〕Open access • Posted Content • DOI:10.1101/169706

Parallel loss of symbiosis genes in relatives of nitrogen-fixing non-legume
 Parasponia - Source link

R. van Velzen, Rens Holmer, Fengjiao Bu, L.J.J. Rutten ...+27 more authors

Institutions: Wageningen University and Research Centre, Chinese Academy of Sciences, Peking University, Naturalis
Published on: 28 Jul 2017-bioRxiv (BioRxiv)
Topics: Rhizobium and Frankia

Related papers:

- Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses.
- Genetic constraints that determine rhizobium-root nodule formation in Parasponia andersonii
- The Parasponia-Bradyrhizobium Symbiosis
- Evolution of rhizobium symbiosis
- Biology of the Pavasponia-Bradyrhizobium symbiosis

Parallel loss of symbiosis genes in relatives of nitrogen-fixing non-

legume Parasponia

Robin van Velzen ${ }^{1 \dagger}$, Rens Holmer ${ }^{1,2 \dagger}$, Fengjiao Bu ${ }^{1 \ddagger}$, Luuk Rutten ${ }^{1 \ddagger}$, Arjan van Zeijl ${ }^{1}$, Wei Liu ${ }^{3}$, Luca Santuari ${ }^{1,4}$, Qingqin Cao ${ }^{1,5}$, Trupti Sharma ${ }^{1}$, Defeng Shen ${ }^{1}$, Yuda P. Roswanjaya ${ }^{1}$, Titis A.K. Wardhani ${ }^{1}$, Maryam Seifi Kalhor ${ }^{1}$ Joëlle Jansen ${ }^{1}$, D. Johan van den Hoogen ${ }^{1}$, Berivan Güngör ${ }^{1}$, Marijke Hartog ${ }^{1}$, Jan Hontelez ${ }^{1}$, Jan Verver ${ }^{1}$, Wei-Cai Yang ${ }^{3}$, Elio Schijlen ${ }^{6}$, Rimi Repin ${ }^{7}$, Menno Schilthuizen ${ }^{8,9}$, M. Eric Schranz ${ }^{10}$, Renze Heidstra ${ }^{4}$, Kana Miyata ${ }^{1}$, Elena Fedorova ${ }^{1}$, Wouter Kohlen ${ }^{1}$, Ton Bisseling ${ }^{1}$, Sandra Smit ${ }^{2}$ \& Rene Geurts ${ }^{1 *}$

[^0]
Abstract

Rhizobium nitrogen-fixing nodules are a well-known trait of legumes, but nodules also occur in other plant lineages either with rhizobium or the actinomycete Frankia as microsymbiont. The widely accepted hypothesis is that nodulation evolved independently multiple times, with only a few losses. However, insight in the evolutionary trajectory of nodulation is lacking. We conducted comparative studies using Parasponia (Cannabaceae), the only non-legume able to establish nitrogen fixing nodules with rhizobium. This revealed that Parasponia and legumes utilize a large set of orthologous symbiosis genes. Comparing genomes of Parasponia and its non-nodulating relative Trema did not reveal specific gene duplications that could explain a recent gain of nodulation in Parasponia. Rather, Trema and other nonnodulating species in the Order Rosales show evidence of pseudogenization or loss of key symbiosis genes. This demonstrates that these species have lost the potential to nodulate. This finding challenges a long-standing hypothesis on evolution of nitrogen-fixing symbioses, and has profound implications for translational approaches aimed at engineering nitrogenfixing nodules in crop plants.

Introduction

Nitrogen sources such as nitrate or ammonia are key nutrients for plant growth, but their availability is frequently limited. Some plant species in the related orders Fabales, Fagales, Rosales and Cucurbitales -collectively known as the nitrogen fixation clade- can overcome this limitation by establishing a nitrogen-fixing endosymbiosis with either Frankia or rhizobium bacteria ${ }^{1}$. These symbioses require specialized root organs, known as nodules, that provide optimal physiological conditions for nitrogen fixation ${ }^{2}$. For example, nodules of legumes (Fabaceae, order Fabales) contain a high concentration of hemoglobin that is essential to control oxygen homeostasis and protect the rhizobial nitrogenase enzyme complex from oxidation ${ }^{2,3}$. Legumes, such as soybean (Glycine max) and common bean (Phaseolus vulgaris), represent the only crops that possess nitrogen-fixing nodules, and engineering this trait in other crop plants is a long-term vision in sustainable agriculture ${ }^{4,5}$.

