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Parallel Linear Programming in Fixed Dimension

Almost Surely in Constant Time

Noga Alon and Nimrod Megiddo

IBM Almaden Research Center
San Jose� California ����� and

School of Mathematical Sciences
Tel Aviv University� Israel

Revised� January ����

Abstract� For any �xed dimension d� the linear programming problem with
n inequality constraints can be solved on a probabilistic CRCW PRAM with O�n�
processors almost surely in constant time� The algorithm always �nds the correct
solution� With nd� log� d processors� the probability that the algorithm will not
�nish within O�d� log� d� time tends to zero exponentially with n�

�� Introduction

The linear programming problem in �xed dimension is to maximize a linear function of

a �xed number� d� of variables� subject to n linear inequality constraints� where n is not

�xed� Megiddo 	��
 showed that for any d� this problem can be solved in O�n� time�

Clarkson 	
 and Dyer 	�
 improved the constant of proportionality� Clarkson 	�
 later

developed linear�time probabilistic algorithms with even better complexity� The problem

in �xed dimension is interesting from the point of view of parallel computation� since

�



the general linear programming problem is known to be P�complete� The algorithm of

	��
 can be parallelized e�ciently� but the exact parallel complexity of the problem in

�xed dimension is still not known�� Here we develop a very e�cient probabilistic parallel

algorithm based on Clarkson�s 	�
 scheme�

In this paper� when we say that a sequence of events fEng�n�� occurs almost surely�

we mean that there exists an � � � such that prob�En� � � � e�n
�
� A consequence of

this estimate is that with probability �� only a �nite number of the events do not occur�

The main result of this paper generalizes a known fact 	��� ��
 that the maximum of n

items can be computed almost surely in constant time�

As mentioned above� the basic idea of the underlying sequential algorithm is due to

Clarkson 	�
� His beautiful iterative sequential algorithm uses an idea of Welzl 	�
� As in

Clarkson�s algorithm� we also sample constraints repeatedly with variable probabilities�

Several additional ideas and some modi�cations were� however� required in order to

achieve the result of this paper� Our probabilistic analysis is also di�erent� and focuses

on probabilities of failure to meet time bounds� rather than on expected running times�

In particular� a suitable sequential implementation of our algorithm can be shown to

terminate almost surely within the best known asymptotic bounds on the expected time�

�Ajtai and Megiddo recently developed deterministic algorithms which run on a linear number of
processors in poly�log logn� time�

�



In Section � we present a special form of the output required from a linear program�

ming problem� which uni�es the cases of problems with optimal solutions and unbounded

ones� In Section � we describe the algorithm and provide the necessary probabilistic anal�

ysis�

�� Preliminaries

The purpose of this section is to state the required form of the output of the linear

programming problem� which turns out to be useful for our purposes in this paper�

��� A special form of the output

Let N � f�� � � � � ng and suppose the linear programming problem is given in the form

�LP �

Minimize c � x

subject to ai � x � bi �i � N� �

where fc�a�� � � � �ang � Rd and b�� � � � � bn are real scalars� An inequality ai � x � bi is

called a constraint� We denote by LPS a similar problem where only a subset S � N of

the constraints is imposed� If LP is infeasible �i�e�� there is no x such that ai �x � bi for

all i � N�� then there exists a set Z � N with jZj � d � � such that LPZ is infeasible�

In this case we refer to the lexicographically minimal such Z as the de�ning subset�

�



For any S � N � and for any �xed scalar t� denote by PS�t� the problem�

Minimize tc � x�
�

�
kxk�

subject to ai � x � bi �i � S� �

The objective function of PS�t� is strictly convex� hence if LPS is feasible� then PS�t� has

a unique optimal solution xS�t�� It is easy to see that the latter can be characterized

as the closest point to the origin� among all points x such that ai � x � bi �i � S� and

c � x � c � xS�t�� Denote val�S� t� � c � xS�t��

Fix t� and let S � N denote the set of indices i for which ai � xN�t� � bi� Obviously�

xN�t� � xS�t�� Moreover� the classical Karush�Kuhn�Tucker optimality conditions imply

that tc � xN�t� is a nonnegative linear combination of the vectors ai �i � S�� i�e��

tc� xN�t� � conefaigi�S� By a classical theorem of linear programming� there exists a

set B � S such that faigi�B are linearly independent and tc� xN �t� � conefaigi�B� It

follows that xN �t� � xB�t� and jBj � d� Moreover� we have ai � xN �t� � bi �i � B�� For

this particular value of t� the optimal solution does not change if the inequalities of PB�t�

are replaced by equalities� The importance of this argument about B is that it shows

the piecewise linear nature of the parametric solution�





��� Analysis of the parametric solution

Denote by B the matrix whose rows are the vectors ai �i � B�� and let bB denote the

vector whose components are the corresponding bi�s� Assuming LPB is feasible� since

xB�t� minimizes tc � x � �
�
kxk� subject to Bx � bB� it follows that there exists a

yB�t� � RjBj such that
tc� xB�t��BTyB�t� � �

BxB�t� � bB �

Since the rows of B are linearly independent� we can represent the solution in the form�

yB�t� � �BBT ���bB � t�BBT ���Bc

so

xB�t� � uB � tvB

where

uB � BT �BBT ���bB

and

vB � ��I �BT �BBT ���B�c �

The vector uB�tvB� however� will be the solution of PB�t� only for t such that yB�t� � ��

Denote by IB the set of all values of t for which yB�t� � �� and also ai � �uB � tvB� � bi

for all i � N � Obviously� IB is precisely the interval of t�s in which xN �t� � xB�t��

�



We have shown that if LP is feasible� then xN �t� varies piecewise linearly with t�

where each linearly independent set B contributes at most one linear piece� Thus� there

exists a �last� set Z � N with jZj � d� and there exists a t�� such that for all t � t��

xN�t� � xZ�t� and ai � xN �t� � bi �i � Z�� Given the correct Z� it is easy to compute

uZ� vZ and the �semi�in�nite� interval IZ in which xN �t� � xZ�t� � uZ � tvZ� It is

interesting to distinguish the two possible cases� First� if vZ � �� then xN�t� is constant

for t � t�� this means that the original problem has a minimum� which is the same as

if only the constraints corresponding to Z were present� In this case� uZ is the optimal

solution that has the minimum norm among all optimal solutions� Second� if vZ �� ��

then the original problem is unbounded� and fuZ � tvZ � t � t�g is a feasible ray along

which c �x tends to ��� Moreover� each point on this ray has the minimumnorm among

the feasible points with the same value of c � x�

In view of the above� we can now de�ne the vectors uN and vN to be equal to uZ

and vZ � respectively� Indeed� for any subset S � N �whose corresponding vectors ai may

be linearly dependent�� we can de�ne the appropriate vectors uS and vS to describe the

output required in the problem LPS � To summarize� we have proven the following�

Proposition ���� If the ray uN � tvN coincides with the optimal solution of PN �t� for

all su�ciently large t� then there exists a subset Z � N � whose corresponding vectors are

�



linearly independent� such that the ray coincides with the optimal solution of PZ�t� for

all such t�

For every point on a polyhedron� there exists precisely one face of the polyhedron which

contains the point in its relative interior� Consider the lexicographically minimal set Z

which describes this face� We say that this set Z is the de�ning subset of the solution

�uN �vN ��

��� The fundamental property

Denote by V �u�v� the set of indices i � N for which ai � �u� tv� � bi for all su�ciently

large values of t� If i � V �u�v�� we say that the corresponding constraint is asymptoti�

cally violated on �u�v�� Obviously� if v � �� then V �u�v� is the set of indices i � N such

that ai � u � bi� If v �� �� then i � V �u�v� if and only if either ai � v � � or ai � v � �

and ai �u � bi�

The following proposition is essentially due to Clarkson 	�
�

Proposition ���� For any S � N such that V �uS�vS� �� 	� and for any I � N such

that val�N� t� � val�I� t� �for all su�ciently large t�� V �uS�vS� 
 I �� 	�

Proof� If on the contrary V �uS�vS� 
 I � 	� then we arrive at the contradiction that

�



for all su�ciently large t�

val�I� � val�S � I� � val�S� � val�N� �

where the strict inequality follows from the uniqueness of the solution of PS�t��

The importance of Proposition ��� can be explained as follows� If a set S has been

found such that at least one constraint is violated at the optimal solution of LPS � then

at least one of these violated constraints must belong to the de�ning set� Thus� when

the probabilistic weight of each violated constraint increases� we know that the weight of

at least one constraint from the de�ning set increases�

�� The algorithm

As mentioned above� the underlying scheme of our algorithm is the same as that of the

iterative algorithm in the paper by Clarkson 	�
� but the adaptation to a parallel machine

requires many details to be modi�ed�

During a single iteration� the processors sample a subset S of constraints and solve

the subproblem LPS with �brute force�� If the latter is infeasible then so is the original

one and we are done� Also� if the solution of the latter is feasible in the original problem�

we can terminate� Typically� though� some constraints of the original problem will be

violated at the solution of the sampled subproblem� In such a case� the remainder of the

�



iteration is devoted to modifying the sample distribution for the next iteration� so that

such violated constraints become more likely to be sampled� The process of modifying

the distribution is much more involved in the context of parallel computation� It amounts

to replicating violated constraints� so that processors keep sampling from a �uniform�

distribution� The replicating procedure is carried out in two steps� First� the set of

violated constraints is �compressed� into a smaller area� and only then the processors

attempt to replicate�

During the run of the algorithm� the probability that the entire �de�ning set� is

included in the sample increases rapidly� In order to implement the above ideas e��

ciently on a PRAM� several parameters of the algorithm have to be chosen with care

and special mechanisms have to be introduced� The algorithm utilizes p � p�n� d� �

�nd� log� d processors P�� � � � � Pp� Denote by k � k�n� d� the largest integer such that

maxfd�� kd� log� dg
�
k
d

�
� p�n� d�� Note that� k � ��n���d����� We �rst describe the

organization of the memory shared by our processors�

��� The shared memory

The shared memory consists of four types of cells as follows�

�i� The Base B� consisting of k cells� B	 � 
� � � � � B	k
�

�The notation f�n� � ��g�n�� means that there exists a constant c � � such that f�n� � cg�n��

�



�ii� The Sequence S� consisting of �n cells� S	 � 
� � � � � S	�n
� We also partition the

Sequence into �n��� blocks of length n���� so these cells are also addressed as S	I� J 
�

I � �� � � � � n���� J � �� � � � � �n����

�iii� The Table T � consisting of m � Cdn
������d� cells T 	 � 
� � � � � T 	m
� where Cd �

log���d� � �� We also partition the Table into Cd blocks of length m� � n������d��

so these cells are also addressed as T 	I� J 
� I � �� � � � �m�� J � �� � � � � Cd�

�iv� The Area R� consisting of n��� cells� R	 � 
� � � � � R	n���
� We also partition the

Area into n��� blocks of size
p
n� so these cells are also addressed as R	I� J 
�

I � �� � � � �
p
n� J � �� � � � � n����

Each memory cell stores either some halfspace Hi � fx � Rd � ai � x � big �i � N�� or

the space Rd� Initially� S	 j 
 � Hj for j � �� � � � � n� and all the other cells store the space

Rd� The Base always describes a subproblem LPK where K is the set of the constraints

stored in the Base� By the choice of our parameters� every Base problem can be solved

by �brute force� in O�log� d� time as we show in Proposition ��� below�

The Sequence is where the sample space of constraints is maintained� Initially� the

Sequence stores one copy of each constraint� Throughout the execution of the algorithm�

more copies are added� depending on the constraints that are discovered to be violated at

solutions of subproblems� The role of the Table and the Area is to facilitate the process

��



of modifying the sample distribution�

��� The base problem

As already indicated� the algorithm repeatedly solves by �brute force� subproblems con�

sisting of k constraints

Proposition ���� Using a ��nd� log� d��processor CRCW PRAM� any subproblem LPK

with jKj � k�n� d� constraints can be solved deterministically in O�log� d� time�

