, Update algorithm:

1. computes uski = uski−1 · hski,
2. deletes uski−1 and hski,
3. outputs uski.

Encrypt: For given pk, i and a message M ∈ {0, 1}n, Encrypt algorithm:
1. chooses random r ∈ Z∗

q ,
2. computes ui−1 = H(i − 1) and ui = H(i),
3. if i = 0 mod 2, computes W = (e(h1, ui−1) · e(h2, ui))r ,
4. if i = 1 mod 2, computes W = (e(h1, ui) · e(h2, ui−1))r ,
5. sets C = 〈i, gr, G(W) ⊕ M〉,
6. outputs C as a ciphertext.

Decrypt: For given pk, uski and C = 〈i, c0, c1〉, Decrypt algorithm:
1. computes W ′ = e(c0, uski),
2. computes M ′ = c1 ⊕ G(W ′),
3. outputs M ′ as a plaintext.

3.2 Security
Now, we prove that PKIPE1 is IND-KE-CPA under the CBDH assumption. For
readers who are already familiar with KIPE and/or IBE, here we give an overview
of the proof. PKIPE1 is based on [5, 6], so, a proof technique similar to [5, 6] can
be applied. However, there are still some technical hurdles to overcome due to the
peculiar key-updating mechanism using two different helper keys. Namely, em-
bedding the given CBDH instance into the responses to the adversary’s queries

cannot be straightforwardly carried out since the keys are mutually dependent
on one another, and that the simulation fails if inconsistency of the responses
is noticed by the adversary. For example, suppose that the simulator embeds
the given instance into uskα(= dα−1dα) for some stage α. Here, the simulator
does not know the value of uskα but has to respond to any Exposure queries
(except for uskα) including uskα−1(= dα−2dα−1) and uskα+1(= dαdα+1). We
notice that both factors of uskα, i.e. dα−1 and dα appear in uskα−1 or uskα+1,
and so, responding to uskα−1 and uskα+1 without knowing uskα is not easy.

Theorem 1 Suppose (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉 and
hash functions G and H are random oracles. Then, PKIPE1 is (tpkipe, εpkipe)-
IND-KE-CPA secure as long as εpkipe ≤ 3qGN

2 εcbdh and tpkipe ≤ tcbdh+Θ(τ(2qH +
3qE)), where IND-KE-CPA adversary Apkipe issues at most qH H-queries and qE

Exposure queries. Here, τ is the maximum time for computing an exponentiation
in G1, G2, and pairing e.

Proof. We show that we can construct an algorithm Acbdh that can solve the
CBDH problem in 〈G1, G2, e〉 by using an adversary Apkipe that breaks IND-KE-
CPA security of our scheme. The algorithm Acbdh is given an instance 〈g, ga, gb, gc〉
in G1 from the challenger and tries to output e(g, g)abc using Apkipe. Let g1 =
ga, g2 = gb, g3 = gc. The algorithm Acbdh works by interacting with Apkipe in an
IND-KE-CPA game as follows:

Before starting the simulation, Acbdh flips a coin COIN ∈ {0, 1} such that we
have Pr[COIN = 0] = δ for some δ which we will determine later. If COIN = 0,
Acbdh simulates the responses to Apkipe’s queries expecting that Apkipe will never
submit 〈j, “helper”〉 as Exposure query for any j. If COIN = 1, Acbdh carries
out the simulation expecting that Apkipe will submit 〈j, “helper”〉 for some j.

