
Parallel Logic Simulation of VLSI Systems

Roger D. Chamberlain
Computer and Communications Research Center

Department of Electrical Engineering
Washington University, St. Louis, Missouri

Abstract – Design verification via simulation is an im-
portant component in the development of digital systems.
However, with continuing increases in the capabilities of
VLSI systems, the simulation task has become a significant
bottleneck in the design process. As a result, researchers
are attempting to exploit parallel processing techniques to
improve the performance of VLSI logic simulation. This
tutorial describes the current state-of-the-art in parallel
logic simulation, including parallel simulation techniques,
factors that impact simulation performance, performance
results to date, and the directions currently being pursued
by the research community.

I. INTRODUCTION

The benefits of faster logic simulators are self evident to
just about anyone in the electronic design automation field.
Due to increased complexity in the VLSI system design pro-
cess, logic simulation has taken on an essential role in the ver-
ification of designs prior to fabrication, yet the time required
to complete simulations has grown. Larger designs require
longer simulation runs for two primary reasons: a greater num-
ber of test vectors are needed to verify the correctness of larger
systems and each test vector requires more computation to
simulate the effects of the vector. The result is that simula-
tion has become a significant bottleneck in the development
of VLSI systems.

To address this important issue, the research community
has expended considerable effort investigating the use of par-
allel processing to accelerate logic simulation. This work was
recently surveyed by Bailey et al. [4]. In addition, a great deal
of effort has been expended on parallel techniques for general
discrete-event simulation (e.g., the Workshop on Parallel and

1The author’s research is supported by the National Science Foundation
under grant MIP-9309658. He can be contacted at Campus Box 1115, One
Brookings Dr., St. Louis, MO, 63130, or roger@wuccrc.wustl.edu.

Distributed Simulation is in its ninth year [1, 2, 3, 5, 19, 22,
24, 30, 31]). An excellent survey of this work is described by
Fujimoto [13].

This tutorial provides an introductionto the problem of par-
allel logic simulation, including the logic simulation model,
parallel simulation techniques, factors that impact simulation
performance, performance results, and the directions currently
being investigated by the research community.

II. PARALLEL SIMULATION MODEL

During design verification, VLSI systems are frequently
simulated across a wide variety of abstraction levels, from
continuousmodels at the circuit level to block-structuredmod-
els at the behavioral level. Here, the term logic simulation is
used to refer to any discrete-event simulation of a VLSI sys-
tem, where the system components can vary from the transis-
tor level (modeled as ideal switches), through the gate level
(e.g., NANDs, flip-flops), to the behavioral level (e.g., multi-
pliers, functional units).

In discrete-event simulation, system state variables are
modeled as discrete-valued quantities that change value at dis-
crete points in time. In logic simulation, the state variables
typically represent signal levels on wires that interconnect cir-
cuit elements. In the simplest two-valued logic simulations,
state variables are constrained to two quantities representing
Boolean values (i.e., 0 or 1). Most modern logic simulators
use multi-valued variables to represent additional information.
For example, many switch-level simulators add an X state to
represent unknown or floating signals, and gate-level simula-
tors add states to represent drive strength and high impedance
conditions. The IEEE standard logic system for VHDL simu-
lation (STD LOGIC 1164) uses a 9-valued logic [6].

There are a number of ways in which parallelism can be
exploited to improve simulator performance. Algorithm par-
allelism uses pipelining techniques to accelerate the simula-
tion loop by executing individual program steps on different
processors (e.g., event queue management, functional evalua-
tion). A limited amount of parallelism is available using this
technique, since there are a limited number of steps in the sim-
ulation loop. Data parallelism uses different processors to
simulate the circuit for distinct input vectors. This technique

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

is quite effective for fault simulation, where a large number of
independent input vectors need to be simulated. It is less ef-
fective, however, during design verification, where the goal is
to minimize the completion time of an individual input vec-
tor. Model parallelismuses different processors to perform the
functional evaluations for distinct logic elements. This tutorial
concentrates on techniques for exploiting model parallelism.