Proof� Recall that p � �nd� log� d� In order to solve the Base problem� p�
�
k
d

�
processors

are allocated to each subset B � K such that jBj � d� Thus� the number of processors

assigned to each B is bounded from below by maxfd�� kd� log� dg� It follows that

all the subproblems LPB can be solved in O�log� d� time� as each of them amounts

to solving a system of linear equations of order ��d� � ��d�� and we have at least

d� processors �see 	�
�� If any of the LPB�s is discovered to be infeasible then LP

is infeasible� and the algorithm stops� Otherwise� for each B the algorithm checks

whether uB � tvB is asymptotically feasible �i�e�� feasible for all su�ciently large t� in

LPK� With d� log� d processors� it takes O�log� d� time to evaluate the inner product

of two d�vectors�� Since there are at least kd� log� d processors assigned to each B�

�It is easy to see that the inner product can be evaluated by d� logd processors in O�log d� time�
Here we can a�ord O�log� d� time� so we can save on the number of processors�

��



the asymptotic feasibility of all the �uB � tvB��s in LPK can be checked in O�log� d�

time� Finally� the algorithm �nds the best among the solutions of the LPB�s which are

feasible in LPK or� in case none of these is feasible in LPK � the algorithm recognizes

that LPK � and hence also LP � is infeasible� The �nal step is essentially a computation

of the minimum of
�
k
d

�
� O�nd��d���� numbers� An algorithm of Valiant� 	��
 �which

can be easily implemented on a CRCW PRAM� �nds the minimum of m elements�

using p processors� in O�log�logm� log�p�m��� time� Here� m �
�
k
d

�
� O�nd��d���� and

p � �nd� log� d� so the time is O�log d��

��� The iteration

We now describe how the sampling works and how the sample space is maintained�

Sampling a base problem

An iteration of the algorithm starts with sampling a Base problem� As indicated above�

the sample space is stored in the S�cells� There are �n such cells and each stores either

a constraint or the entire space� one constraint may be stored in more than one S�cell�

To perform the sampling� each of the �rst k processors Pi generates a random integer	

Ii uniformly between � and �n� and copies the contents of the S�cell S	Ii
 into the B�cell

�We note that with a di�erent choice of k� namely� if k is such that
�
k

d

� � pp� then the use of Valiant�s
algorithm can be avoided�

�We assume each of the processors can generate random numbers of O�logn� bits in constant time�

��



B	 i 
� Next� all the processors jointly solve the subproblem LPK currently stored in the

Base �see Proposition ���� in O�log� d� time�

Asymptotically violated constraints

Assuming LPK is feasible� the algorithm now checks which S�cells store constraints that

are violated asymptotically on the ray fuK� tvKg� i�e�� for t su�ciently large� This task

is accomplished by assigning d� log� d processors to each cell S	 i 
 as follows� For each i

�i � �� � � � � �n�� the processors Pj with � � �i � ��d� log� d � j � id� log� d are assigned

to the cell S	 i 
� they check the asymptotic feasibility of the constraint stored therein� as

explained in Section �� This step also takes O�log� d� time� since it essentially amounts

to an evaluation of inner products of d�vectors� For brevity� we say that an S�cell storing

an asymptotically violated constraint is itself violated�

Replicating violated constraints

Having identi�ed the violated S�cells� the processors now �replicate� the contents of each

such cell n����d� times� The idea is that by repeating this step several times� the members

of the �de�ning set� get a su�ciently large probability to be included in the sample

�in which case the problem is solved�� Since it is not known in advance which S�cells

are violated� and since there are only O�n� processors� the algorithm cannot decide in

advance which processors will replicate which cells� For this reason� the replication step is
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carried out on a probabilistic CRCW PRAM in two parts� First� the violated S�cells are

injected into the Table �whose size is only O�n������d���� and then replications are made

from the Table back into the Sequence� using a predetermined assignment of processors

to cells� The �rst part of this step is performed as follows�

Injecting into the Table� Operation �

First� for any violated cell S	 i 
� processor Pi generates a random integer I�i between �

and m�� and attempts to copy the contents of S	 i 
 into T 	I�i � �
� Next� if Pi has attempted

to write and failed� then it generates a random integer I�i between � and m� and attempts

again to copy the contents of S	 i 
 into T 	I�i � �
� In general� each such processor attempts

to write at most Cd � � times� each time into a di�erent block of the Table�

Proposition ���� The conditional probability that at least n��� processors will fail to

write during all the Cd � � trials� given that at most n��
�
�d�

�
��d processors attempt to

write during the �rst trial� is at most e�
�n�����

Proof� Let Xi be the random variable representing the number of processors that failed

to write during the �rst i rounds �and therefore attempt to write during the �i� ���st

round�� Suppose X� � n��
�
�d�

�
��d � Note that for each processor attempting to write

during the i�th round� the conditional probability that it will be involved in a write

con�ict� given any information on the success or failure of the other processors during