If COIN = 0, Acbdh responses to Apkipe’s queries will be as follows:

Setup: Acbdh picks a random s ∈ Z∗
q . Also, Acbdh gives Apkipe the system

parameter pk = 〈q, G1, G2, e, n, g, h1, h2, G, H〉, where h1 = g1 and h2 = gs
1,

and random oracles G,H are controlled by Acbdh as described below.
G-queries: Apkipe issues up to qG queries to the random oracle G. To respond

to these queries algorithm, Acbdh forms a list of tuples 〈W,x〉 as explained
below. We call this list Glist. The list is initially empty. When Apkipe gives
Acbdh a query W to the oracle G, Acbdh responds as follows:
1. If the query W already appears on the Glist in a tuple 〈W,x〉, then

outputs G(W) = x.
2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W,x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Apkipe issues up to
qH queries to the random oracle H . To respond to these queries algorithm,
Acbdh forms a list of tuples 〈i, ui, ri〉 as explained below. We call the list
Hlist. The list is initially empty. When Apkipe gives Acbdh a query i to the
oracle H , Acbdh responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i, ui, ri〉, then

outputs H(i) = ui.

2. If i = α, Acbdh sets ui = g2 and rα = 0.
3. If i < α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri.
4. If i > α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gz
2 · gri , where

– z = 1 if i = α mod 2,
– z = −s if i = 1 mod 2 and α = 0 mod 2,
– z = −s−1 if i = 0 mod 2 and α = 1 mod 2, where s−1 is the inverse

of s mod q,
5. Acbdh adds the tuple 〈i, ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: Once algorithm Apkipe decides that Phase 1 is over, it outputs a
target stage i∗ and two messages M0, M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = µ, where µ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Apkipe.

Exposure queries: Apkipe issues up to qE Exposure queries. When Apkipe gives
a query 〈i, class〉, Acbdh responds as follows:
1. If class = “helper” or i = α, Acbdh aborts the simulation.
2. Acbdh runs the algorithm for responding to H-queries to obtain 〈i, ui, ri〉

and 〈i − 1, ui−1, ri−1〉.
3. Acbdh sets uski = hri−1

1 ·hri
2 if i = 0 mod 2, or uski = hri

1 ·hri−1
2 otherwise,

and outputs uski to Apkipe. Observe that uski is the user secret key
corresponding to the stage i. Especially, when i > α,

u
logg h1

i−1 · ulogg h2

i = (g−s
2 · gri−1)a · (g2 · gri)s·a = hri−1

1 hri
2

(if i = 0 mod 2, α = 0 mod 2)

= (g2 · gri−1)a · (g−s−1

2 · gri)s·a = hri−1
1 hri

2

(if i = 0 mod 2, α = 1 mod 2)

u
logg h2

i−1 · ulogg h1

i = (g2 · gri−1)s·a · (g−s
2 · gri)a = hri−1

2 hri
1

(if i = 1 mod 2, α = 0 mod 2)

= (g−s−1

2 · gri−1)s·a · (g2 · gri)a = hri−1
2 hri

1

(if i = 1 mod 2, α = 1 mod 2)

Guess: When Apkipe decides that Phase 2 is over, Apkipe outputs its guess bit
β′ ∈ {0, 1}. At the same time, algorithm Acbdh terminates the simulation.
Then, Acbdh picks a tuple 〈W,x〉 uniformly at random from the Glist, and
computes T = (W

e(g1,g3)rα−1)s−1
if α = 0 mod 2, or T = (W

e(g1,g3)s·rα−1) if
α = 1 mod 2. Finally, Acbdh outputs T .

Claim 1 If i∗ = α and Acbdh does not abort, then Apkipe’s view is identical to
its view in the real attack until Apkipe submits W ∗ as a G-query, where W ∗ =
e(g1, g3)rα−1 · e(g, g)s·abc if α = 0 mod 2, or W ∗ = e(g1, g3)s·rα−1 · e(g, g)abc if
α = 1 mod 2.

Proof. It is obvious that the responses to G and H are as in the real attack.
Interestingly, the responses to Exposure queries are perfect if Acbdh does not

abort. Finally, we show that the response to Challenge is indistinguishable from
the real attack until Apkipe submits W ∗. Let the response to Challenge be C∗ =
〈α, c∗0, c

∗
1〉. Then, c∗0 is uniformly distributed in G1 due to random logg g3(= c),

and therefore are as in the real attack. Also, since c∗1 = Mβ ⊕ G(W ∗), it is
information-theoretically impossible to obtain any information on Mβ unless
Apkipe asks G(W ∗). ./

Next, let us define by E1, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E2, an event assigned to be true if and only if a G-
query coincides with W ∗, and by Emsk, an event assigned to be true if and only
if an Exposure query coincides with 〈i, “helper”〉 for any i ∈ {1, 2}.
Claim 2 We have that Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ = β|¬Emsk].