Nodulating plants represent ~ 10 clades that diverged >100 million years ago and which are nested in many non-nodulating lineages ${ }^{6,7}$. Consequently, the widely accepted hypothesis is that nodulation originated independently multiple times, preceded by a shared hypothetical predisposition event in a common ancestor of the nitrogen fixation clade ${ }^{1,6-9}$. Genetic dissection of rhizobium symbiosis in two legume models -Medicago truncatula (medicago) and Lotus japonicus (lotus)- has uncovered symbiosis genes that are essential for nodule organogenesis, bacterial infection, and nitrogen fixation (Supplementary Table 1). These include genes encoding LysM-type receptors that perceive rhizobial lipochitooligosaccharides (LCOs) and transcriptionally activate the NODULE INCEPTION (NIM) transcription factor ${ }^{10-15}$. Expression of NIN is essential and sufficient to set in motion nodule organogenesis ${ }^{14,16-18}$. Some symbiosis genes have been co-opted from the more ancient and widespread arbuscular mycorrhizae symbiosis ${ }^{19,20}$. However, causal genetic differences between nodulating and non-nodulating species have not been identified ${ }^{21}$.

To obtain insight in the evolution of rhizobium symbiosis we conducted comparative studies using Parasponia (Cannabaceae, order Rosales). The genus Parasponia is the only lineage outside the legume family establishing a nodule symbiosis with rhizobium ${ }^{22-25}$. Similar as shown for legumes, nodule formation in Parasponia is initiated by rhizobium-secreted LCOs and this involves a close homolog of the legume LysM-type receptor NOD FACTOR PERCEPTION / NOD FACTOR RECEPTOR 5 (NFP/NFR5) ${ }^{26-28}$. This suggests that Parasponia and legumes utilize a similar set of genes to control nodulation. The genus Parasponia represents a clade of five species that is phylogenetically embedded in the closely related Trema genus ${ }^{29}$. Like Parasponia and most other land plants, Trema species can establish an arbuscular mycorrhizae symbiosis (Supplementary Fig. 1)., However, they are non-responsive to rhizobium LCOs and do not form nodules ${ }^{25,28}$. Taken together, Parasponia is an excellent system for comparative studies with legumes and non-nodulating Trema species to provide insights into the evolutionary trajectory of nitrogen-fixing root nodules.

RESULTS

Nodule organogenesis is a dominant genetic trait

First, we took a genetics approach for understanding the rhizobium symbiosis trait of Parasponia by making intergeneric crosses (Supplementary Table 2). Viable F_{1} hybrid plants were obtained only from the cross Parasponia andersonii ($2 \mathrm{n}=20$) x Trema tomentosa $(2 n=4 x=40)$ (Fig. 1a, Supplementary Fig. 2). These triploid hybrids $(2 n=3 x=30)$ were infertile, but could be propagated clonally. We noted that F_{1} hybrid plants formed root nodules when grown in potting soil, similar as earlier observations for P. andersonii ${ }^{30}$. To further investigate the nodulation phenotype of these hybrid plants, clonally propagated plants were inoculated
with two different strains; Bradyrhizobium elkanii strain WUR3 30 or Mesorhizobium plurifarium strain BOR2. The latter strain was isolated from the rhizosphere of Trema orientalis in Malaysian Borneo and showed to be an effective nodulator of P. andersonii (Supplementary Fig. 3). Both strains induced nodules on F_{1} hybrid plants (Fig. 1b,d,e; Supplementary Fig. 4) but, as expected, not on T. tomentosa, nor on any other Trema species investigated. Using an acetylene reduction assay we noted that, in contrast to P. andersonii nodules, in F_{1} hybrid nodules of plant H 9 infected with M. plurifarium BOR2 there is no nitrogenase activity (Fig. 1c). To further examine this discrepancy, we studied the cytoarchitecture of these nodules. In P. andersonii nodules, apoplastic M. plurifarium BOR2 colonies infect cells to form so-called fixation threads (Fig. 1f,h-j), whereas in F_{1} hybrid nodules these colonies remain apoplastic, and fail to establish intracellular infections (Fig. $1 \mathrm{~g}, \mathrm{k})$. To exclude the possibility that the lack of intracellular infection is caused by heterozygosity of P. andersonii where only a nonfunctional allele was transmitted to the F_{1} hybrid genotype, or by the particular rhizobium strain used for this experiment, we examined five independent F_{1} hybrid plants either inoculated with M. plurifarium BOR2 or B. elkanii WUR3. This revealed a lack of intracellular infection structures in nodules of all F_{1} hybrid plants tested, irrespective which of both rhizobium strains was used (Fig. 1g,k, Supplementary Fig. 4), confirming that heterozygosity of P. andersonii does not play a role in the F_{1} hybrid infection phenotype. These results suggest, at least partly, independent genetic control of nodule organogenesis and rhizobium infection. Since F_{1} hybrids are nodulated with similar efficiency as P. andersonii (Fig. 1b), we conclude that the network controlling nodule organogenesis is genetically dominant.