�



this round� is at most Xi���m
�� Thus� we can apply here estimates for independent

Bernoulli variables� By an estimate due to Cherno� 	�
 �apply Proposition �� part �i�

with n � �i�� and p � �i���m
���

prob
n
Xi � ���i���m

� j Xi�� � �i��
o

� e�
��
�
i���m

�� �

Let j denote the largest integer such that

��
j��n��

�
�d�

�j

��d � e��n
�
� �

Clearly� j � log���d� for n su�ciently large� Notice that if indeed Xi � �X�
i���m

� for

all i� � � i � j� then

�Xi

m�
�
�
�Xi��

m�

��

and hence�

�Xj

m�
�
�
�X�

m�

��j
�

Thus� Xj � ��
j��n��

�
�d�

�j

��d � The probability that j does not satisfy the latter is at

most e�
�n
����� Combining this with Proposition �� part �ii�� we get

probfXj�� � n���g � e�
�n
���� �

We note that� as pointed out by one of the referees� the analysis in the last proposition

can be somewhat simpli�ed by having the processors try to inject the violated constraints
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to the same table for some C �
d times �or until they succeed�� It is easy to see that for�

say� C �
d � ��d the conclusion of Proposition ��� will hold� However� this will increase the

running time of each phase of our algorithm to ��d� and it is therefore better to perform

the �rst part of the injection as described above� Alternatively� the time increase can be

avoided by making all C �
d attempts in parallel and then� in case of more than one success�

erase all but the �rst successful replication� We omit the details of the implementation�

Injecting into the Table� Operation �

To complete the step of injecting into the Table� one �nal operation has to be performed�

During this operation� the algorithm uses a predetermined assignment of some q � n���

processors to each of the �n��� S�blocks� e�g�� processor Pj is assigned to the block

S	� djn����e
� An S�cell is said to be active at this point if it has failed Cd � � times

to be injected into the Table� An S�block is said to be active if it contains at least one

active cell�� For each active block S	� J 
 �� � J � �n����� all the q processors assigned

to S	� J 
 attempt to write the symbol J into the Area R as follows� The i�th processor

among those assigned to S	� J 
 generates a random� integer Ii between � and
p
n� and

attempts to write the symbol J into the cell R	Ii� i
�

�It takes constant time to reach the situation where each of the q processors knows whether or not it
is assigned to an active S	block�

�This last step can also be done deterministically with hash functions�

��



Proposition ���� If there are less than n��� active S�blocks� then the probability that

write con�icts will occur in every single R�block is less than e�
�n
�����

Proof� At most n��� processors attempt to write into any R�block �whose length is

p
n�� so the probability of a con�ict within any �xed R�block is less than ���� Thus�

the probability of con�icts in every single R�block is less than ��n
���

�

It takes constant time to reach a situation where all the processors recognize that

a speci�c block R	� J�
 was free of con�ict �assuming at least one such block exists��

At this point� the names of all the active S�blocks have been moved into one commonly

known block R	� J�
� The role of the area R is to facilitate the organization of the work

involved in replicating the remaining active S�blocks into the last T �block�

Next� n��� processors are assigned to each cell R	I� J�
 �I � �� � � � �
p
n�� Each such

cell is either empty or contains the index JI of some active S�block S	� JI
� In the latter

case� the processors assigned to R	I� J�
 copy the contents of the active cells of S	� JI


into the last T �block� T 	� Cd
� according to some predetermined assignment�

From the Table to the Sequence

For the second half of the replication step� the algorithm uses a predetermined �many�to�

one� assignment Pj � T 	��j�
 of the �rst Cdn
������d� processors to the m � Cdn

������d�

T �cells� where n����d� processors are assigned to each cell� Each processor Pj copies the