Proof. It is clear that
∑

i∈{1,...,N} Pr[β′ = β|i∗ = i,¬Emsk] Pr[i∗ = i|¬Emsk] =
Pr[β′ = β|¬Emsk]. Since α is uniformly chosen from {1, ...N} at random, we have
Pr[β′ = β|i∗ = α,¬Emsk]] Pr[i∗ = α|¬Emsk] ≥ 1

N Pr[β′ = β|¬Emsk]. Therefore,
we have Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ = β|¬Emsk], which proves the claim. ./

Claim 3 We have that Pr[β′ = β|E1,¬E2,¬Emsk] = 1/2.

Proof. Let C∗ be 〈α, c∗0, c
∗
1〉. Since c∗1 = Mβ ⊕ G(W ∗), it is impossible to obtain

any information on Mβ without asking W ∗ as a G-query. ./

Claim 4 We have that Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0] ≥ 1
qGN ·

Pr[E2|E1,¬Emsk] Pr[¬Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ ap-
pears in Glist with probability Pr[E2]. We have Pr[E2] ≥ Pr[E2|E1,¬Emsk] ·
Pr[E1|¬Emsk] · Pr[¬Emsk] and Pr[E1|¬Emsk] = 1/N . Hence, by choosing a tu-
ple from Glist uniformly at random, Acbdh can correctly output e(g, g)abc with
probability of at least 1/qG · 1/N · Pr[E2|E1,¬Emsk] Pr[¬Emsk]. ./

Finally, we calculate p0 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0]. Let-
ting γ := Pr[β′ = β|Emsk] − 1/2, from Claims 1 and 2, we have

Pr[β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] + Pr[β′ = β|Emsk] Pr[Emsk] − 1
2

= Pr[β′ = β|¬Emsk](1 − Pr[Emsk]) + (
1
2

+ γ) Pr[Emsk] − 1
2

≤ Pr[β′ = β|E1,¬Emsk](1 − Pr[Emsk]) + (
1
2

+ γ) Pr[Emsk] − 1
2
.

From Pr[β′ = β|E1,¬Emsk] = Pr[β′ = β|E1, E2,¬Emsk] · Pr[E2|E1,¬Emsk] +
Pr[β′ = β|E1,¬E2,¬Emsk] · Pr[¬E2|E1,¬Emsk] and Claim 3, we have

Pr[β′ = β] − 1
2
≤ (Pr[E2|E1,¬Emsk] +

1
2
(1 − Pr[E2|E1,¬Emsk]))(1 − Pr[Emsk])

+(
1
2

+ γ) Pr[Emsk] − 1
2

=
1
2

Pr[E2|E1,¬Emsk] Pr[¬Emsk] + γ Pr[Emsk].

From Claim 4, we have p0 ≥ 2
qGN (εpkipe − γ Pr[Emsk]).

Next, we discuss for the COIN = 1 case. If COIN = 1, Acbdh responses to
Apkipe’s queries as follows:

Setup: Acbdh picks random s ∈ Z∗
q and b ∈ {1, 2}. Let b̄ be 1 (resp. 2)

if b = 2 (resp. 1). Also, Acbdh gives Apkipe the system parameter pk =
〈q, G1, G2, e, n, g, h1, h2, G, H〉, where hb = g1 and hb̄ = gs, and random
oracles G,H are controlled by Acbdh as described below.

