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PARALLEL LAGRANGE-NEWTON-KRYLOV-SCHUR METHODS
FOR PDE-CONSTRAINED OPTIMIZATION.
PART I: THE KRYLOV-SCHUR SOLVER*

GEORGE BIROST AND OMAR GHATTASH

Abstract. Large-scale optimization of systems governed by partial differential equations (PDEs)
is a frontier problem in scientific computation. Reduced quasi-Newton sequential quadratic pro-
gramming (SQP) methods are state-of-the-art approaches for such problems. These methods take
full advantage of existing PDE solver technology and parallelize well. However, their algorithmic
scalability is questionable; for certain problem classes they can be very slow to converge. In this
two-part article we propose a new method for steady-state PDE-constrained optimization, based on
the idea of using a full space Newton solver combined with an approximate reduced space quasi-
Newton SQP preconditioner. The basic components of the method are Newton solution of the
first-order optimality conditions that characterize stationarity of the Lagrangian function; Krylov
solution of the Karush-Kuhn—Tucker (KKT) linear systems arising at each Newton iteration using
a symmetric quasi-minimum residual method; preconditioning of the KKT system using an approx-
imate state/decision variable decomposition that replaces the forward PDE Jacobians by their own
preconditioners, and the decision space Schur complement (the reduced Hessian) by a BFGS ap-
proximation initialized by a two-step stationary method. Accordingly, we term the new method
Lagrange—Newton—Krylov—Schur (LNKS). It is fully parallelizable, exploits the structure of available
parallel algorithms for the PDE forward problem, and is locally quadratically convergent. In part
I of this two-part article, we investigate the effectiveness of the KKT linear system solver. We test
our method on two optimal control problems in which the state constraints are described by the
steady-state Stokes equations. The objective is to minimize dissipation or the deviation from a given
velocity field; the control variables are the boundary velocities. Numerical experiments on up to
256 Cray T3E processors and on an SGI Origin 2000 include scalability and performance assessment
of the LNKS algorithm and comparisons with reduced SQP for up to 1,000,000 state and 50,000
decision variables. In part II of the article, we address globalization and inexactness issues, and
apply LNKS to the optimal control of the steady incompressible Navier—Stokes equations.
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1. Introduction. PDE-constrained optimization refers to the optimization of
systems governed by partial differential equations (PDEs). The forward or state prob-
lem is to solve the PDEs for the state variables, given appropriate data, i.e., geometry,
coefficients, boundary conditions, initial conditions, and source functions. The opti-
mization problem seeks to determine some of these data—the decision variables—given
an objective function (e.g., performance goals) and (possibly inequality) constraints
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on the behavior of the system. Since the behavior of the system is modeled by the
PDEs, they appear as constraints in the optimization problem.

PDE-constrained optimization problems arise in several contexts, including op-
timal design, optimal control, and parameter estimation. They share the common
difficulty that PDE solution is just a subproblem associated with optimization, and
that the optimization problem can be ill-posed even when the forward problem is
well-posed. Thus the optimization problem is often significantly more difficult to
solve than the forward problem.

To illustrate the main issues, let us consider a model problem of optimal dis-
tributed control of a steady Navier—Stokes flow:

1 1
min]-"(u,p,b):i/Q(Vu+VuT)~(Vu+VuT)dQ+§/Qb.bdQ

subject to

—vV - (Vu+Vul) + (Vu)u+Vp+b=0 in Q,

V-u=0 1in (),

u=g onl.
Here w is the fluid velocity field, p the pressure field, b the body force control func-
tion, g the prescribed Dirichlet boundary conditions, and v the inverse of the Reynolds
number. The objective is to minimize the rate of dissipation of viscous energy without
applying an excessively large body force. The constraints are the stationary incom-
pressible Navier—Stokes equations with Dirichlet boundary conditions. The decision

variable is the body force function b.
For this problem a Lagrangian functional is given by

1 1
f/(VquVuT)-(VquVuT)dQJrf/b-bdQ
2 Ja 2 Ja

+/>\~(—yve(Vu+VuT)+(Vu)u+Vp+b)dQ+/uV-udQ.
Q Q

By requiring its stationarity with respect to the state (u,p), decision (b), and Lagrange

multiplier (i.e., adjoint) variables (A,u), taking the respective variations, and invoking

the appropriate Green’s identities, we arrive at the (strong form of) the so-called first

order necessary conditions for optimality, or the Karush—Kuhn—Tucker conditions.
State equations:

vV - (Vu+ Vul) + (Vu)u+Vp+b=0 inQ,
V-u=0 1in (),
u=g onl.

Adjoint equations:

—vV - (VA+VAD) + (Vu)"A = (VANu+Vu - V- (Vu+Vul) =0 inQ,
V-A=0 in Q,
A=0 onT.

Control equations:

b+A=0 inQ.
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The first set of equations are just the original Navier-Stokes PDEs. The adjoint
equations, which result from stationarity with respect to state variables, are them-
selves PDEs, and are linear in the Lagrange multipliers A and p. Finally, the control
equations are (in this case) algebraic.

The above optimality system is a large, nonlinear, coupled, unstructured system
of PDEs (or at least larger, more coupled, and less structured than usually seen by the
forward PDE solver). Solving this system presents significant challenges beyond the
forward PDE. One way to mitigate some of the difficulties is to eliminate state vari-
ables and Lagrange multipliers—and correspondingly, the state equations and adjoint
equations—to reduce the system to a manageable one in just the decision variables b.
This can be done as follows: given b at some iteration, we solve the state equations
for the state variables u, p. Knowing the state variables then permits us to solve the
adjoint equations for the Lagrange multipliers A, . Finally, with the states and mul-
tipliers known, we can update b by taking a Newton-like iteration on the control equa-
tion. The entire process is repeated until convergence. This elimination procedure is
termed a reduced space method, in contrast to a full space method, in which one solves
for the states, controls, and multipliers simultaneously. The variable reduction can be
done either prior to or after the Newton linearization. The former is a type of nonlin-
ear elimination and is known as a generalized reduced gradient method, and the latter
is a linear elimination or reduced sequential quadratic programming method (SQP).

Reduced space methods are attractive for several reasons. Solving the subsets
of equations in sequence imparts some structure to the optimization problem. State
equation solvers build on years of development of large-scale parallel PDE solvers. The
strong similarities between the state and adjoint operators suggest that an existing
PDE solver for the state equations can often be modified readily to handle the adjoint
system. Finally, the control equations are often reasonably straightforward, at least
to evaluate. Another advantage of reduction is that the full space system is often
very ill-conditioned, whereas the three subsystems are typically better conditioned
individually.

Given these advantages, the overwhelming popularity of reduced space methods,
for optimization of systems governed by PDEs is not surprising. We will not attempt
to survey such methods, but rather we give a sample of the literature on applications
to various PDE problems: applications to compressible flow airfoil design [33, 40]; heat
equation boundary control [28]; inverse parameter estimation [15, 27]; Navier—Stokes
flow control [19]; inverse acoustic scattering [16]; chemically reacting flows [39]; and
structural optimization [34, 36, 37]. In addition, parallel implementations of reduced
sequential quadratic programming (RSQP) methods exhibiting high parallel efficiency
and good scalability have been developed [16, 20, 33, 35, 29].

On the other hand, the major disadvantage of reduced methods is the requirement
to solve the (possibly linearized) state and adjoint equations at each iteration of the
reduced system—which is a direct consequence of the reduction onto the decision
variable space. Because of this difficulty it is natural to return to the full space and
ask if it is possible to solve simultaneously the entire optimality system but retain the
structure-inducing, condition-improving advantages of reduced space methods—while
avoiding their disadvantages.

In this two-part article we present such a method. The key idea is to solve in
the full space using a Newton method, but precondition with a quasi-Newton reduced
space method. We refer to the (nonlinear) Newton iterations as outer iterations, and
use the term inner to describe the (linear) Krylov iterations for the Karush-Kuhn—
Tucker (KKT) system that arises at each Newton iteration. This linearized KKT
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system is solved using a Krylov iterative method (symmetric QMR), and it is this
system to which the preconditioner is applied. The reduced space preconditioner
is very effective in deflating the spectrum of the KKT matrix and in reducing the
number of Krylov iterations—applying it captures the favorable structure of reduced
methods. On the other hand, since the reduction is used just as a preconditioner, we
can approximate the state and adjoint solves, replacing them for example by their
own preconditioners. So we arrive at a method that combines rapid convergence in
the outer Newton iteration (typically mesh-independent) with fast convergence of the
inner Krylov iteration (which can be as good as mesh-independent).