��



contents of T 	��j�
 into a cell S	 � 
� where

� � ��j� 	� � n� �	 � ��Cdn
������d� � j

depends both on the processor and on the iteration number 	� Later� we will discuss the

actual number of iterations� We will show that almost surely � � �n� In the unlikely

event that the number of iterations gets too large� the algorithm simply restarts with

	 � ��

��� Probabilistic analysis

In this section we analyze the probability that the algorithm fails to include the de�ning

set in the sample after a certain constant number of iterations�

Estimating the number of violated S�cells

Let � be any �xed weak linear order on N � Given the contents of the Sequence S and

the random Base set K� denote by 
 � 
�S�K��� the number of S�cells which store

halfspaces Hi such that j � i for all j such that Hj is in the Base�

Proposition ���� For any possible contents of the Sequence and for every � � ��

probf
 � n��
�

d����g � e�
�n
�� �

�We write j � i if and only if j � i and i �� j�

��



Proof� For any x � ��

prob f
 � xg �
�
�� x

�n

�k
�

In particular� for x � n��
�
d���� this probability is at most

�
�� �

�n
�
d����

�k
�

Our claim follows from the fact that k � ��n
�
d�� ��

For anyM � N such that LPM is feasible� denote by
M� the weak linear order induced

on N by the asymptotic behavior of the quantities bi � ai � �uM � tvM� as t tends to

in�nity� More precisely� j
M� i if and only if for all su�ciently large t�

bj � aj � �uM � tvM � � bi � ai � �uM � tvM � �

For brevity� denote 
��M� � 
�S�K�
M��

Corollary ���� For any � � �� the conditional probability that there will be more than

n��
�
d��

�� violated S�cells on uK� tvK� given that LPK is feasible� is less than
�
n
d

�
e�
�n

���

Proof� Consider the set L of orders
B� � where B � N corresponds to a set of linearly

independent vectors �and hence jBj � d�� and LPB is feasible� If LPK is feasible� then

by Proposition ��� there exists Z � K� whose corresponding constraints are linearly

independent� such that �uZ�vZ� � �uK�vK�� Thus�
K�� L� By Proposition ��� for

��



any �xed M �

probf
��M� � n��
�

d����g � e�
�n
�� �

Since jLj �
�
n
d

�
�

probf
��K� � n��
�

d����g �
�
n

d

�
e�
�n

�� �

Proposition ���� During each iteration� the probability that at least one active S�cell

will fail to inject its contents into the Table is at most e�
�n
�����d���

Proof� The proof follows immediately from Corollary ��� with � � �����d� together

with Propositions ��� and ����

Successful iterations

Let LPK denote the current Base problem� An iteration is considered successful in either

of the following cases�

�i� The problem LPK is discovered to be infeasible� hence so is LP and the algorithm

stops�

�ii� The problem LPK is feasible and its solution uK � tvK turns out to be feasible for

LP for all su�ciently large t� so it is also the solution of LP and the algorithm

stops�

��



�iii� For at least one i in the de�ning set Z �see Section ��� Hi is asymptotically violated

on uK � tvK� and all S�cells storing Hi are injected into the Table�

Proposition ���� During any iteration� given any past history� the conditional proba�

bility of failure is at most e�
�n
�����d���

Proof� By Proposition ���� if the solution of LP has not been found� thenHi is violated�

for at least one i � Z� and hence every processor checking a copy of Hi will attempt to

inject it into the Table� The result now follows from Proposition ����

Proposition ��	� For any �xed d� the probability that the algorithm will not �nish within

�d� iterations is at most e�d
�
�n�����d���

Proof� Notice that in �d� iterations� for su�ciently large n� only the �rst n �

�d�Cdn
������d� � �n S�cells are possibly accessed� By Proposition ���� in each itera�

tion� the conditional probability of failure� given any past history� is at most e�
�n
�����d���

Therefore� the probability of less than �d� successes in �d� iterations is less than

�
�d�

�d�

��
e�
�n

�����d��
��d� � e�d

�
�n�����d�� �

To complete the proof� we show that it is impossible to have �d� successes� This

is because if there are that many successes� then there exists at least one i in the