G-queries: Apkipe issues up to qG queries to the random oracle G. To respond
to these queries algorithm Acbdh forms a list of tuples 〈W,x〉 as explained
below. We call this list Glist. The list is initially empty. When Apkipe gives
Acbdh a query W to the oracle G, Acbdh responds as follows:
1. If the query W already appears on the Glist in a tuple 〈W,x〉, then

outputs G(W) = x.
2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W,x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Apkipe issues up to
qH queries to the random oracle H . To respond to these queries algorithm
Acbdh forms a list of tuples 〈i, ui, ri〉 as explained below. We call the list
Hlist. The list is initially empty. When Apkipe gives Acbdh a query i to the
oracle H , Acbdh responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i, ui, ri〉, then

outputs H(i) = ui.
2. If i = α− 1 and α ≡ b̄ mod 2, Acbdh sets ui = g2 and ri = 0.
3. If i = α and α ≡ b mod 2, Acbdh sets ui = g2 and ri = 0.
4. Else, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri .
5. Acbdh adds the tuple 〈i, ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: Once algorithm Apkipe decides that Phase 1 is over, it outputs a
target stage i∗ and two messages M0, M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = µ, where µ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Apkipe.

Exposure queries: Apkipe issues up to qE Exposure queries. When Apkipe gives
a query 〈i, class〉, Acbdh responds as follows:
1. If i = b and class = “helper”, Acbdh aborts the simulation.
2. If i = b̄ and class = “helper”, Acbdh returns s to Apkipe.
3. If i = α and class = “user”, Acbdh aborts the simulation.
4. If i = α − 1, class = “user” and α ≡ b̄ mod 2, Acbdh aborts the simu-

lation.
5. If i = α + 1, class = “user” and α ≡ b mod 2, Acbdh aborts the simu-

lation.
6. Else2, Acbdh runs the algorithm for responding to H-queries to obtain

〈i, ui, ri〉 and 〈i−1, ui−1, ri−1〉, and sets uski = hri−1
1 ·hri

2 if i = 0 mod 2,
or uski = hri

1 · hri−1
2 otherwise. Acbdh outputs uski to Apkipe.

2 Notice that in this case, class is always “user”.

Guess: When Apkipe decides that Phase 2 is over, Apkipe outputs the guess bit
β′ ∈ {0, 1}. At the same time, algorithm Acbdh terminates the simulation.
Then, Acbdh picks a tuple 〈W,x〉 uniformly at random from the Glist, and
computes T = W · e(g, g3)−s·rα if α ≡ b̄ mod 2, or T = W · e(g, g3)−s·rα−1 if
α ≡ b mod 2. Finally, Acbdh outputs T .

Claim 5 If i∗ = α, Apkipe submits 〈b̄, “helper”〉 as an Extraction query, and
Acbdh does not abort, then Apkipe’s view is identical to its view in the real attack
until Apkipe submits W ∗ as a G-query, where W ∗ = e(g, g3)s·rα · e(g, g)abc if
α ≡ b̄ mod 2, or W ∗ = e(g, g3)s·rα−1 · e(g, g)abc if α ≡ b mod 2.

Next, let us define by E3, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E4, an event assigned to be true if and only if a G-
query coincides with W ∗, by E5, an event assigned to be true if and only if an
Exposure query coincides with 〈b, “helper”〉, and by Emsk, an event assigned
to be true if and only if an Exposure query coincides with 〈i, “helper”〉 for any
i ∈ {1, 2}. Notice that Emsk is identical to that in the case of COIN = 0.

Claim 6 We have that Pr[β′ = β|E3,¬E5, Emsk] ≥ Pr[β′ = β|Emsk].

Claim 7 We have that Pr[β′ = β|E3,¬E4,¬E5, Emsk] = 1/2.

Proofs of Claims 5, 6 and 7 are given in the full version of this paper.