The new method is termed Lagrange—Newton—Krylov-Schur. It is common in the
PDE-solver literature to use the phrase Newton—Krylov—X to refer to Newton methods
for solving PDEs that employ Krylov linear solvers, with X as the preconditioner for
the Krylov method. Since Lagrange—Newton is used sometimes to describe a Newton
method for solving the optimality system (i.e., an SQP method), and since a reduced
space method can be viewed as a Schur complement method for the KKT system, we
arrive at the concatenation LNKS.

The LNKS method is inspired by domain-decomposed Schur complement PDE
solvers. In such techniques, reduction onto the interface space requires exact subdo-
main solves, so one often prefers to iterate within the full space while using a precondi-
tioner based on approximate subdomain solution [26]. In our case, the decomposition
is into states and decisions, as opposed to subdomain and interface spaces.

An early version of an LNKS method was presented in [9] and [10]. Here we
extend the method in a number of directions. In part I, we analyze and compare
several different variants of the KKT preconditioner. Scalability to larger problems
and processor counts is studied. In part II, important globalization and inexactness
issues, which were not considered in the earlier work, are introduced and analyzed.
We also apply the method to some viscous flow control problems.

Haber and Asher [24] have proposed a KKT preconditioner similar to [9] and [10].
The main differences are in the reduced Hessian preconditioner and the application to
inverse problems. Battermann and Heinkenschloss [7] have presented a related KKT-
system preconditioner that also makes use of state and decision space decompositions.
However, their preconditioner is based on congruence transformations of the original
system and not on its exact factorization. The resulting preconditioned system has
both positive and negative eigenvalues and its spectrum is less favorably distributed.
Another important difference is that we precondition in the reduced space. We also
consider parallelism and scalability issues.

Part I of the article is organized as follows: in section 2 we discuss SQP meth-
ods and in particular reduced space variants; in section 3 we introduce the LNKS
method and present several approaches for preconditioning the KKT matrix; in sec-
tion 4 we examine the formulation of a Stokes flow problem; and in section 5 we
conclude with numerical results, and study parallel and algorithmic scalability of the
method.

Note on notation. We use boldface characters to denote vector-valued functions
and vector-valued function spaces. We use roman characters to denote discretized
quantities and italics for their continuous counterparts. For example, u will be the
continuous velocity field and u will be its discretization. Greek letters are overloaded
and whether we refer to the discretization or the continuous fields should be clear
from context. We also use + as a subscript or superscript to denote variable updates
within an iterative algorithm.
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2. Reduced space methods. We begin with a constrained optimization prob-
lem formulated as follows:

(2.1) min f(x) subject to c(x) =0,
xERN

where x € RY are the optimization variables, f : RY — R is the objective function,
and ¢ : RNV — R™ are the constraints. We assume that the constraints consist of just
the (discretized) state equations.! In order to exploit the structure of the PDEs, we
partition x into the state variables x; € R™ and the decision variables x; € R™,

(2.2) x= { N }

so that N = m 4 n. By introducing the Lagrangian function £ one can derive first-
and higher-order optimality conditions. The Lagrangian is defined by

(2.3) L(x,A) = f(x) + Ac(x),

where A € R™ are the Lagrange multipliers (or adjoint variables). The first-order
optimality conditions state that at a local minimum the Lagrangian gradient must
vanish:

(2.4) { 2“;2 }<X’ A = { 0, f(x) + ((%C(X))TA }: N

Points at which the gradient of the Lagrangian vanishes are often called KKT points.
Equations (2.4) are typically known as the KKT optimality conditions. To simplify
the notation further, let us define

A(x) := 9y¢(x) € RN Jacobian matrix of the constraints,
W(x,A) := Opu f(X) + D, A\iOzzci(x) € RV*N Hessian matrix of the Lagrangian,
g(x) = 0, f(x) € RY  gradient vector of the objective.

Consistent with the partitioning of the optimization variables into states and decisions,
we logically partition g, A, W as follows:?

X W, W
= , A=A, A4, d W= .
8 {Xd } [ al, an {Wis Wdcj

At each iteration of the SQP method a quadratic programming problem (QP) is solved
to generate a new search direction p,. When SQP is derived from a Newton method
for solving the optimality conditions (2.4), the resulting QP is of the form

1
(2.5) Hli]R ngsz +gTp,  subject to Ap, + ¢ = 0.

1However, the methodology can be extended to problems that include additional equality or in-
equality constraints, e.g., through the use of a partially reduced SQP method [41] as a preconditioner.

2All vectors and matrices depend on the optimization variables x; in addition, the Hessian
W depends also on the Lagrange multipliers A. For clarity, we suppress identification of these
dependencies.
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Reduced space methods for solving (2.5) eliminate the linearized constraint by using
the null and range space decomposition of the search direction,

(26) Pz = sz + Ypya

where the columns of Z € R™*™ form a basis for the null space of A (so that AZ = 0).
Note that Y is often not orthogonal to the null space of the constraints (and hence
not a true range space basis for AT). However, AY should have full rank to ensure
solvability for the (not strictly) range-space component p,.> The decomposition (2.6)
permits the p, and p, components to be computed separately, as shown below. Let
us define the reduced gradient of the objective function g, the reduced Hessian W,
and an auxiliary matrix W,:

g. = Z'g,
(2.7) W, = ZTWZ,
W, = ZTWY.

Then the reduced space SQP (RSQP) method (without line search) is given by Algo-
rithm 1. The “+” subscript signifies an updated variable.

ALGORITHM 1. REDUCED SPACE SEQUENTIAL QUADRATIC PROGRAMMING (RSQP).

1: Choose x

2: loop

3:  Evaluatec, g, A, W

4 g: = ZTg

5. if ||g.|| < tol and ||c|| < tol then

6: Converged

7. end if

8:  (AY)p, = —c solve for p,
9 Wp.= (g +Wp,) solve for p.

10:  py=Zp,+Ypy

11: X4 =X+ Pz

122 (AY)TA; = -YT (g + Wp,) solve for Ay
13: end loop

Choices on how to approximate W, and on how to construct the bases Z and Y
determine some of the different RSQP variants. An important step of this algorithm is
“inverting” W,. The condition number of the reduced Hessian is affected by the choice
of Z, and ideally Z would come from an orthogonal factorization of A. This approach
is not possible for discretized PDE constraints, particularly in three dimensions, due to
the high computational cost of dense linear algebra operations. A convenient form of
Z that is easy to compute and takes advantage of the structure of the PDE constraints
is given by

(2.8) Z .= [ASIlAd] .

30ne obvious choice for Y is AT but the computation of py becomes prohibitively expensive
since this approach squares the condition number of the PDE Jacobian.
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This form is motivated by the fact that A is the (linearized) forward PDE operator
and expressing the null basis in terms of the (formal) inverse of A builds on a large
body of PDE solver technology. Y can then be defined by

(2.9) Y = H .

The expression for the null space basis Z implies that the reduced gradient is given
by

(2.10) g =gi— AjA g,
and the reduced Hessian is given by
(2.11) W, = AGATTW AT Ay — AGAT Wy — Wi AT A + W

Algorithm 2 states a variant of RSQP particularized to the special form of Z and
Y given above, to which we refer as Newton-RSQP (N-RSQP). The algorithm can
be decomposed into three main steps: inverting the reduced Hessian for the decision
search direction (step 8), inverting the (linearized) forward operator for the state
search direction (step 9), and inverting the adjoint of the (linearized) forward operator
for the Lagrange multipliers (step 10).

ALGORITHM 2. NEWTON RSQP.
1: Choose x4, xg, A

2: loop

3:  Evaluatec, g, A, W

4: 8. = 8d T+ AgA

5. if |lg.|| < tol and ||c|| < tol then

6: Converged

7. end if

8 W,pg=—-g,+ (Wy — AdTAS_TVVSS)AS_lc solve for p; (Decision step)
9:  A,ps=—Agps—c solve for p, (State step)
10 ATA, = —(gs + Wisps + Wagpa) solve for A, (Adjoint Step)

11: X4 =X+ P
12: end loop

There are two ways to solve the decision equation in step 8. We can either compute
and store the reduced Hessian W, for factorization with a direct solver; or we can use
an iterative method, which requires only matrix-vector products with W,. Direct
solvers are very effective, but computing the reduced Hessian requires m linearized
forward solves (one for each column of A, in the product A;*Ay). If we count the
solves for the right-hand side of the decision equation and the adjoint and forward
equations, then we have a total of m + 4 linearized PDE solves at each optimization
iteration.