Parasponia and Trema genomes are highly similar

Based on preliminary genome size estimates using FACS measurements, three Parasponia and five Trema species were selected for comparative genome analysis (Supplementary

Table 3). K-mer analysis of medium-coverage genome sequence data (~30x) revealed that all genomes had low levels of heterozygosity, except those of Trema levigata and T. orientalis (accession RG16) (Supplementary Fig. 5). Based on these k-mer data we also generated more accurate estimates of genome sizes. Additionally, we used these data to assemble chloroplast genomes based on which we obtained additional phylogenetic evidence that T. levigata is sister to Parasponia (Fig. 1a, Supplementary Fig. 6-8). Graphbased clustering of repetitive elements in the genomes (calibrated with the genome size estimates based on k-mers) revealed that all selected species contain roughly 300 Mb of non-repetitive sequence, and a variable repeat content that correlates with the estimated genome size that ranges from 375 to 625 Mb (Fig. 2a, Supplementary table 4). Notably, we found a Parasponia-specific expansion of ogre/tat LTR retrotransposons comprising 65 to 85 Mb (Fig. 2b). We then generated annotated reference genomes using high-coverage (~125X) sequencing of P. andersonii (accession WU1) ${ }^{27}$ and T. orientalis (accession RG33). These species were selected based on their low heterozygosity levels in combination with relatively small genomes. T. tomentosa was not used for a high-quality genome assembly because it is an allotetraploid (Supplementary Fig. 5, Supplementary Table 5-6).

We generated orthogroups for P. andersonii and T. orientalis genes and six other Eurosid species, including arabidopsis (Arabidopsis thaliana) and the legumes medicago and soybean. From both P. andersonii and T. orientalis $\sim 35,000$ genes could be clustered into >29,000 orthogroups (Supplementary Table 7-8). Within these orthogroups we identified 25,605 P. andersonii - T. orientalis orthologous gene pairs based on phylogenetic analysis as well as whole genome alignments (Supplementary Table 8, note that there can be multiple orthologous gene pairs per orthogroup). These orthologous gene pairs had a median percentage nucleotide identity of 97% for coding regions (Supplementary Fig. 9-10). This further supports the recent divergence of the two species and facilitates their genomic comparison.