Claim 8 We have that Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1] ≥ 1
2qGN ·

Pr[E4|E3,¬E5, Emsk] Pr[Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ ap-
pears in Glist with probability Pr[E4]. We have Pr[E4] ≥ Pr[E4|E3,¬E5, Emsk] ·
Pr[E3|¬E5, Emsk] · Pr[¬E5, Emsk]. Furthermore, we have Pr[E3|¬E5, Emsk] =
1/N , and Pr[¬E5, Emsk] = 1/2 ·Pr[Emsk]. Hence, by choosing a tuple from Glist

uniformly at random, Acbdh can correctly output e(g, g)abc with probability of
at least 1/qG · 1/N · 1/2 · Pr[E4|E3,¬E5, Emsk] Pr[Emsk]. ./

Finally, we calculate p1 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1]. Let-
ting η := Pr[β′ = β|¬Emsk] − 1/2, from Claims 5 and 6, we have

Pr[β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] + Pr[β′ = β|Emsk] Pr[Emsk] − 1
2

= (
1
2

+ η) Pr[¬Emsk] + Pr[β′ = β|Emsk](1 − Pr[¬Emsk]) − 1
2

≤ (
1
2

+ η) Pr[¬Emsk]

+ Pr[β′ = β|E3,¬E5, Emsk](1 − Pr[¬Emsk]) − 1
2
.

Since we have Pr[β′ = β|E3,¬E5, Emsk] = Pr[β′ = β|E3, E4,¬E5, Emsk] ·
Pr[E4|E3,¬E5, Emsk] + Pr[β′ = β|E3,¬E4,¬E5, Emsk] ·Pr[¬E4|E3,¬E5, Emsk],

from Claim 7, we have

Pr[β′ = β] − 1
2
≤ (

1
2

+ η) Pr[¬Emsk]

+(Pr[E4|E3,¬E5, Emsk] +
1
2
(1 − Pr[E4|E3,¬E5, Emsk]))

·(1 − Pr[¬Emsk]) − 1
2

=
1
2

Pr[E4|E3,¬E5, Emsk] Pr[Emsk] + η Pr[¬Emsk].

From Claim 8, we have p1 ≥ 1
qGN (εpkipe − η Pr[¬Emsk]).

Claim 9 We have that εpkipe ≥ γ Pr[Emsk] + η Pr[¬Emsk].

Proof. By the definitions of γ and η, we have γ + 1/2 = Pr[β′ = β|Emsk] and
η + 1/2 = Pr[β′ = β|¬Emsk], and consequently, εpkipe + 1

2 ≥ Pr[β′ = β] =
(γ + 1

2) Pr[Emsk] + (η + 1
2) Pr[¬Emsk]. Hence, we have εpkipe ≥ γ Pr[Emsk] +

η Pr[¬Emsk], which proves the claim. ./

Now, we calculate εcbdh(= Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc]). From Claim 9,
we have

εcbdh = δ · p0 + (1 − δ) · p1

≥ δ(
2

qGN
(εpkipe − γ Pr[Emsk])) + (1 − δ)(

1
qGN

(εpkipe − η Pr[¬Emsk]))

≥ δ(
2

qGN
(εpkipe − γ Pr[Emsk])) + (1 − δ)(

1
qGN

γ Pr[Emsk])

≥ 1
qGN

(2δεpkipe + (1 − 3δ)γ Pr[Emsk])

By letting δ = 1/3, we finally have εcbdh ≥ 2
3qGN εpkipe.

From the above discussions, we can see that the claimed bound of the running-
time of Acbdh holds. This completes the proof of the theorem. ./

3.3 Strongly IND-KE-CPA Scheme
We can build a construction of a strongly IND-KE-CPA scheme PKIPE2 by only
slightly modifying PKIPE1. The PKIPE2 consists of the following algorithms:

PKIPE2: Strongly IND-KE-CPA Construction

KeyGen: Given a security parameter k, KeyGen algorithm does the same as
that of PKIPE1 except that it:

2. picks random, s1, s2, s3 ∈ Z∗
q , and sets h1 = gs1s3 and h2 = gs2s3 ,

6. outputs pk = 〈q, G1, G2, e, n, g, h1, h2, G, H〉, mst1 = s1, mst2 = s2

and usk0 = 〈ds3
−1 · d

s3
0 , s3〉.