If an iterative method is used to solve the decision equation in step 8, then a
matrix-vector multiplication with W, requires one solve with each of A, and A,. A
Krylov method such as conjugate gradients (CG) will converge in m steps (in ex-
act arithmetic) and thus the number of forward/adjoint solves will not exceed 2m.
In practice the number of iterations depends on the spectrum of the reduced Hes-
sian. With an optimal preconditioner the iteration count can be independent of m.
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However, it is not obvious how to devise optimal preconditioners for the reduced Hes-
sian for general problems. Furthermore, we still require four additional forward (and
adjoint) solves for each SQP iteration, and two solves per CG iteration.

Even when the number of decision variables is small, it is advantageous to choose
an RSQP variant that avoids computing W,. The main reason is that second deriva-
tives are often difficult to compute. Moreover, Newton’s method is not globally con-
vergent and far from the solution the quality of the decision step p, is questionable.

Motivated by these difficulties, quasi-Newton RSQP (QN-RSQP) methods have
been developed that replace W, by a quasi-Newton approximation, which drops the
convergence rate from quadratic to superlinear. The QN-RSQP method is summarized
in Algorithm 3. In addition, the second derivative terms are dropped from the right-
hand sides of the decision and adjoint steps, at the expense of a reduction from one-
step to two-step superlinear convergence [8]. An important advantage of this variant
of quasi-Newton method is that only two linearized forward/adjoint problems need to
be solved at each iteration, as opposed to the m forward solves required by N-RSQP
for constructing A;1A, in W, [19]. Furthermore, no second derivatives are required.
Under assumptions on the existence and uniqueness of a local minimum, one can show
that the combination of a sufficiently accurate line search and an appropriate quasi-
Newton update guarantees a descent search direction and thus a globally convergent
algorithm [12].

ALGORITHM 3. QUASI-NEWTON RSQP.
1: Choose xg, x4, A, B,
2: loop
3:  Evaluate c, g, A

4: g, =8a+ Ag)\

5. if ||lg.|| < tol and ||c|| < tol then

6: Converged

7. end if

8 B.,ps=-8. solve for py (Decision step)
9:  Aips=-Agps—c¢ solve for p, (State step)
10:  ATX, =g, solve for Ay (Adjoint Step)

11: X4 =X+ Pz
12:  Update B,
13: end loop

QN-RSQP has been parallelized efficiently for moderate numbers of decision vari-
ables [29]; the parallelism is fine-grained across the state and adjoint fields. Unfor-
tunately, the number of iterations taken by quasi-Newton methods often increases as
the number of decision variables grows,* rendering large-scale problems intractable.
Additional processors will not help since the bottleneck is in the iteration dimension.

On the other hand, convergence of the nonlinear iterations of N-RSQP method
can be independent of the number of decision variables m, particularly when these
variables are mesh related. But unless an optimal W, preconditioner can be used, the
large number of forward/adjoint solves per iteration preclude its use, particularly on
a parallel machine, where iterative methods for the forward problem must be used.

4For example, for the limiting case of a quadratic programming problem, the popular BFGS
quasi-Newton method is equivalent to conjugate gradients, which scales with the square root of the
condition number of the reduced Hessian.
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However, there is a way to exploit the fast convergence of the Newton method and
avoid solving the PDEs exactly, and this method is proposed in the next section. The
basic idea is to solve the full space system (2.4) simultaneously for states, adjoints,
and decision variables but invoke QN-RSQP as a preconditioner. Since it is just a
preconditioner, we can avoid exact solution of the linearized state and adjoint equa-
tions in favor of applications of state and adjoint preconditioners.

3. LNKS method. The KKT optimality conditions (2.4) define a system of
nonlinear equations. The Jacobian K of this system is termed the KKT matriz. A
Newton step on the optimality conditions is given by

I [ B s R

where p, and p) are the updates of x and A from current to next iterations. Assuming
sufficient smoothness, and that the initial guess is sufficiently close to a solution,
Newton steps obtained by the above system will converge quadratically to a solution
of the KKT system [17]. Thus, the forward solves required for reduced methods can
be avoided by remaining in the full space of state and decision variables, since it is the
reduction onto the decision space that necessitates the solves with A;!. Nevertheless,
the full space approach presents difficulties too: a descent direction is not guaranteed,
second derivatives are required, and the KKT system itself can be difficult to solve.
The size of the KKT matrix is more than twice that of the forward problem, and
it is expected to be very ill-conditioned. Ill-conditioning results not only from the
ill-conditioning of the forward problem, but also from the different scales between
first and second derivatives submatrices. Moreover, the system is indefinite; mixing
negative and positive eigenvalues is known to slow down Krylov solvers. Therefore,
a good preconditioner is essential to make the method efficient, and that is the main
focus of Part I of this two-part article.

The LNKS method we present here uses a proper Newton method to solve the
KKT optimality conditions. To compute the Newton step we solve the KKT system
using an appropriate Krylov method. At the core of the algorithm lies the precon-
ditioner P for the Krylov method, which in our case is an inezact version of the
QN-RSQP algorithm. An outline of the local LNKS algorithm is given by Algo-
rithm 4. In part II, we discuss and analyze globalization and inexactness aspects of
LNKS.

ALGORITHM 4. LAGRANGE-NEWTON-KRYLOV—SCHUR.
1: Choose x, A
2: loop
3:  Check for convergence
4 Compute ¢, g, A, W
5. Solve P"'Kv =-P~'h
6: Update x; =X+ p;
7
8

Update AL = A+ py
: end loop

This algorithm will produce the same steps taken by N-RSQP (in exact arithmetic,
with exact solves and without globalization). It is easier to see how RSQP can be
used to precondition LNKS if we rewrite the Newton step (3.1) in a block-partitioned



696 GEORGE BIROS AND OMAR GHATTAS

form:
vvss “Zed AZ Ps 8s + AzA
(3.2) Wis Wy AY Pap=—4 ga+ALX
A, Ay 0 P c

RSQP is equivalent to a block-row elimination; given pg4, solve the last block of
equations for pg, then solve the first to find p), and finally solve the middle one for
P4, the search direction for the decision variables. Therefore RSQP can be written as
a particular block factorization of the KKT matrix:

W,,A;1 0 I A Ay 0
(3.3) K= |[W;A;! T ATA;T[ |0 W, 0
I 0 0 0 Wy,u-— V\{gsAs_lAd AZ

Note that these factors are permutable to block triangular form (and therefore this is
equivalent to a block-LU factorization) and that W, is the Schur complement for pg.

This block factorization suggests a preconditioner created by replacing the re-
duced Hessian W, with an approximation B, for example a quasi-Newton approxi-
mation. However, we still require four forward solves per Krylov iteration. One way to
restore the two solves per iteration of QN-RSQP is to, in addition, drop second-order
information from the preconditioner, just as one does when going from N-RSQP to
QN-RSQP. A further simplification of the preconditioner is to replace the exact for-
ward operator A, by an approximation AS, which could be any appropriate forward
problem preconditioner. With these changes, no forward solves need to be performed
at each inner (Krylov) iteration. Thus, the work per inner iteration becomes linear
in the state and adjoint variable dimension (e.g., when A, is a constant-fill domain
decomposition approximation). Furthermore, when B, is based on a limited-memory
quasi-Newton update, the work per inner iteration is also linear in the decision vari-
able dimension. Since all of the steps involved in an inner iteration not only require
linear work but are also readily parallelized at the fine-grained level, we conclude that
each inner (Krylov) iteration will execute with high parallel efficiency and scalability.

Scalability of the entire method additionally requires mesh-independence of both
inner and outer iterations. Newton methods (unlike quasi-Newton) are often char-
acterized by a number of iterations that is independent of problem size [1]. With
an “optimal” forward preconditioner and a good B, approximation, we can expect
that the number of inner iterations is also insensitive to the problem size. Scalability
with respect to both state and decision variables would then result. Several KKT
preconditioning variations on this theme are discussed in the next subsection, and
some choices for the reduced Hessian preconditioner B, are presented in the following
subsection.