To facilitate parallel execution of the simulation, the system
components (at whatever level of abstraction) are considered
to be atomic elements that are each encapsulated into a logical
process (LP). Many implementations combine more than one
component into a single LP, but this does not impact the basic
simulationmodel described below. It can, however, impact the
performance of the simulator.

The LPs are responsible for managing local state informa-
tion for their component(s), processing simulation events, and
maintaining a local simulated time reference. The compo-
nents, or LPs, interact via communications channels, which
model the circuit connectivity of the VLSI system. A change
in the output of an LP (e.g., a 0 to 1 transition at a gate out-
put) is communicated to the fanout LPs by delivering a time
stamped message to each fanout LP.

For parallel execution, the LPs are partitioned and assigned
to the available processors, and some time synchronization al-
gorithm (a number are described below) is used to ensure cor-
rect coordination of the simulated times within each LP.

Although a functionally correct parallel logic simulation is
relatively straightforward to design and implement, the pri-
mary purpose of parallelism is improved performance. Bai-
ley et al. [4] identified five primary factors that influence the
performance of parallel logic simulation: timing granularity
(the resolution of simulated time), circuit structure (topology,
component fanouts, etc.), target architecture, partitioning and
mapping (assignment of LPs to processors), and time synchro-
nization algorithm (used to coordinate simulated time between
LPs).

Since the first two are typically determined by the simula-
tion modeler (e.g., a timinggranularity of 1 ns is of limited use-
fulness for very high frequency designs), the simulator design
must react to variations in these factors, but it cannot control
them. Clearly, course timing granularity provides for greater
event simultaneity, simplifying the task of extracting paral-
lelism. The relationship between circuit structure and simu-
lator performance is not at all understood well; however, there
definitely is a connection between the two. With all other fac-
tors equal, parallel simulator performance can vary dramati-
cally from one circuit to the next.

The architecture of the execution machine clearly impacts
the performance of any parallel algorithm. Due to the fine
grain nature of logic simulation, communications capability
in the parallel system is often the discriminating property be-
tween candidate execution platforms. Although implemen-
tations exist on both SIMD and MIMD machines, MIMD is
clearly superior when many different component models are

present in a circuit (e.g., hierarchical systems). A number
of implementations exist on networks of workstations, often
taxing the communications performance of the interconnect-
ing local-area network. Emerging high-performance networks
(e.g., ATM based) are seen an opportunityto help alleviate this
communications performance bottleneck for the workstation
network execution platform.

III. CIRCUIT PARTITIONING

When assigning LPs to processors for execution, two com-
peting requirements need to be balanced, a uniform computa-
tional load across the processors and a minimum of commu-
nications volume between processors. Since finding an op-
timal partitioning is computationally complex (NP-hard), the
emphasis has been on developing efficient heuristics with near
optimal results. Many of these heuristics are based on di-
rect graph-partitioning algorithms or iterative adjustment al-
gorithms that attempt to minimize a given cost function. They
are often derived from algorithms originally developed for
physical partitioning (e.g., min-cut algorithms and/or simu-
lated annealing).

One of the earliest partitioningalgorithms described specif-
ically for logic simulation is the strings algorithm of Levendel
et al. [17]. Starting at a primary input component, the compo-
nent output is followed to a fanout component, the fanout com-
ponent’s output is followed to one of its fanout components,
etc. until a primary output is reached. The “string” of compo-
nents formed above is assigned to a processor, and the process
repeats, forming another string. Analogous to the depth first
search implicit in string partitioning, fanin and fanout cones
(proposed by Smith et al. [25]) spread out from an initial gate
in a breadth first manner.

Many logic partitioning algorithms borrow ideas from
physical partitioning algorithms originally developed to ad-
dress the placement problem. For example, Fiduccia and
Mattheyses’ [12] min-cut algorithm and other graph-based bi-
section algorithms [16] have been used extensively for logic
partitioning with good results. In addition, simulated anneal-
ing has been used; however, its results are mixed. Simulated
annealing has suffered from two problems: (1) the execu-
tion time required of the partitioningalgorithm is prohibitively
long, and (2) it is difficult to develop appropriate cost functions
to guide the annealing process.