∆-Gen: Same as in PKIPE1.

Update: For given uski−1 = 〈usk′
i−1, s3〉, hski and i, Update algorithm:

1. computes usk′
i = usk′

i−1 · hsks3
i ,

2. deletes usk′
i−1 and hski,

3. outputs uski = 〈usk′
i, s3〉.

Encrypt: Same as in PKIPE1.
Decrypt: For given uski = 〈usk′

i, s3〉 and C = 〈i, c0, c1〉, Decrypt algorithm
does the same as that of PKIPE1 except that it:

1. computes W ′ = e(c0, usk′
i).

The security proof of PKIPE2 can be done similarly to PKIPE1. Here we briefly
explain why both master keys, mst1 and mst2, can be exposed and still guarantee
security. Since plaintext M is perfectly hidden by G(e(gr, usk′

i)), it is necessary
to compute e(gr, usk′

i) for compromising semantic security of PKIPE2. However,
this is almost as difficult as the CBDH problem without knowing s3 even if
the adversary knows both mst1 and mst2. Hence, PKIPE2 is more secure than
PKIPE1 against exposure of master helper keys.

4 Chosen Ciphertext Secure Construction
In this section, we construct chosen ciphertext secure PKIPE schemes by ex-
tending PKIPE1 and PKIPE2 with Fujisaki-Okamoto padding [15, 16]. It should
be noticed that the proofs of security of our schemes cannot be straightforwardly
done since the model of PKIPE significantly differs from the standard public key
encryption.

4.1 Construction
Let F,G,H be cryptographic hash functions F : {1, ..., N}× {0, 1}n × {0, 1}# →
Z∗

q , G : G2 → {0, 1}n+# for some n and *, and H : {0, 1}∗ → G1, respectively.
The message space is M = {0, 1}n. Except for the ones that are mentioned,
the notions are the same as in PKIPE1. The PKIPE3 consists of the following
algorithms:

PKIPE3: IND-KE-CCA Construction

KeyGen: Given a security parameter k, KeyGen algorithm does the same as
that of PKIPE1 exceptthat it:

3. chooses cryptographic hash functions F , G and H ,
6. outputs pk = 〈q, G1, G2, e, n, g, h1, h2, F,G,H〉, mst1 = s1, mst2 = s2

and usk0 = d−1 · d0.
∆-Gen: Same as in PKIPE1.
Update: Same as in PKIPE1.
Encrypt: For given pk, i and a message M ∈ {0, 1}n, Encrypt algorithm:

1. chooses random R ∈ {0, 1}#,
2. computes σ = F (i, M, R),
3. computes ui−1 = H(i − 1) and ui = H(i),
4. if i = 0 mod 2, computes W = (e(h1, ui−1) · e(h2, ui))σ ,

5. if i = 1 mod 2, computes W = (e(h1, ui) · e(h2, ui−1))σ ,
6. sets C = 〈i, gσ, G(W) ⊕ (M ||R)〉,
7. outputs C as a ciphertext.

Decrypt: For given pk, uski and C = 〈i, c0, c1〉, Decrypt algorithm:
1. outputs ⊥ if C)∈ ZN × G1 × {0, 1}n+#,
2. computes W ′ = e(c0, uski),
3. computes (M ′||R′) = c1 ⊕ G(W ′),
4. outputs M ′ as a plaintext if c0 = gσ′

, or ⊥ otherwise, where σ′ =
F (i, M ′, R′).

4.2 Security
Now, we prove that PKIPE3 is IND-KE-CCA under the CBDH assumption.

Theorem 2 Suppose (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉 and
hash functions G and H are random oracles. Then, PKIPE3 is (tpkipe, εpkipe)-
IND-KE-CCA secure as long as εpkipe ≤ 3qGN

2 εcbdh + 2qF

2" + 2qD

q and tpkipe ≤
tcbdh +Θ(τ(5qF +2qH +3qE +5qD)), where IND-KE-CPA adversary Apkipe issues
at most qF F -queries, qH H-queries, qD Decryption queries and qE Exposure
queries. Here, τ is the maximum time for computing an exponentiation in G1, G2,
and pairing e.