3.1. Preconditioning variants for the KKT system. Below we present sev-
eral preconditioners for the KKT matrix. They are based on the block-factorization
of the KKT matrix (3.3) and are therefore indefinite matrices. To examine separately
the effects of discarding the Hessian terms and approximating the forward solver, we
define four different variations. The subscript denotes the number of the forward
PDE solves per Krylov iteration, and a tilde mark on (top of) the preconditioner
symbol means that a forward or adjoint solve is replaced by a single application of its
preconditioner.
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e Preconditioner P4 replaces W, by B, and retains the four exact linearized
PDE solves per iteration. The preconditioner is

WA 0 I A; Ay O
(3.4) P,= |WiA;L T ATA;T| {0 B, 0|,
I 0 0 0 W, AT
and the preconditioned KKT matrix is
I 0 0
(3.5) P,'K=|0 WB;' o0f.
0 0 I

e Preconditioner Ps replaces W, by B, and discards all other Hessian terms,
resulting in two exact linearized PDE solves per iteration. The preconditioner is

00 1 A, A; O
(3.6) P,=|0 I ATA;T 0 B, 0],
I o0 0 0 0 AT
and the preconditioned KKT matrix is
I 0 0
(3.7) P;'K = |[W'A]! W.B;' 0],

WA WB I

Note that the spectrum of the preconditioned KKT matrix is unaffected by dropping
the second derivative terms.

e Preconditioner 154 replaces W, by B, and A by As, and retains all other
Hessian terms, resulting in four preconditioner applications but no forward/adjoint
solves. The preconditioner is

i WA 0 I A, A, O
(3.8) P,= |Wi,A;! I ATA;T| |0 B. 0|,
I 0 0 0 W, AT

and the preconditioned KKT matrix is

) I, 0 0 0 O(E,) 0
(3.9) P,'K= |0 WB;' 0|+ |OE,) O(E,) O],
0 0 17 O(E;) O(Ey) 0

where E, := A;' — A7 and I, := A A;'. The “cross-Hessian” W, is given by (2.7)
with the exception that the exact PDE solve A;! is replaced by a preconditioner
application A;l in the definition of Z. Clearly, E; = 0 and I, = I for exact forward
PDE solves.

e Preconditioner Py replaces W, by B, and A, by A,, and drops all other
Hessian terms, resulting in two preconditioner applications and no forward/adjoint
solves. The preconditioner is

i 00 I A, A; O
(3.10) P;=10 I ATA;"| |0 B, 0|,
I o 0 0 0 AT
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and the preconditioned KKT matrix is

i I 0 0 0 OE,) 0
(3.11) P,'K=| W' WBI' 0|+ |0 OE, OE,)
VVSSAQI V\/;}T 17 0 0 0

We review some basic properties of the Krylov methods that will allow us to
understand the effectiveness of the preconditioners. The performance of a Krylov
method depends highly on the preconditioned operator spectrum [22, 38]. In most
Krylov methods the number of iterations required to obtain the solution is at most
equal to the number of distinct eigenvalues (in exact arithmetic). When solving Kv =
—h such methods satisfy the following relation for the residual at the ith iteration:

r; = span {ro + Kro + K’rg + --- + K'ro } = ¢(K)ro, ¢ €P;.

Here vq is the initial guess, r is defined as r = h + Kv, rg = h + Kvg, and P; is
the space of monic polynomials of degree at most . Minimum residual methods like
MINRES and GMRES determine a polynomial v so that®

i|| = mi K .
s/l = min (K)ro]

If K is diagonalizable (with spectrum S(K) and X the matrix or its eigenvectors),
then®

[ | .
3.12 < cond(X) min M.
(3.12) o < cond(X) min ()

Additionally, if the spectrum lies on the positive real axis, it can be shown that

[ )\max
(3.13) il cond(X)2max.

)\min

From (3.12) we can see why clustering the eigenvalues is important. Indeed, if the
eigenvalues are clustered, then the solution polynomial in the right-hand side of (3.12)
can be approximated by the zeros of a low-degree polynomial (resulting in fewer Krylov
iterations). When K is normal (unitarily diagonalizable) then cond(X) = 1; in this
case the estimates (3.12) and (3.13) are known to be sharp [22].

The preconditioned KKT matrix PllK is a block-diagonal matrix with two unit
eigenvalues and the m eigenvalues of the preconditioned reduced Hessian. It is im-
mediate that GMRES takes O(cond(B;'W,)) or at most m + 2 steps to converge
for preconditioner P4. This is similar to the complexity estimates for a Krylov-based
solution of the B,-preconditioned reduced Hessian in N-RSQP. Preconditioner Py has
the same effect on the spectrum of the KKT matrix, but the preconditioned KKT sys-
tem is no longer a normal operator. Yet, if P5 'K is diagonalizable and its eigenvector
matrix well conditioned, relation (3.13) is still a good indicator of the effectiveness of
the preconditioner.

A more efficient approach, of course, is to replace the exact forward operators A
by their forward preconditioners A,, as in P, or Py. In this case, the preconditioned
KKT matrix assumes a more complicated structure. We write f’;lK as the sum

5Throughout this paper we use the vector 2-norm for norms and condition numbers.
SHere \ is temporary overloaded to denote an eigenvalue of K.
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of two matrices; the second matrix in this sum includes terms that approach 0 as
the forward preconditioner improves. The spectrum of the first matrix in (3.9) is
given by S,, = S(B;'W,) US(A;'A,). If AJ'A, is normal, then by the Bauer-Fike
theorem [21] the eigenvalues are not sensitive to small KKT matrix perturbations and
S(P;'K) = S,,. Hence, a good preconditioner for the forward problem would bring
the spectrum of f’ZlK close to the spectrum of PZlK. Thus, we would expect a
similar iteration count to N-RSQP, but at a much reduced cost per iteration—since
the PDE solves would be replaced by preconditioner applications. For preconditioner
P, the left matrix in preconditioner (3.11) is not normal and may have ill-conditioned
eigenvalues. In our numerical experiments, however, the number of Krylov iterations
was unaffected by switching from P, to Ps.

Finally, we comment on our choice of a Krylov method for solving the symmet-
ric indefinite KKT system (3.3) that has been preconditioned with any of the four
preconditioners described above. The most popular method for large symmetric in-
definite systems is the MINRES method. However, MINRES requires positive definite
preconditioners, and the KKT preconditioners defined above are indefinite. Indefinite
preconditioners are allowed in the quasi-minimum residual (QMR) method [18]. The
version commonly used is the transpose-free QMR algorithm, which is designed for
general nonsymmetric problems and requires two matrix-vector multiplications per
Krylov iteration. In our implementation we use another variant, described in [18],
that exploits symmetry and uses only one matrix-vector multiplication per iteration.

3.2. Preconditioners for the reduced Hessian. A very important compo-
nent of the LNKS preconditioners is an approximation to the inverse of the reduced
Hessian. In the preceding sections we suggested that a quasi-Newton approximation
be used in place of the exact reduced Hessian W,, in the spirit of using QN-RSQP
as a preconditioner. Below, we elaborate upon this choice and describe a two-step
stationary iterative preconditioner that we use either stand-alone or to initialize the
quasi-Newton preconditioner.

Limited memory quasi-Newton updates. Quasi-Newton methods are pop-
ular methods for approximating the reduced Hessian matrix in constrained optimiza-
tion. Thus, they are natural candidates to precondition the exact reduced Hessian.
In particular, we use the Broyden—Fletcher—-Goldberg—Shanno (BFGS) update [32,
section 8.1]. At each outer iteration we compute

(+)

S=P;  — Pd,
y=g") —g.

and update the approximation to the inverse of the reduced Hessian by

(3.14) Bi'=( -wys") "B (I —wys") + wss”, w= ﬁ
If we encounter an iterate that has y”'s < x||y| we skip the update. B~! is dense; thus
for large decision-space problems, storing or operating with this matrix can be expen-
sive or even impossible. Furthermore, applying the dense B~ to a vector in parallel
involves significant all-to-all communication and may be too expensive for problems
that require large numbers of processors. Thus, we have chosen a limited memory
variant of BFGS (L-BFGS), which uses a limited number of vectors to approximate
the inverse of the reduced Hessian. When updating we do not compute (3.14) but
instead we simply store s and y. Then the action of B™! on a vector x is given in
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ALGORITHM 5. LIMITED MEMORY BFGS.