One of the major difficulties implicit in any partitioning al-
gorithm for logic simulation is the fact that the computational
workload associated with each LP is a function of its evalua-
tion frequency. If the inputs to a gate are stable, event-driven
simulation algorithms do not evaluate the gate. Since the in-
put signals to the individual gates are a function of the test vec-
tors used for a particular simulation execution, the evaluation
frequency of each gate and, therefore, its computational work-
load requirements are unknown prior to execution. To address

this issue, the idea of pre-simulation has been proposed [9].
Essentially, the simulation is run for a period of time and the
evaluation frequency of each gate is measured. This measured
evaluation frequency is then assumed to persist for the remain-
der of the simulation execution. Although it is unclear how
well this technique will work in the general case, it has proven
successful when using random test vectors.

Another important issue typically addressed during the par-
titioning process is the granularity of the LPs (i.e., how many
atomic components are contained within each LP). Only one
gate per LP can result in high overhead processing incoming
messages, while only one LP per processor can result in unnec-
essarily blocked computation or high rollback overheads (see
below). As a result, the optimum granularity is somewhere be-
tween these two extremes.

IV. TIME SYNCHRONIZATION

One topic that has clearly dominated parallel simulation
research is the algorithm used to coordinate simulated time
across the LPs. Although not an ideal classification, time syn-
chronization algorithms are often put into one of four cate-
gories: oblivious, synchronous, conservative asynchronous,
and optimistic asynchronous. Each of these categories is ex-
plained below in its basic form; however, there are many vari-
ations of each of these algorithms [13].

The oblivious algorithm is not event driven at all. At ev-
ery point in simulated time, every LP is evaluated, whether
or not its inputs have changed. This completely eliminates
the need for an event queue, and if the evaluations of LPs are
properly scheduled, correctness can be guaranteed (compo-
nents are evaluated after their inputs values are known). The
appropriateness of this style of algorithm is highly dependent
upon the activity (frequency of state changes) within a cir-
cuit. At low activity levels, redundant evaluations are an enor-
mous overhead. At higher activity levels, the elimination of
the event queue (and its associated overhead) can lead to a per-
formance advantage.

The simplest event-driven algorithm is the synchronous
technique. Here, the simulated time at all of the LPs is con-
strained to be the same. The LPs process their events at the
present simulated time and then coordinate (typically via a bar-
rier synchronization) to determine the next point in simulated
time that has events to be processed. This technique is also re-
ferred to as a global-clock algorithm, since there is one glob-
ally consistent value of simulated time.

The two asynchronous algorithms (conservative and opti-
mistic) allow simulated time to vary from one LP to the next.
They differ in the rules used to process incoming messages and
advance simulated time at individual LPs. Conservative algo-
rithms process messages in strictly non-decreasing order, pre-
serving causality constraints at all times [11, 20]. This safety
condition is enforced by advancing local simulated time to the

smallest time stamp received from any neighboring LP. This
rule (called the input waiting rule) can lead to blocking and
even deadlock; therefore, techniques are needed to prevent (or
detect and resolve) deadlock.

Deadlock prevention is usually accomplished via null mes-
sages, messages with a time stamp but no other content. Es-
sentially, a null message is a way for an LP to notify its down-
stream neighbors that their inputs are stable up to the time of
the time stamp. Deadlock detection is often accomplished via
circulating marker algorithms that invoke a deadlock resolu-
tion algorithm when a marker completes an entire cycle with-
out detecting simulation activity.