Proof. The proof of theorem is almost identical to Theorem 1 except that here,
Acbdh has to simulate responses to Decryption queries as well. For either the case
for COIN = 0 and 1, if i)= α, then it will be easy for Acbdh to calculate uski on
his own, so the decryption will be easily done as well. Therefore, we only need
to consider the case for i = α. Concretely, Acbdh’s responses to Apkipe’s queries
can be simulated as follows:

F -queries: Apkipe picks a random R∗ ∈ {0, 1}# in advance. Apkipe issues up to
qF queries to the random oracle F . To respond to these queries, algorithm
Acbdh forms a list of tuples 〈i, M, R,σ〉 as explained below. We call this list
Flist. The list is initially empty. When Apkipe gives Acbdh a query (i, M, R)
to the oracle F , Acbdh responds as follows:
1. If R = R∗, Acbdh aborts the simulation.
2. If the query (i, M, R) already appears on the Flist in a tuple 〈i, M, R,σ〉,

then outputs F (i, M, R) = σ.
3. Acbdh chooses a random σ ∈ Z∗

q .
4. Acbdh adds the tuple 〈i, M, R,σ〉 to the Flist and outputs F (i, M, R) = σ.

Challenge: Once algorithm Apkipe decides that Phase 1 is over, it outputs a
target stage i∗ and two messages M0, M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = µ, where µ ∈R {0, 1}n+#.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Apkipe.

Decryption queries: Apkipe issues up to qD Decryption queries. When Apkipe

gives a query C = 〈i, c0, c1〉, Acbdh responds as follows:

1. If i)= α, Acbdh runs the algorithm to respond to Exposure queries to
obtain uski, decrypts C, and outputs the decryption result to Apkipe.

2. If i = α, Acbdh searches for a tuple 〈α,M, R,σ〉 from Flist such that

c0 = gσ,

c1 = G((e(h1, uα−1) · e(h2, uα))σ) ⊕ (M ||R) if α = 0 mod 2,

= G((e(h1, uα) · e(h2, uα−1))σ) ⊕ (M ||R) if α = 1 mod 2.

3. If there exists such a tuple, Acbdh outputs M to Apkipe. Otherwise, Acbdh

outputs ⊥.

Responses to G-queries, H-queries and Exposure queries can be simulated sim-
ilarly to the proof in Theorem 1.

Next, let us define by F -Fail an event assigned to be true if and only if there
exists a F -query 〈i, M, R〉 such that R = R∗. Similarly, let us define by D-Fail
an event assigned to be true if and only if Acbdh returns ⊥ for a Decryption
query which should not be rejected.

Using this, and following the proof of Theorem 1, we get the next inequalities:

p0 ≥ 2
qGN

(εpkipe − γ Pr[Emsk] − Pr[F -Fail]− Pr[D-Fail]),

p1 ≥ 1
qGN

(εpkipe − η Pr[¬Emsk] − Pr[F -Fail]− Pr[D-Fail]),

where pw := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = w] for w ∈ {0, 1}, and
qG, γ, η and Emsk are denoted similarly as in Theorem 1.

We then calculate Pr[F -Fail] and Pr[D-Fail]. Since it is information the-
oretically impossible to obtain any informaion on R∗, Apkipe submits R∗ as
in one of F -queries with probability at most qF /2#. Acbdh fails to respond
to a Decryption query only when Apkipe succeeds to generate a ciphertext
C = Encrypt(pk,α, M ; R) without submitting a F -query 〈α,M, R〉. Hence,
Pr[D-Fail] will be at most qD/q.