1: q =X, and | = number of stored vectors
2. fori=k—1,k-2,... ,k—1do

3: o zwisfq

4 q=q9q—ay;

5: end for

6: z = B;’(l)q

7. fori=k—-01k—1+1,... , k—1do

8 fB=uwylz

90 z=2z+s;(a; — )

10: end for

Algorithm 5. Analysis and details of the convergence properties of this algorithm can
be found in [32, sections 9.1-9.2]. We generate the initial inverse reduced Hessian
approximation, B, o, using the stationary iterative preconditioner presented below.

Two-step stationary method. As an initialization for the L-BFGS approx-
imation above, which can also be used as a stand-alone preconditioner, we turn to
stationary iterative methods. Such methods provide us with a constant preconditioner
as required by most Krylov methods, while effecting an approximate solution of the
reduced Hessian system. To guarantee convergence, the most popular methods (such
as Jacobi and SOR) require the iteration matrix to have spectral radius less than
one, which is difficult to guarantee in the general case. Furthermore, most stationary
iterative methods require some kind of splitting, which is not convenient for matrix-
free treatment of operators like the reduced Hessian. A method that does not have
the above restrictions is a two-step stationary iterative method, first presented by
Frankel in 1950 [3, section 5.2]. The method is suitable for positive-definite matrices
but requires an accurate estimate of the minimum and maximum eigenvalues. The
preconditioner based on this method can be arbitrarily effective, depending on the
number of iterations L it is carried to. If Ay < )\, are estimates for the extreme
eigenvalues of W,, then the application of the preconditioner to a vector dj, is given
by Algorithm 6. Step 4 requires the action of the reduced Hessian on a vector. To
avoid exact forward solves, we use the approximate reduced Hessian W, instead of W.
We obtain W, from (2.11) if we replace the linearized forward PDE operators A7 !
and A7 with their preconditioners A;! and A; 7. Like CG, the method’s conver-
gence rate depends on the square root of the condition number of the (approximate)
reduced Hessian. It parallelizes well because it does not require any inner products,
and because in our context the matrix-vector products require just two forward pre-
conditioner applications. To obtain estimates of the extremal eigenvalues, we use a
few iterations of the Lanczos method (once per Newton iteration).

Other possibilities for reduced Hessian preconditioning. In addition to
the quasi-Newton and two-step stationary iterative preconditioners we use, there are
several other possibilities, which we comment on below.

e Incomplete factorizations. Incomplete factorizations are popular and robust
preconditioners, but an assembled matrix (modulo some exceptions for structured
grids) is required. Not only is the reduced Hessian usually prohibitive to assemble (for
large-scale PDE optimization problems), but it is in general dense and thus impossible
to store for a large number of decision variables. An incomplete factorization would
be feasible only if the exact solves are replaced by the forward preconditioner and if
some kind of sparsity is enforced (perhaps via element-by-element computations and
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ALGORITHM 6. TWO-STEP STATIONARY ITERATIVE REDUCED SPACE
PRECONDITIONER.

_1-M/ _ 2 _ 1 _ 2«
P= T @ = s Bo = s 8= s

r = —dj,, dp = 0, d; = fyr

fori=1---L do
r=W.d; —di,
d:Oédl—F(l—Oé)do—BI'
do=d;,d; =d

end for

threshold-ILU methods).

e Sparse approximate inverse-techniques. SPAI techniques are attractive since
they require just matrix-vector multiplications and a given sparsity pattern. In [14]
an analysis for CFD-related Schur complements shows that this method is promising.

e Range space preconditioners. In [31] two different reduced Hessian precondi-
tioners are presented, one based on a state-Schur complement factorization and the
second on power series expansions. It is assumed that a (nonsingular approximation)
W1 is available. The basic component of these preconditioners is the application of
ZTW~1Z on a vector. We did not test this method because in our problems W has
thousands of zero eigenvalues and it is not clear how to construct an approximation
to WL, If Wy, is nonsingular, then a block-Jacobi-ILU technique could be used to
approximate W,~! with V\/:i;l (or an approximation ‘i{igl).

e Krylov self-preconditioning. Another option is to take a few CG iterations in
the reduced space at each preconditioner application. Since we want to avoid solving
the forward problem exactly, we replace A ! with A;l in (2.11). We experimented
with this approach but found that full convergence of CG was needed to avoid loss of
orthogonality for the Krylov vectors. This slowed down the method significantly. We
have experimented also with flexible GMRES for the KKT solver, but the nice prop-
erties of a symmetric Krylov solver are lost and the algorithm was slow to converge.

e Infinite dimension-based preconditioners. For PDE-constrained optimization
problems one may be able to derive an approximate representation of the infinite-di-
mensional reduced Hessian. A discretization of this expression can then be used to
precondition the reduced Hessian, e.g., [2].

Notwithstanding the above alternatives, we feel the choice of a limited mem-
ory quasi-Newton approximation, initialized by Frankel’s two-step stationary itera-
tive method, strikes the best balance between effectiveness, generality, and parallel
scalability. In the next section we present numerical experiments that demonstrate
the effectiveness of the stationary preconditioner. To isolate the effects of the (in-
ner) Krylov—Schur solver on LNKS, we study problems with linear constraints and
quadratic objective functions. For this class of problems, the KKT system is linear,
Newton’s method trivially requires just one step to converge, and globalization is not
an issue. In part II of this article, we discuss how the limited memory quasi-Newton
scheme can be used to safeguard the Newton step.

4. Numerical results. The LNKS method has been tested on two Stokes op-
timal flow control problems that give rise to quadratic programming problems. Both
problems include the three-dimensional (3D) Stokes equations as PDE constraints,
and Dirichlet boundary conditions on some portion of the boundary as decision vari-
ables. They differ in the choice of objective function: the first is a matching velocity
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F1G. 1. This figure depicts the (partitioned) computational meshes used in our numerical exper-
tments. We have solved two different optimal flow control problems: that of Poiseuille flow in a pipe
(bottom) and that of a flow around a cylinder embedded inside a rectangular duct (top). Both flows
are interior flow problems with nonslip conditions everywhere except the outflow boundary. In the
case of the Poiseuille flow the decision variables are the boundary conditions on the circumferential
walls of the pipe. In the cylinder problem the decision variables are the downstream cylinder surface
boundary conditions.

problem for a Poiseuille flow, and the second is an energy dissipation minimization
problem for a flow around a cylinder. Below, we define the two test problems, discuss
a forward preconditioner (which as we have seen plays a key role in the effectiveness
of the KKT preconditioner), and provide numerical results for both problems.

4.1. Optimal control of Stokes flows. An optimal flow control problem can
be stated as follows:

(4.1) A% J (u, ug, p)
subject to  — vV - (Vu+ Vul)+Vp=>bin Q,
V-u=0 1in (),
(4.2) u=u* onl,,

u=ug only,
—pn+v(Vu+Vul)n =0 onTy.

Here, u is the fluid velocity, p the pressure, v a nondimensional viscosity, b a body
force, and n the outward unit normal vector on the boundary. The first problem is a
velocity matching optimal control problem. A quadratic velocity profile is prescribed
on the inflow boundary I, and we specify a traction-free outflow boundary I'y. The
velocities ug, defined on I'y, are the decision variables. In this example, u* is taken as
a Poiseuille flow inside a pipe, and the decision variables correspond to boundary ve-
locities on the circumferential surface of the pipe (Figure 1). The objective functional
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is given by

J(u,uq,p) = 1/(u* — u)%dQ + g/ u3ds,
Q

2 Ta

where p penalizes the “cost” of the controls. Notice that the size of p effects the
condition number of the reduced Hessian. Here we keep p constant and equal to 1.

In the second problem we control the flow around a cylinder that is anchored
inside a rectangular duct. A quadratic velocity profile is used as an inflow Dirichlet
condition and we prescribe a traction-free outflow. The decision variables are defined
to be the velocities on the downstream portion of the cylinder surface. In this problem
the objective functional is given by

1
J(u,ud,p):§/Q|Vu+VuT|2dQ+g/F uZdQ.
d

In this problem we also choose p = 1.