The original optimistic algorithm is the Time Warp algo-
rithm of Jefferson [15]. In the optimistic approach, simula-
tion messages are processed immediately upon receipt at an
LP. If a straggler message is received with a time stamp ear-
lier than the local simulated time, then the LP executes a roll-
back. The rollback restores the state of the LP to an earlier
state so that the straggler message can be processed without vi-
olating causality. Thus each LP must save state so that it can
rollback. Since state saving can be a time consuming opera-
tion, frequently only the change in state is saved, not a com-
plete copy of the state. This technique is referred to as incre-
mental state saving. As part of a rollback, if outgoing mes-
sages have been delivered to downstream LPs, they are sent
anti-messages to cancel the original message. The receipt of
an anti-message at an LP will also trigger rollback, since the
effects of the original message must now be canceled.

If the simulation runs for a long time, and memory is finite,
then saved state must be reclaimed. Therefore, optimistic al-
gorithms periodically compute a bound (called global virtual
time, or GVT) such that all but one state that has time stamp
less than GVT can be discarded. GVT is simply the minimum
of the local simulated times at each LP and the time stamps of
messages currently in transit.

Gafni’s lazy cancellation strategy reduces the impact of roll
back on the performance of simulation [14]. Instead of ag-
gressively cancelling previously sent messages whenever roll
back occurs, the lazy cancellation algorithm waits to cancel
the message until it is known that the wrong message had been
sent. Thus, if the right event had been calculated for the wrong
reasons, the receiving processor is not inhibited because of ex-
cessive causality constraints.

V. SIMULATOR PERFORMANCE

The biggest difficulty in comparing the performance of dif-
ferent parallel logic simulators is the fact that there are no ac-
ceptable benchmarks to standardize the workload across dis-
tinct implementations. Although both the ISCAS-85 combi-
national benchmarks [8] and the ISCAS-89 sequential bench-
marks [7] have been pressed into service, they were not origi-
nally designed to be simulation benchmarks. As a result, they

Number of Circuit Elements

R
ep

or
te

d
S

pe
ed

up

0 10000 20000 30000 40000

0
2

4
6

8

Synchronous
Optimistic Asynchronous
Conservative Asynchronous

Figure 1: Representative performance results [4].

do not include test vectors (they are typically simulated using
random vectors), they are all at the gate level of abstraction,
and they are insufficient in size to satisfactorily evaluate per-
formance on large circuits.

In spite of the difficulties in comparing results, a number of
implementations exist. One of the first successful implemen-
tations was the optimistic asynchronous simulator of Briner
et al. [10]. He reported speedups of up to 23 on 32 proces-
sors of a BBN GP1000 system. Bailey et al. [4] combine re-
ported speedup results (for 8 processors) from a number of im-
plementations using synchronous, conservative asynchronous,
and optimistic asynchronous algorithms. These results are
presented in Figure 1.

Note that there are a large number of differences between
these implementations, including different abstraction lev-
els, timing models, example circuits, execution platforms,
and implementors (e.g., Briner et al. [10], Mueller-Thuns et
al. [21], Soule and Gupta [26] Sporrer and Bauer [27], and Su
and Seitz [29]). This limits the ability to draw firm conclu-
sions; however, a number of trends are evident. First, none
of the conservative asynchronous implementations reported
good performance, while a number of synchronous and op-
timistic asynchronous implementations performed well. The
timing granularity of the optimistic results varies from fine
grain to coarse grain, but all of the synchronous implementa-
tions use coarse grain timing.

One problem that is of concern with the optimistic asyn-
chronous algorithms is inconsistency in performance. Seem-
ingly small variations in circumstances can trigger dramatic
swings in performance results. This problem has also been ob-

served in simulations of other application domains [18]. The
synchronous algorithm does not seem to be prone to this type
of behavior. In addition, incremental state saving is crucial to
achieving good performance with optimistic algorithms.

Synchronous algorithms have their own problems, how-
ever. They have difficulty scaling to large numbers of proces-
sors since the time required to perform the barrier synchroniza-
tion grows with processor population. Also, they are prone to
load imbalance. An even distribution of LPs across the pro-
cessors is insufficient to balance the computational workload
if the evaluation frequency of individual LPs varies.