��



�de�ning set� Z such that during at least �d of the iterations� the contents of all the

S�cells storing the halfspace Hi are successfully injected into the Table�� This means

that there are at least

�
n����d�

�	d
� n���	 � �n

S�cells storing Hi� whereas the total length of the Sequence is only �n� Hence� a

contradiction�

Thus� we have proven the following�

Theorem ��
� There exists a probabilistic parallel algorithm for the linear program�

ming problem with d variables and n constraints� which runs on a ��nd� log� d��processor

CRCW PRAM with performance as follows� The algorithm always �nds the correct so�

lution� There exists an � � � �e�g�� � � ����� such that for every �xed d and for all

su�ciently large n� the probability that the algorithm takes more than O�d� log� d� time

is less than e�
�n
��d��

A further improvement

It is not too di�cult to modify the algorithm to obtain one for which there are two

constants C� � � �� independent of d with performance as follows� For every �xed dimen�

sion d� and for all su�ciently large n� the probability that the running time will exceed

�The Table is erased after each iteration�

��



Cd� log� d is at most ��
�n
��� This is done by choosing the size k of the Base problem so

that k
�
k
d

�
� pn� This enables us to solve during each iteration

p
n random Base prob�

lems simultaneously� As before� processors are assigned to S�cells� Each such processor

chooses randomly one of the Base problems� The processor then checks whether the

constraint in its cell is violated at the solution of the Base problem� With each of the
p
n

Base problems we associate a Table of size n
�
��

�
�d�

�
��d � Next� each processor which has a

violated S�cell �with respect to the Base problem i that was chosen by that processor�

attempts to inject the contents of its cell into the Table of Base problem i� This is done

as in the corresponding steps of the algorithm described above� We call a Base problem

successful if all the processors attempting to write succeed eventually� Note that if Base

problem i is successful� then not too many S�cells �among those whose processors chose

the Base problem i� were violated� Therefore� with high probability� not too many S�cells

altogether were violated at the solution of this Base problem� The algorithm now chooses

a successful Base problem� It then continues as the previous algorithm� i�e�� it checks

which of all the S�cells are violated� injects these cells into a Table of size �Cdn
������d��

and replicates each of the violated ones n��	d times� We say that an iteration is successful

if at least one of its
p
n Base problems is successful� and the contents of all the violated

S�cells are injected successfully into the Table� It is not too di�cult to check that the

conditional probability that an iteration will not be successful� given any information

��



about the success or failure of previous iterations� is at most e�
�n
�� for some � � � �e�g��

� � ������ We omit the details�

Remarks

The total work done by all the processors in our algorithm is O�d�n�� whereas Clarkson�s

sequential algorithm 	�
 runs in expected O�d�n� time� We can easily modify our algo�

rithm to run on a probabilistic CRCW PRAM with n��d log� d� processors in O�d� log� d�

time� so that the total work is O�d�n�� Moreover� the probability of a longer running

time is exponentially small in terms of n� To this end� observe that� using our previous

algorithm� we can solve in O�d� log� d� time and n��d log� d� processors a Base problem

of size n�d�� Hence� we can repeat the previous algorithm by choosing Base problems

of size n�d�� solving them� checking all the violated S�cells in O�d� log� d� time� and

replicating each violated S�cell
p
n times� Such an algorithm terminates almost surely

in O�d� iterations� Hence� the total parallel time is O�d� log� d��

�� Appendix

The following proposition summarizes the standard estimates of the binomial distribution

which are used in the paper� A random variable X has the binomial distribution with

parameters n� p� if it is the sum of n independent ��� ���variables� each with expectation

�



p�

Proposition ���� If X is a binomial random variable with parameters n� p� then

�i� For every a � ��

probfX � np � ag � e
� a�

�pn�
a�

��pn�� �

In particular� for a � ���np�

probfX � �npg � probfX � ���npg

� e�
np
�� �

�ii� If a � e�np then probfX � ag � e�a�

Proof� Part �i� is due to Cherno� 	�
� �see also 	�
� p� ����� Part �ii� follows immediately

from the fact that

probfX � ag �
�
n

a

�
pa

�
�
en

a

�a � a

e�n

�a
� e�a�
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