The Stokes equations are discretized by the Galerkin finite element method, using
tetrahedral Taylor—-Hood elements [23]. We implemented the reduced-space algorithm
as well as the LNKS method with the four different preconditioners. Our code is based
on the PETSc library [4, 5, 6] and makes use of PETSc parallel domain-decomposition
preconditioners for the approximate forward solves. We use the symmetric QMR
for both the KKT and Stokes linear systems. The two flow control problems have
quadratic objective functions and linear constraints and thus Newton’s method takes
only one iteration to converge. Hence, it is not possible to build a quasi-Newton
approximation (as described above) to use within the KKT preconditioner (but see [30]
for other options). Instead, we use the two-step stationary algorithm to precondition
the reduced Hessian.

4.2. The Stokes forward preconditioner. It is evident that one of the two
major components of the LNKS method is the forward solver preconditioner (the
choice of which is, of course, problem-dependent). The Stokes problem, in algebraic
form, is given by

PT
(4.3) v ul_ [ bl
P 0 o) b,
In our earlier numerical experiments (results are reported in [9, 10]) we used the
following preconditioner:

(4.4) {VO_ 1 Mol] .

PETSc’s block-Jacobi preconditioners with local ILU(0) were used to provide a do-
main decomposition approximation of V=1 and M1, which are the discrete Laplacian
and discrete pressure “mass” matrices, respectively. We found the performance of this
preconditioner somewhat unsatisfactory, especially when it was part of the KKT pre-
conditioner. For this reason we have switched to a preconditioner that is based on
the following exact factorization of the inverse of (4.3),

w R L
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where S := —PV~!'P7T is the Schur complement for the pressure. Based on this
factorization, the Stokes preconditioner is defined by replacing the exact solves V!
with domain decomposition approximations V1. For the pressure Schur complement
block, we use the two-step stationary method described in Algorithm 6. Performance
statistics are presented in Table 4.1. We can see that the factorization-based pre-
conditioner reduces significantly solution times compared to the earlier block-Jacobi
variant. Nevertheless, the efficiency of the new preconditioner is still mesh-dependent.
It is known that block-Jacobi-ILU preconditioners require work that is superlinear in
problem size. This can be overcome with an additive Schwarz domain-decomposition
preconditioner, with generous overlap and a coarse grid component [13].

TABLE 4.1

Effectiveness of various preconditioners for Stokes forward solver with increasing number of
processors. The first two columns list the number of processors (PEs) and the problem size (n). The
remaining columns give the number of Krylov iterations required to satisfy ||r||/||lro|l < 1 x 10~8;
none signifies no preconditioner; bj is a block-Jacobi preconditioner, with each diagonal block mapped
to a processor and approximated by ILU(0); psc3 is the factorization-based preconditioner, with three
(two-step) stationary iterations for the Schur complement block S; pscT employs seven stationary
iterations. In parentheses is wall-clock time in seconds on the Pittsburgh Supercomputing Center’s
Cray T3E-900.

Poiseuille flow
PEs n None bj psc3 psc’?
16 64,491 18,324 (250) 1,668 (86) 140 (30) 128 (39)
32 114,487 24,334 (620) 2,358 (221) 197 (39) 164 (45)
64 280,161 27,763 (1410) 3,847 (515) 294 (71) 249 (84)
128 557,693 32,764 (1297) 5,010 (620) 446 (109) 357 (123)
256 960,512 49,178 (2272) 6,531 (780) 548 (122) 389 (128)
Flow around a cylinder

PEs n None bj psc3 psc7?

16 50,020 24,190 (720) 2,820 (206) 251 (72) 234 (103)
32 117,048 35,689 (1284) 4,512 (405) 363 (120) 327 (176)
64 389,440 41,293 (1720) 7,219 (1143) 581 (332) 497 (456)
128 615,981 52,764 (2345) 10,678 (1421) 882 (421) 632 (512)
256 941,685 71,128 (3578) 13,986 (1578) 1,289 (501) 702 (547)

4.3. Numerical results for Poiseuille optimal flow control problem. Re-
sults for the Poiseuille flow control problem are presented in Table 4.2. We have
solved for five different problem sizes on up to 256 processors in order to assess the
performance and scalability of the LNKS algorithm. Our first and most important
finding is that the fastest variant is LNKS-II (which uses P, asa preconditioner; i.e.,
it performs two approximate forward solves per KKT iteration), which is approxi-
mately 30 times faster than QN-RSQP. Another observation is that LNKS-I (which
uses Pg, i.e., two exact forward solves), despite its discarding second-order terms
and approximating the reduced Hessian, is very effective in reducing the number of
iterations—note the difference in KKT iterations between LNK (unpreconditioned)
and LNKS-I for each problem instance. Indeed, the mesh-independence of LNKS-I
iterations suggests that the two-step stationary preconditioner is very effective for the
reduced Hessian,” and that if a forward preconditioner that is spectrally equivalent
to the forward operator is available, one can expect mesh-independence for the entire
KKT preconditioner. Even if a suboptimal forward preconditioner is used (witnessed

7Also, the weak increase in quasi-Newton iterations suggests that the reduced Hessian for this
problem is well-conditioned.
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TABLE 4.2

Performance of LNKS and comparisons with QN-RSQP for the Poiseuille flow problem as a
function of increasing number of state and decision variables and number of processors. Here, QN-
RSQP s quasi-Newton reduced-space SQP; LNK 1is the full-space Lagrange—Newton—Krylov method
with no preconditioning for the KKT system; LNKS-I uses Py KKT preconditioner—which requires
two Stokes solves—combined with_the two-step stationary preconditioner for the reduced Hessian
(3) iterations); LNKS-II uses the Po preconditioner with the same reduced Hessian preconditioner;
LNKS-III s the same as LNKS-II except that mo reduced Hessian preconditioning is used, i.e.,
B. =1I; QN iter reports the number of quasi-Newton iterations (the number of outer iterations for
the LNKS wvariants is just one, since this is a quadratic optimization problem); KKT iter is the
number of Krylov (symmetric QMR) iterations for the KKT system to converge; finally time is
wall-clock time in seconds on a Cray T3E-900. Both QN-RSQP and LNKS methods are converged
so that ||c||/|lcol] <1 x 107% and ||g|l/|lgoll < 1 x 1078 4n all cases but the unpreconditioned KKT
case, tn which the Krylov method was terminated when the number of iterations exceeded 500, 000.

States Method QN iter KKT iter  Time
Decisions

64,491 QN-RSQP 221 — 15,365

7,020 LNK — 274,101 19,228

(16 PEs) LNKS-T - 27 1,765
LNKS-TT - 170 482

LNKS-TIT — 1,102 969

114,487  QN-RSQP 224 — 19,493

10,152 LNK - 499,971 39,077

(32 PEs) LNKS-T - 26 2,089
LNKS-IT _ 258 519

LNKS-TIT - 1,525 1225

280,161 QN-RSQP 228 — 33,167
18,144 LNK 5500000

(64 PEs) LNKS-T - 29 4,327
LNKS-IT — 364 934

LNKS-TTT - 1,913 1,938

557,603 QN-RSQP 232 — 53,502
98,440 LNK — >500,000
(128 PEs)  LNKS-I - 29 6,815

LNKS-IT — 603 1,623

LNKS-TTT - 2,501 3,334

960512 QN-RSQP 241 — 63,865
40,252 LNK — >500,000

(256 PEs)  LNKS-I _ 32 8,857

LNKS-IT - 763 1,987

LNKS-IIT — 2,830 3,735

by the growth in KKT iterations with increasing problem size for LNKS-II), one can
trade off increasing KKT iterations for reduced work per iteration to realize a signifi-
cant reduction in overall work. For example, in the largest problem size case, we give
up a factor of 24 in KKT iterations, but we gain a factor of 4.5 in execution time.

The number of unpreconditioned KKT iterations illustrates the severe ill-condi-
tioning of the KKT matrix (even for a problem as simple as controlling a Poiseuille
flow). The comparison between LNKS-T and QN-RSQP simply illustrates the better
convergence properties of a true Newton, as opposed to quasi-Newton, method. The
comparison between LNKS-IT and LNKS-III reveals the significance of a good precon-
ditioner for the reduced space. When the two-step preconditioner is used, LNKS runs
approximately twice as quickly as with no preconditioning (and requires four times
fewer iterations).