Common utilization of symbiosis genes in Parasponia and medicago

To assess commonalities in the utilization of symbiosis genes in Parasponia species and legumes we employed two strategies. First, we identified close homologs of genes that were characterized to function in legume-rhizobium symbiosis. This revealed that P. andersonii contains orthologs of the vast majority of these legume symbiosis genes (117 out of 124) (Supplementary Table 1, Supplementary Data File 1). Second, we compared the sets of genes with enhanced expression in nodules of Parasponia and medicago. RNA sequencing of P. andersonii nodules revealed 1,725 genes that have a significantly enhanced expression level (fold change $>2, \mathrm{p}<0.05$, DESeq2 Wald test) in any of three nodule developmental stages compared with uninoculated roots (Supplementary Fig. 11; Supplementary Table 9). For medicago, we used a comparable set of nodule-enhanced genes (1,463 genes) ${ }^{31}$. We then determined the overlap of these two gene sets based on orthogroup membership and found that 102 orthogroups comprise both P. andersonii and medicago nodule-enhanced genes. This number is significantly larger than is to be expected by chance (permutation test, $p<0.02$)(Supplementary Fig. 12). Based on phylogenetic analysis of these orthogroups we found that in 85 cases (out of 1,725) putative orthologs have been utilized in both P. andersonii and medicago root nodules (Supplementary Table 10, Supplementary Data File 2). Among these 85 commonly utilized genes are 15 that we have identified in the first strategy; e.g. the LCO-responsive transcription factor NIN and its downstream target NUCLEAR TRANSCRIPTION FACTOR-YA1 (NFYA1) that are essential for nodule organogenesis ${ }^{16,17,32,33}$, and RHIZOBIUM DIRECTED POLAR GROWTH (RPG) involved in intracellular infection ${ }^{34}$. A notable exception to this pattern of common utilization are the oxygen-binding hemoglobins. Earlier studies showed that Parasponia and legumes have recruited hemoglobin genes by divergent evolution ${ }^{35}$. Whereas legumes use class II LEGHEMOGLOBIN to control oxygen homeostasis, Parasponia recruited the paralogous class I HEMOGLOBIN 1 (HB1) for this function (Fig. 3a,b).

By exploiting the insight that nodule organogenesis and rhizobial infection can be genetically dissected using hybrid plants we classified these commonly utilized genes into two categories based on their expression profiles in both P. andersonii and F1 hybrid roots and nodules (Fig. 4). The first category comprises genes that are upregulated in both P. andersonii and hybrid nodules and that we associate with nodule organogenesis. The second category comprises genes that are only upregulated in the P. andersonii nodule that we therefore associate with infection and/or fixation. These variations in expression show that the commonly utilized genes commit functions in various developmental stages of the P. andersonii root nodule.

Lineage-specific adaptation in Parasponia HEMOGLOBIN 1

We further examined HB1 as it was recruited independently from legumes (Fig. 3a,b) ${ }^{35}$. Biochemical studies have revealed that P. andersonii PanHB1 has oxygen affinities and kinetics that are adapted to their symbiotic function, whereas this is not the case for T. tomentosa TtoHB1 ${ }^{35,36}$. We therefore examined HB1 from Parasponia species, Trema species, and other non-symbiotic Rosales species to see if these differences are due to a gain of function in Parasponia or a loss of function in the non-symbiotic species. Based on protein alignment we identified Parasponia-specific adaptations in 7 amino acids (Fig. 3c,d). Among these is $\mathrm{Ile}(101)$ for which it is speculated to be causal for a functional change in P. andersonii $\mathrm{HB1}^{36}$. HEMOGLOBIN-controlled oxygen homeostasis in rhizobium-infected nodule cells is crucial to protect the nitrogen-fixing enzyme complex Nitrogenase ${ }^{2,3}$. Therefore, Parasponia-specific gain of function adaptations in HB1 most likely were an essential evolutionary step towards functional rhizobium nitrogen fixing root nodules.

Parallel loss of symbiosis genes in Trema and other relatives of Parasponia

Evolution of complex genetic traits is often associated with gene copy number variations $(\mathrm{CNVs})^{37}$. To test if CNVs were associated with a potential independent evolution of nodulation in Parasponia, we focussed on two gene sets: (1) the 117 symbiosis genes that have been characterized in legumes, and (2) the 1,725 genes with a nodule-enhanced expression in P. andersonii (these sets partially overlap and add up to 1,791 genes; see Supplementary Fig. 13). To ensure that our findings are consistent between the Parasponia and Trema genera and not due to species-specific events, we analyzed the additional draft genome assemblies of two Parasponia and two Trema species (Supplementary Table 6). Finally, we discarded Trema-specific duplications as we considered them irrelevant for the nodulation phenotype. This resulted in only 11 consistent CNVs in the 1,791 symbiosis genes examined, further supporting the recent divergence between Parasponia and Trema. Due to the dominant inheritance of nodule organogenesis in F_{1} hybrid plants, we anticipated finding Parasponia-specific gene duplications that could be uniquely associated with nodulation. Surprisingly, we found only one consistent Parasponia-specific duplication in symbiosis genes; namely for a HYDROXYCINNAMOYL-COA SHIKIMATE TRANSFERASE (HCT) (Supplementary Fig. 14-15). This gene has been investigated in the legume forage crop alfalfa (Medicago sativa), where it was shown that HCT expression correlates negatively with nodule organogenesis ${ }^{38,39}$. Therefore, we do not consider this duplication relevant for the nodulation capacity of Parasponia. Additionally, we identified three consistent gene losses in Parasponia among which is the ortholog of LysM-type EXOPOLYSACCHARIDE RECEPTOR 3 that in lotus inhibits infection of rhizobia with incompatible exopolysaccharides ${ }^{40,41}$ (Table 1, Supplementary Fig. 16-17). Such gene losses may have contributed to effective rhizobium infection in Parasponia and their presence in T. tomentosa could explain the lack of intracellular infection in the F1 hybrid nodules.