Finally, by letting δ = 1/3, we have εcbdh ≥ 2
3qGN (εpkipe − 2qF

2" − 2qD

q).
From the above discussions, we can easily see that the claimed bound of the

running-time of Acbdh holds. This completes the proof of the theorem. ./

Strongly IND-KE-CCA Construction. We can build a strongly IND-KE-CCA
scheme by combining the ideas of PKIPE2 and PKIPE3. A concrete construction
of the scheme is given in the full version of this paper.

Acknowledgement

The authors would like to thank Nuttapong Attrapadung, Yang Cui, Yevgeniy
Dodis, Jun Furukawa, Moti Yung, Rui Zhang, and anonymous referees for their
comments and suggestions.

References

1. R. Anderson, “Two remarks on public key cryptology,” Invited Lecture, ACM
CCCS’97, available at http://www.cl.cam.ac.uk/users/rja14/.

2. M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,” Proc.
of Asiacrypt’00, LNCS 1976, Springer-Verlag, pp. 116-129, 2000.

3. D. Boneh and X. Boyen, “Efficient selective-ID secure identity-based encryption
without random oracles,” Proc. of Eurocrypt’04, LNCS 3027, Springer-Verlag,
pp.223-238, 2004.

4. D. Boneh and X. Boyen, “Secure identity based encryption without random ora-
cles,” Proc. of Crypto’04, LNCS 3152, Springer-Verlag, pp.443-459, 2004.

5. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Proc. of Crypto’01, LNCS 2139, Springer-Verlag, pp.213-229, 2001.

6. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
SIAM J. of Computing, vol. 32, no. 3, pp.586-615, 2003 (full version of [5]).

7. M. Bellare and A. Palacio, “Protecting against key exposure:
strongly key-insulated encryption with optimal threshold,” available at
http://eprint.iacr.org/2002/064/ .

8. M. Bellare and S.K. Miner, “A forward-secure digital signature scheme,” Proc. of
Crypto’99, LNCS 1666, Springer-Verlag, pp. 431-448, 1999.

9. C. Cocks, “An identity based encryption scheme based on quadratic residues,”
Proc. of IMA Int. Conf. 2001, Coding and Cryptography, LNCS 2260, Springer-
Verlag, pp. 360-363, 2001.

10. R. Canetti, S. Halevi and J. Katz, “A forward secure public key encryption
scheme,” Proc. of Eurocrypt’03, LNCS 2656, Springer-Verlag, pp.255-271, 2003.

11. Y. Dodis, J. Katz, S. Xu and M. Yung, “Key-insulated public key cryptosystems,”
Proc. of Eurocrypt’02, LNCS 2332, Springer-Verlag, pp.65-82, 2002.

12. Y. Dodis, J. Katz, S. Xu and M. Yung, “Strong key-insulated signature schemes,”
Proc. of PKC’03, LNCS 2567, Springer-Verlag, pp.130-144, 2003.

13. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “Intrusion-resilient public-
key encryption,” Proc. of CT-RSA’03, LNCS 2612, Springer-Verlag, pp.19-32, 2003.

14. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “A generic construction
for intrusion-resilient public-key encryption,” Proc. of CT-RSA’04, LNCS 2964,
Springer-Verlag, pp.81-98, 2004.

15. E. Fujisaki and T. Okamoto, “How to enhance the security of public-key encryption
at minimum cost,” Proc. of PKC’99, LNCS 1560, Springer-Verlag, pp.53-68, 1999.

16. E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” Proc. of Crypto’99, LNCS 1666, Springer-Verlag, pp.537-554,
1999.

17. G. Itkis and L. Reyzin, “SiBIR: signer-base intrusion-resilient signatures,” Proc.
of Crypto’02, LNCS 2442, Springer-Verlag, pp.499-514, 2002.

18. A. Shamir, “Identity-based cryptosystems and signature schemes,” Proc. of
Crypto’84, LNCS 196, Springer-Verlag, pp.47-53, 1985.

19. B. Waters, “Efficient identity based encryption without random oracles,” Proc. of
Eurocrypt’05, LNCS 3494, Springer-Verlag, pp.114-127, 2005.