The scalability of LNKS is studied by tracking the execution time for LNKS as
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TABLE 4.3

Isogranular scalability results for LNKS-1. PEs is the number of processors; max Mflop/s/PE
is the per-processor mazimum (across PEs) sustained Mflop/s; Mflop/s/PE is the average sustained
Mflop/s per processor. A comparison between the second and third columns is an indication of
load imbalance. Implementation efficiency (n;) s based on Mflop rate; optimization work efficiency
(na) 1s based on number of optimization iterations; forward solver work efficiency (ny) is based on
the number of forward solver Krylov iterations psc3 (Table 4.1); overall efficiency (n) is based on
execution time; (n') is an estimate of the overall efficiency given by n' =np X n; X Nq.

PEs Max Mflop/s/PE  Mflop/s/PE i Na nr n n'
16 76.5 52.0 1.00 1.00 1.00 1.00 1.00
32 74.8 51.1 098 1.04 071 0.84 0.72
64 74.9 49.2 096 093 048 0.41 043
128 71.2 47.8 091 093 031 0.26 0.26
256 69.8 45.1 087 0.84 0.26 0.18 0.19

the problem size and number of processors increase proportionately. The problem size
per processor is held (relatively) constant, and execution time increases from about
8 minutes for 16 processors (65K states, 7K decisions) to about 30 minutes for 256
processors (960K states, 40K decisions). One may conclude that the method is not
scalable. However, a glance at the KKT iterations column reveals that the number of
optimization iterations when using the LNKS-I variant (so that the effect of inexact
forward problem solves is factored out) is largely independent of problem size, and
thus the work efficiency of LNKS should be very high. Furthermore, the Mflop rate
drops (probably due to a poorer-quality mesh partition) only slowly as the problem
size increases, suggesting good implementation efficiency. What, then, accounts for
the increase in execution time?

Table 4.3 provides the answer. Following [25], the overall parallel efficiency n
(based on execution time) has been decomposed into an implementation efficiency
n; (based on Mflop/s and which represents costs like latency, load imbalance, and
interprocessor communication), and a work efficiency 7, (based on the number of op-
timization iterations), and the forward solver work efficiency 7y (based on Table 4.1).
Whereas the optimization algorithm and the implementation are reasonably scalable
(84% and 87% efficiency over a 16-fold increase in number of processors), the forward
solver’s parallel efficiency drops to near 26% for the largest problem size. The last
column, 77/, gives an estimate of what the overall efficiency would be if we did not use
the time measurement but instead set 7' = 1; * 7, * ny. The agreement between the
last two columns makes apparent that the overall efficiency of the algorithm depends
greatly upon the forward solver, which is essentially a question of forward precon-
ditioning. The parallel inefficiency of the forward preconditioner can be addressed
by switching to a more scalable approximation than the one we are currently using
(nonoverlapping local ILU(0) block-Jacobi). With a better forward preconditioner,
we anticipate good overall scalability.

Timings and flop measurements were performed by using PETSc logging routines,
which were validated with native performance analyzers on the T3E and Origin plat-
forms. At first glance CPU performance appears to be mediocre—less than 10% of
the peak machine performance. Recall, however, that unstructured grid computations
are not cache coherent and therefore the bottleneck is in memory bandwidth and not
in the CPU flop rate.

Remark 1. We do not advocate the use of exact forward solves within the LNKS
context. If one can afford exact solves, then one should iterate in the reduced space.
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If both exact forward solves and Hessian terms are retained, then 4 solves per KKT-
Krylov iteration are required; iterating with N-RSQP requires only 2 solves per W.-
Krylov iteration. Even when the Hessian terms are dropped (which is equivalent to
retaining only g, on the right-hand side of the decision equation (in Algorithm 2)),
the positive definiteness of the reduced Hessian permits the use of CG in the re-
duced space, which seems more natural (in conjunction with a good reduced Hessian
preconditioner) than iterating in the full space.

On the other hand, an order-of-magnitude argument can be used (assuming A is
symmetric) to illustrate why it should be advantageous to stay in the full space when
approximate solves are used. If the condition number of the preconditioned reduced
Hessian is given by fi,,/p1 and the condition number of the preconditioned forward
operator is given by A, /A1, the complexity for inverting the exact reduced Hessian is
O(\/Mm//h X \/)\n//\l x N), since the number of expected iterations is O(\/ fom /1)
and for each iteration we need to solve the forward problem. (Recall that N is the
number of states plus the number of decision variables.) Using the fact that (3.9)
is block-diagonal we see that the complexity for inverting the preconditioned KKT
system is given by O(y/max(pm, An)/ min(u1, A1) x N). If, in addition, the spectra
of the preconditioned forward and reduced Hessian operators overlap, then a reduced
method has an effective condition number that is approximately the square of the
KKT system’s condition number. (It is exactly equal to the square of the condition
number of the reduced Hessian, if A\, = p,, and A\ = p1.)

Remark 2. We have tested the four different preconditioners for the LNKS algo-
rithm. Here we report results only for preconditioners Py and Ps. In our numerical
experiments preconditioners P4 and P took approximately the same number of KKT
iterations to converge. Since P requires two solves fewer, it is twice as fast as Py
and for this reason we report results only for P5. The same trend is evident when
comparing the preconditioners P, and P although the difference is less pronounced.

Numerical results for cylinder optimal flow control problem. In order to
further test the KKT solver we performed additional numerical experiments for the
flow around a cylinder. Figure 2 compares the controlled and the uncontrolled flow.
Optimization drives the downstream surface of the cylinder to become a sink for the
flow. As we can see in Figure 2, the locally controlled flow (around the cylinder)
appears to be more irregular than the uncontrolled one. Yet the overall dissipation is
reduced. The results can be explained if we consider the dissipation function as the
sum along both the upstream and the downstream part of the duct. Flow suction
results in reduced mass flow (i.e., velocity) on the downstream portion of the duct
and thus minimizes dissipation losses.

Table 4.4 presents scalability results for this problem. We observe similar perfor-
mance to the Poiseuille flow. Using exact second derivatives accelerates the algorithm
by a factor of two. Switching to the inexact preconditioners makes the method an-
other 6 (or more) times faster. For the 256 processor problem (941,685 states and
11,817 controls) quasi-Newton RSQP required 38 hours, whereas the LNKS algorithm
with the P, preconditioner required only 3 hours, almost 13 times faster. Notice that
the fastest LNKS variant for this example (LNKS-IIT) does not precondition in the re-
duced space. Although LNKS-II takes fewer iterations to converge, the cost per KKT
Krylov iteration is increased due to load imbalance—the Poiseuille flow problem has
more uniform distribution of decision variables across processors.

The CPU performance has dropped compared to the Poiseuille flow results, but
not significantly, as we can see in Table 4.5. The overall efficiency appears to be gov-
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(b)

(c) (d)

() ()

Fic. 2. Optimal boundary control problem of a steady incompressible Stokes flow around a
cylinder. The objective is to minimize the energy dissipation. The controls are injection points
(velocity Dirichlet boundary conditions) on the downstream portion of the cylinder surface. The
left column is the uncontrolled flow and the right column is the controlled one. Images (a) and (b)
depict a color map of the velocity magnitude on a cross section at the middle of the duct. Comparing
image (a) with (b) notice the lighter gray throughout the downstream region. This indicates smaller
velocities and thus reduced dissipation. Images (c) and (d) show a closeup snapshot of the flow
around the cylinder. The suction Dirichlet conditions (set by the optimizer) are clearly wvisible.
Finally, the last two images show stream tubes of the flow around the cylinder. Although the flow
appears to be more irregular (locally) for the controlled flow, overall the dissipation is reduced.

erned by the forward problem preconditioner; however, there is a slight disagreement
between the last two columns. An explanation can be found in 7,, which drops faster
than in the Poiseuille flow case. The reason is that the faster LNKS variant for the
cylinder example does not precondition in the reduced space.