Contrary to our initial expectations, we discovered consistent loss or pseudogenization of seven symbiosis genes in Trema. These genes have a nodule-specific expression profile in Parasponia, suggesting that they function exclusively in symbiosis (Fig. 5). Three of these are orthologs of genes that are essential for establishment of nitrogen-fixing nodules in legumes: NIN, RPG, and the LysM-type LCO receptor NFP/NFR5 (Supplementary Fig. 1819). In the case of NFP/NFR5, we found two close homologs of this gene, NFP1 and NFP2, of which the latter is consistently pseudogenized in Trema species (Fig. 6). In an earlier study we used RNA interference (RNAi) to target PanNFP1, which led to reduced nodule numbers and a block of intracellular infection by rhizobia as well as arbuscular mycorrhiza ${ }^{27}$. Most probably, however, the RNAi construct unintentionally also targeted PanNFP2, as both genes are 69% identical in the 422 bp RNAi target region. Phylogenetic reconstruction revealed that the NFP1-NFP2 duplication predates the divergence of legumes and Parasponia, and that Parasponia NFP2 is most closely related to legume MtNFP/LjNFR5 rhizobium LCO receptors (Fig. 6). Additionally, in P. andersonii nodules PanNFP2 is significantly higher expressed than PanNFP1 (Supplementary Fig. 20). Taken-together, this suggests that PanNFP2 represents a rhizobium LCO receptor that functions in nodule formation and intracellular infection in Parasponia.

Based on expression profiles and phylogenetic relationships we postulate that also Parasponia NIN and RPG commit essential symbiotic functions similar as in other nodulating species (Fig. 5; Supplementary Fig. 21-23). Expression of PanRPG increases >300 fold in P. andersonii nodules that become intracellularly infected (nodule stage 2), whereas in F_{1} hybrid nodules -which are devoid of intracellular rhizobium infection- PanRPG upregulation is less than 20 -fold (Fig. 5). This suggests that PanRPG commits a function in rhizobium infection, similar as found in medicago ${ }^{34}$. The transcription factor NIN has been studied in several legume species as well as in the actinorhizal plant casuarina (Casuarina glauca) and in all cases shown to be essential for nodule organogensis ${ }^{14,16,42,43}$. Loss of NIN and/or NFP2 in

Trema species can explain the genetic dominance of nodule organogenesis in the Parasponia x Trema F1 hybrid plants.

Next, we questioned whether loss of these symbiosis genes also occurred in more distant relatives of Parasponia. We analysed non-nodulating species representing 6 additional lineages of the Rosales clade; namely hops (Humulus lupulus, Cannabaceae) ${ }^{44}$, mulberry (Morus notabilis, Moraceae) ${ }^{45}$, jujube (Ziziphus jujuba, Rhamnaceae) ${ }^{46}$, peach (Prunus persica, Rosaceae) ${ }^{47}$, woodland strawberry (Fragaria vesca, Rosaceae) ${ }^{48}$, and apple (Malus x domestica, Rosaceae $)^{49}$. This revealed a consistent pattern of pseudogenization or loss of NFP2, NIN and RPG orthologs, the intact jujube ZjNIN being the only exception (Fig. 7). We note that for peach NIN was previously annotated as protein-coding gene ${ }^{47}$. However, based on comparative analysis of conserved exon structures we found two out-of-frame mutations (see supplementary Fig. 24). Because the pseudogenized symbiosis genes are largely intact in most of these species and differ in their deleterious mutations, the loss of function of these essential symbiosis genes should have occurred recently and in parallel in at least seven Rosales lineages. As we hypothesize that NFP2, NIN and RPG are essential for nodulation, we argue that Trema species, hops, mulberry, jujube, woodland strawberry, apple, and peach irreversibly, recently, and independently lost the potential to nodulate.