VI. FUTURE DIRECTIONS

The performance results to date seem to indicate that for
coarse timing granularity a synchronous algorithm is sufficient
and for fine timing granularity an optimistic asynchronous al-
gorithm is needed. This is an oversimplification of the situ-
ation, however, since there are circumstances that can signifi-
cantly impact the performance results that go well beyond tim-
ing granularity. As a result, there are no known implementa-
tions that consistently perform well independent of the circuit
simulated and the test vectors applied.

This points to an important body of ongoing work. In parti-
tioning, pre-simulationhas been proposed to estimate the com-
putational workload of components for load balancing pur-
poses. Appropriate cost functions are being investigated for
both simulated annealing and other iterative improvement par-
titioning algorithms. Also, dynamic load balancing is being
considered to react to variations in computational workload.

In the area of time synchronization algorithms, the syn-
chronous algorithm is being expanded to include many of the
features found in asynchronous algorithms, with an attempt to
avoid the performance instabilities found in the asynchronous
algorithms. Positive results have been presented for other ap-
plication domains (military simulation and queueing network
simulation) by Steinman [28] and Noble et al. [23]. Optimistic
asynchronous algorithms are being extensively studied in an
attempt to understand how they can be effectively controlled
to deliver consistent performance.

Hybrid algorithms are also under investigation. Ideas in-
clude hierarchical synchronization, using either a synchronous
or conservative asynchronous algorithm within a cluster of
processors and using an optimistic asynchronous algorithm
across clusters. This appears especially attractive for naturally
hierarchical execution platforms (e.g., networks of worksta-
tions where the individual workstations are bus-based multi-
processors).

Finally, there is a strong need for a benchmark set that ad-
dresses the needs of the logic simulation research community.
This set should have large circuits, at varying levels of abstrac-
tion, with varying timing granularity, and test vectors typical
of those used during the design verification process.

ACKNOWLEDGMENT

The author would like to thank Mary Bailey for her insight-
ful comments on an early draft of this manuscript.

REFERENCES

[1] M. Abrams and P.F. Reynolds, Jr., eds. Proc. of the 6th
Workshop on Parallel and Distributed Simulation, SCS,
1992.

[2] D.K. Arvind, R. Bagrodia, and Y.-B. Lin, eds. Proc. of
the 8th Workshop on Parallel and Distributed Simula-
tion, SCS, 1994.

[3] R. Bagrodia and D. Jefferson, eds. Proc. of the 7th Work-
shop on Parallel and Distributed Simulation, SCS, 1993.

[4] M.L. Bailey, J.V. Briner, Jr., and R.D. Chamberlain. Par-
allel logic simulation of VLSI systems. ACM Computing
Surveys, 26(3):255–294, September 1994.

[5] M.L. Bailey and Y.-B. Lin, eds. Proc. of the 9th Work-
shop on Parallel and Distributed Simulation, IEEE,
1995.

[6] W.D. Billowitch. IEEE 1164: Helping designers share
VHDL models. IEEE Spectrum, 30(6):37, June 1993.

[7] F. Brglez, D. Bryan, and K. Kozminski. Combinational
profiles of sequential benchmark circuits. In Proc. of the
Int’l Symposium on Circuits and Systems, IEEE, 1989.

[8] F. Brglez and H. Fujiwara. A neutral netlist of 10 combi-
national benchmark circuits and target translator in For-
tran. In Proc. of the Int’l Symp. on Circuits and Systems,
IEEE, 1985.

[9] J.V. Briner, Jr. Parallel Mixed-Level Simulation of Digi-
tal Circuits Using Virtual Time. Ph.D. thesis, Duke Uni-
versity, Durham, N.C., 1990.

[10] J.V. Briner, Jr., J.L. Ellis, and G. Kedem. Breaking the
barrier of parallel simulation of digital systems. In Proc.
of the 28th Design Automation Conf., pages 223–226,
ACM, 1991.