Our performance analyses are based on isogranular scaling. More common are

fixed-problem size scalability analyses. Although these kinds of tests are very good
indicators of the performance of an algorithm, they do not capture the important issue
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TABLE 4.4

Performance and scalability of the LNKS algorithm for the control of a 3D flow around a
cylinder. Here the objective function is the energy dissipation and the constraints are the Stokes
equations. QN-RSQP is quasi-Newton reduced-space SQP; LNK is the full-space Lagrange—Newton—
Krylov method with no preconditioning; LNKS-I uses the Pa preconditioner combined with the two-
step stationary preconditioner for the reduced Hessian; LNKS-II uses the Py preconditioner with the
same reduced Hessian preconditioning; LNKS-III is the same as LNKS-I1 but the reduced Hessian
is mot preconditioned; time is wall-clock time in seconds on a T3E-900. The reduced gradient and
the constraints were converged to a relative norm of 1 x 1076,

CS()tliitrei)sls Method N or QN iter KKT iter  Time
50,020  QN-RSQP 116 = 9,320
1,653 LNK 1 390,456 37,670

(16 PEs) LNKS-T 1 A1 6.833

LNKS-IT 1 1,101 3,100
LNKS-TIT 1 1,312 1,812

117,08 QN-RSQP 120 - 27,660
2,925 LNK 1 >500,000 -

(32 PEs) LNKS-T 1 39 10,780

LNKS-IT 1 1,522 5,180
LNKS-TTT 1 1,731 2,364

380,410  QN-RSQP 128 = 92,874
6,549 LNK 1 > 500,000

(64 PEs) LNKS-T 1 50 34,281

LNKS-IT 1 2,087 18,451
LNKS-IIT 1 3,637 15,132

615,081  QN-RSQP 132 — 113,676
8,901 LNK 1 > 500,000

(128 PEs)  LNKS-I 1 53 54,678

LNKS-IT 1 3,150 17,144
LNKS-IIT 1 4,235 9,325

941,685 QN-RSQP 138 — 140,085
11,817 LNK 1 > 500,000

(256 PEs)  LNKS-I 1 52 59,912

LNKS-TI 1 4,585 20,384
LNKS-IIT 1 5,687 11,028

of the dependence of number of Krylov iterations on the number of unknowns (mesh
size). For completeness, we present a standard fixed-problem-size scalability analysis
for the (117,048 states, 2,925 controls) cylinder problem for 4 different partitions and
across two different platforms: a T3E-900 and an Origin 2000. Our experiments
showed Origin to have superior performance, which is surprising since the T3E has a
much faster interconnect. The fact that the Origin has bigger cache size is a possible
explanation. Another observation is that the effectiveness of the LNKS algorithm
degrades with the number of processors. The overall efficiency drops to 71% for the
T3E and to 83% for the Origin. The work efficiency remains constant but part of
it is hidden in 7 because the time per preconditioner application increases. Recall
that the condition number of a linear system preconditioned with block-Jacobi is
approximately O((pn)'/%) and therefore the flop count increases with the number
of processors p. Our forward solver implementation uses such a preconditioner and
this is why we observe the decrease in overall efficiency. We have not conducted any
measurements on latency and bandwidth dependencies on the number of processors.
The inferior performance of the T3E is somewhat surprising but this would probably
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TABLE 4.5

Isogranular scalability results for LNKS-III (152 KKT preconditioner with no preconditioning
for the reduced Hessian). The Mflop rates given are sustained Mflop per processor; the first column
is mazximum across processors and the second column lists the average rate. The difference is
an indication of imbalance. Efficiency (n;) is based on Mflop rate; work efficiency (nq) is based
on number of optimization iterations; forward solver work efficiency (ny) is based on Table 4.1;
overall efficiency (n) is based on execution time; ' is an estimate of the overall efficiency given by
N =nf X1 X Na.

PEs Max Mflop/s/PE  Mflop/s/PE i Na nr n n'
16 69.1 50.9 1.00 1.00 1.00 1.00 1.00
32 69.2 48.5 094 105 069 0.64 0.67
64 73.9 45.7 089 0.82 062 0.20 045
128 65.6 42.9 0.84 0.77 0.29 0.13 0.18
256 66.4 39.3 077 078 0.19 0.12 0.11
TABLE 4.6

Fized-size scalability analysis for the 117,028 state variables problem. The experiments were
performed on a SGI Origin 2000 and on a T3E-900. The 450 MHz Compagq/Alpha 21164 processor
on the T3E is equipped with 8 KB L1 cache and 96 KB L2 cache. The Origin uses the 250 MHz
MIPS R10000 processor with 32 KB L1 and 4MB L2 cache. Bisection bandwidth is 128 GB/s for
the T3E and 20.5 GB/s for the Origin (128 PEs).

CRAY T3E-900

Procs Agr Gflop/s Its Time Speedup i Na n
16 0.81 38 18,713 1.00 1.00 1.00 1.00
32 1.55 39 10,170 1.84 0.95 0.97 0.92
64 314 40 5,985 3.13 0.97 0.95 0.92
128 4.86 40 3,294 5.68 0.75 095 0.71

SGI ORIGIN 2000

Procs Agr Gflop/s Its Time Speedup ni Na n
16 1.09 37 13,512 1.00 1.00 1.00 1.00
32 2.13 40 6,188 1.84 0.96 0.93 0.89
64 6.08 38 3,141 3.13 096 0.97 0.93
128 7.90 39 1,402 5.68 0.87 0.95 0.83

change had we increased the number of processors further.®

4.4. LNKS parallel scalability. In this section, we provide arguments for veri-
fying the scalability of the LNKS method, with respect to increasing problem size and
number of processors. For scalability, we require that the work increases near-linearly
with problem size (work scalability) and that it parallelizes well. Let us examine the
major components.

Formation of the KKT matrix-vector product. For PDE-constrained opti-
mization, the Hessian of the Lagrangian function and the Jacobian of the constraints
are usually sparse with structure dictated by the mesh (particularly when the deci-
sion variables are mesh-related). Thus, formation of the matrix-vector product at each
QMR iteration is linear in both state and decision variables, and parallelizes well due
to a high computation-to-communication ratio and minimal sequential bottlenecks
characteristic of parallel matvecs for PDE-type problems.

8 At the time these experiments were performed, the 256 partition on the Origin was not available.
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Application of the KKT preconditioner. The main work involved is applica-
tion of the PDE preconditioner A, and its transpose, and “inversion” of an approxima-
tion to the reduced Hessian, B,. We can often make use of scalable, parallel PDE pre-
conditioners that require O(n) work to apply (as in various domain decomposition pre-
conditioners or multigrid for elliptic problems). The stationary preconditioner for the
reduced Hessian involves only matrix-vector multiplications and Jacobian precondi-
tioner applications, and therefore requires linear work and parallelizes well. The same
can be said about the limited-memory quasi-Newton update. Therefore, we conclude
that application of the KKT preconditioner requires linear work and parallelizes well.

The Krylov (inner) iteration. As argued above, with an “optimal” state
preconditioner and a good B, approximation, we can expect that the number of
inner (Krylov) iterations will be relatively insensitive to the problem size.

The Lagrange—Newton (outer) iteration. The number of outer (Newton)
iterations is often independent of problem size for PDE-type problems, and the PDE-
constrained optimization problems we have solved exhibit this type of behavior as
well. For an extended discussion and results from numerical experiments on the outer
iteration we refer the reader to part II of this article [11].

This combination of linear work per Krylov iteration, weak dependence of Krylov
iterations on problem size, and independence of Lagrange-Newton iterations on prob-
lem size suggests a method that scales well with increasing problem size and number
of processors.

5. Conclusions. The main new idea offered by the LNKS algorithm for PDE-
constrained optimization problems is the use of a reduced space quasi-Newton method,
not as a driver, but rather as a preconditioner for the KKT system. The precondi-
tioning exploits the PDE structure of the constraints by permitting approximate PDE
solves at each KKT iteration along with preconditioning of the reduced Hessian. We
argue that in order to achieve algorithmic scalability, a bona fide Newton method is
necessary. LNKS requires second derivatives (but only in the form of matrix-vector
multiplications, which allows for a directionally differenced approximation) and the
adjoint operator of the forward problem, beyond the information required by a (for-
ward sensitivity-based) quasi-Newton RSQP method. The most important result is
that the problem of devising a good preconditioner for the KKT system is reduced to
that of finding a good preconditioner for the forward PDE operator and the reduced
Hessian operator.

The problems we have chosen to investigate are relatively simple, yet provide a
reasonable testbed for algorithmic tuning and experimentation. The results obtained
thus far are very encouraging: the full space LNKS method with reduced space pre-
conditioning is by a factor of 10-30 faster than a popular reduced space method.
We expect that other problems will exhibit similar behavior. The method can be
parallelized efficiently, and work efficiency can be achieved provided a good forward
preconditioner is available. Scalability then results from the combination of these two.

In part II, we extend our discussion to nonlinear PDE constraints and examine
issues of robustness and globalization of the LNKS method.
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