DISCUSSION

Here we present the nodulating Cannabaceae species Parasponia as a comparative system to obtain insights in the evolutionary trajectory of nitrogen-fixing symbioses. Instead of finding gene duplications that can explain a gain of symbiosis in Parasponia, we found parallel loss or pseudogenization of symbiosis genes in non-nodulating Rosales species. This indicates that in non-nodulating Rosales lineages these symbiosis genes experienced a recent period of reduced functional constraints. This challenges current hypotheses on the evolution of
nitrogen fixing plant-microbe symbiosis.

Evolution of nodules is widely considered to be a two-step process: first an unspecified predisposition event in the ancestor of all nodulating species, bringing species in the nitrogen fixation clade to a precursor state for nodulation ${ }^{1,6}$. Subsequently, nodulation originated in parallel; eight times with Frankia and twice with rhizobium ${ }^{1,6-9}$. This hypothesis is most parsimonious and suggests a minimum number of independent losses of symbiosis. NFP/NFR5, NIN and RPG are essential for nodulation in legumes and -in case of NIN- the non-legume casuarina ${ }^{43}$. Consequently, the non-nodulating species that have lost these genes irreversibly lost the potential to nodulate. This opposes the current view that non-host relatives of nodulating species are generally in a precursor state for nodulation ${ }^{1,6}$.

The loss of symbiosis genes in non-nodulating plants is difficult to explain under the current hypothesis of parallel origins of nodulation. These genes commit functions that currently cannot be linked to any non-symbiotic processes. As a consequence, the interpretation of why such a diverse set of genes repeatedly experienced reduced functional constraints in non-nodulating plant lineages requires these genes to be linked to some other, yet unknown, common process. Additionally, the current hypothesis of parallel origins would imply convergent recruitment of at least 85 genes to commit symbiotic functions in Parasponia and legumes. This implies parallel evolution of a highly complex trait.

Alternatively, the parallel loss of symbiosis genes in non-nodulating plants can be interpreted as a single gain and massive loss of nodulation. In this new hypothesis nodulation is much older than generally anticipated, and possibly represents the hypothetical predisposition event in the nitrogen fixation clade. Subsequently, nodulation was lost in most descendent lineages (hence massive). This new hypothesis fits our data better in four ways. (I.) It more convincingly explains the parallel loss of symbiosis genes in non-nodulating plants, because
then gene loss correlates directly with loss of nodulation. (II.) A single gain of nodulation explains the origin of the conserved set of more than 80 symbiosis genes utilized by Parasponia and medicago. (III.) It is in line with the lack of Parasponia-specific gene duplications that associate with nodulation. (IV.) The duplication in the NFP/NFR5 clade encoding putative LCO LysM-type receptors predates the Rosales and Fabales split, thereby coinciding with the origin of the nitrogen fixation clade. A single gain of nodulation would require only a single (sub)neofunctionalization event of LCO-receptors to function in root nodule formation. Additionally, the single gain-massive loss hypothesis eliminates the predisposition event, a theoretical concept that currently cannot be addressed mechanistically. Therefore, we consider a single gain-massive loss hypothesis as plausible.

Loss of nodulation is not controversial, as it is generally considered to have occurred >20 times in the legume family ${ }^{6,7}$. Nevertheless, the single gain-massive loss hypothesis implies many more events than the current hypothesis of parallel gains. Based on phylogenetic evidence, the minimum number of losses required to explain the pattern of nodulation in the nitrogen fixation clade implies 20 events in Rosales (8 of which in the Cannabaceae), 5 in Fagales, 3 in Cucurbitales and 2 in Fabales (not taken into account Fabaceae) ${ }^{7}$. However, as the identified pseudogenes in Trema species, mulberry, jujube, apple, and peach are relatively intact we hypothesize that loss of nodulation has occurred relatively recent, which would imply significantly more events. In either case, this hypothesis is not the most parsimonious. On the other hand, it is conceptually easier to lose a complex trait, such as nodulation, rather than to gain it^{9}. Genetic studies in legumes indeed demonstrated that nitrogen-fixing symbiosis can be abolished by a single knockout mutation in tens of different genes, among which are NFP/NFR5, NIN and RPG (Supplementary Table 1). This suggests that simple parsimony may not be the best way to model the evolution of nodulation.