[11] K. M. Chandy and J. Misra. Asynchronous distributed
simulation via a sequence of parallel computations.
Communications of the ACM, 24(11):198–206, 1981.

[12] C.M. Fiduccia and R.M. Mattheyses. A linear-time
heuristic for improving network partitions. In Proc of the
19th Design Automation Conf., pages 175–181, ACM,
1982.

[13] R.M. Fujimoto. Parallel discrete-event simulation. Com-
munications of the ACM, 33(10):30–53, October 1990.

[14] A. Gafni. Rollback mechanisms for optimistic
distributed simulation. In Proc. of the SCS Multiconf. on
Distributed Simulation, pages 61–67, SCS, 1988.

[15] D. Jefferson. Virtual time. ACM Trans. Programming
Languages and Systems, 7(3):404–425, July 1985.

[16] B.W. Kernighan and S. Lin. An efficient heuristic proce-
dure for partitioninggraphs. Bell System Technical Jour-
nal, 49(2):291–307, 1970.

[17] Y.H. Levendel, P.R. Menon, and S.H. Patel. Special-
purpose computer for logic simulation using
distributed processing. Bell System Technical Journal,
61(10):2873–2909, 1982.

[18] Y.-B. Lin and E.D. Lazowska. Processor scheduling for
Time Warp parallel simulation. In Proc. of the SCS Mul-
ticonf. on Advances in Parallel and Distributed Simula-
tion, pages 11–14, SCS, 1991.

[19] V. Madisetti, D. Nicol, and R. Fujimoto, eds. Proc. of the
SCS Multiconf. on Advances in Parallel and Distributed
Simulation, SCS, 1991.

[20] J. Misra. Distributed discrete-event simulation. ACM
Computing Surveys, 18(1):39–65, March 1986.

[21] R.B. Mueller-Thuns, D.G. Saab, R.F. Damiano, and
J.A. Abraham. VLSI logic and fault simulation on
general-purpose parallel computers. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Sys-
tems, 12(3):446–460, March 1993.

[22] D. Nicol, ed. Proc. of the SCS Multiconf. on Distributed
Simulation, SCS, 1990.

[23] B.L. Noble, G.D. Peterson, and R.D. Chamberlain. Per-
formance of synchronous parallel discrete-event simula-
tion. In Proc. of 28th Hawaii Int’l Conf. on System Sci-
ences, Vol. II, pages 185–186, IEEE, 1995.

[24] P. Reynolds, Jr., ed. Proc. of the Conf. on Distributed
Simulation, SCS, 1985.

[25] E.J. Smith, B. Underwood, and M.R. Mercer. An analy-
sis of several approaches to circuit partitioning for paral-
lel logic simulation. In Proc. of the Int’l Conf. on Com-
puter Design, pages 664–667, IEEE, 1987.

[26] L. Soule and A. Gupta. An evaluation of the Chandy-
Misra-Bryant algorithm for digital logic simulation. In
Proc. of the 6th Workshop on Parallel and Distributed
Simulation, pages 129–138, SCS, 1992.

[27] C. Sporrer and H. Bauer. Corolla partitioning for dis-
tributed logic simulation of VLSI circuits. In Proc. of the
7th Workshop on Parallel and Distributed Simulation,
pages 85–92, SCS, 1993.

[28] J. Steinman. SPEEDES: A multiple synchronization en-
vironment for parallel discrete-event simulation. Int’l
Journal in Computer Simulation, 2:251–286, 1992.

[29] W.-K. Su and C.L. Seitz. Variants of the Chandy-Misra-
Bryant distributed discrete-event simulation algorithm.
In Proc. of the SCS Multiconf. on Distributed Simulation,
pages 38–43, SCS, 1989.

[30] B. Unger and R. Fujimoto, eds. Proc. of the SCS Multi-
conf. on Distributed Simulation, SCS, 1989.

[31] B. Unger and D. Jefferson, eds. Proc. of the SCS Multi-
conf. on Distributed Simulation, SCS, 1988.