Massive, recent and parallel loss of nodulation may have been triggered by changes at a
geological scale, e.g. a glacial maximum. During periods of glacial maxima, which occurred between 18,000 and 800,000 years ago, atmospheric CO_{2} levels dropped below 200 ppm ${ }^{50,51}$. Experiments show that such CO_{2} concentrations have profound effects on photosynthesis and plant growth in general ${ }^{52}$. Under such conditions photosynthates may have been the growth limiting factor, rather than fixed nitrogen ${ }^{52-54}$. In line with this nitrogen-fixation rates in the legume Prosopis glandulosa (honey mesquite) can drop to zero when grown at $200 \mathrm{ppm} \mathrm{CO}{ }_{2}{ }^{53}$. Therefore it is likely that the nitrogen fixation trait has experienced relaxed constraints during periods of low atmospheric CO_{2} concentration, leading to genetic defects.

Based on the single gain-massive loss hypothesis we can make the following predictions. First, the hypothesis implies that many (if not most) ancestral species in the nitrogen-fixing clade were nodulators. This should be substantiated by fossil evidence. Currently, fossil data on nodules are basically absent with only a single report on a fossilized nodule that is estimated to be 11,5 thousand years old ${ }^{55,56}$. An alternative strategy is to infer the presence of nitrogen-fixing symbiosis from N isotope variation in fossil tree rings. This method was successfully applied to discriminate tree species that predominantly utilize biologically fixed nitrogen from tree species that use nitrogen resources retrieved from soil ${ }^{57}$. Secondly, we predict that actinorhizal plant species maintained NIN, RPG, and possibly NFP2 (in case LCOs are used as symbiotic signa ${ }^{58}$), and that these genes are essential for nodulation. This can be shown experimentally, as was done for NIN in casuarina ${ }^{43}$.

The loss of symbiosis genes in non-nodulating plant species is not absolute, as we observed a functional copy of $N I N$ in jujube. This pattern is similar to the pattern of gene loss in species that lost endomycorrhizal symbiosis ${ }^{59,60}$. Also in that case, occasionally such genes have been maintained in non-mycorrhizal plants. Conservation of NIN in jujube suggests that this gene has a non-symbiotic function. Contrary to NFP2, which is the result of a gene
duplication near the origin of the nitrogen-fixing clade, functional copies of NIN are also present in species outside the nitrogen-fixing clade (Supplementary Fig. 22). This suggests that these genes may have retained -at least in part- an unknown ancestral non-symbiotic function in some lineages within the nitrogen-fixing clade. Alternatively, NIN may have acquired a new non-symbiotic function within some lineages in the nitrogen-fixing clade.

As hemoglobin is crucial for rhizobium symbiosis ${ }^{3}$, it is striking that Parasponia and legumes do not use orthologous copies of hemoglobin genes in their nodules. At first sight this seems inconsistent with a single gain of nodulation. However, a scenario that incorporates a switch in microsymbionts can reconcile the use of paralogous hemoglobin genes with the occurrence of two types of microsymbiont in the nitrogen fixing clade. This scenario would dictate a single gain of actinorhizal symbiosis in the nitrogen fixing clade, and a switch from Frankia to rhizobium in the ancestors of both Parasponia and legumes. As Frankia species possess intrinsic physical characteristics to protect the Nitrogenase enzyme for oxidation, expression of plant encoded hemoglobin in nodules is not a prerequisite for nitrogen fixation in actinorhizal plants ${ }^{61-64}$. In line with this, there is no evidence that Ceanothus spp. (Rhamnaceae, Rosales) - which represent the closest nodulating relatives of Parasponia express a hemoglobin gene in Frankia-infected nodules ${ }^{62-64}$. A microsymbiont switch from Frankia to rhizobium would therefore require adaptations in hemoglobin. Based on the fact that Parasponia acquired lineage-specific adaptations in HB1 that are considered to be essential to control oxygen homeostasis in rhizobium root nodules ${ }^{35,36}$, such a symbiont switch may have occurred early in the Parasponia lineage.

The uncovered evolutionary trajectory of a rhizobium nitrogen-fixing symbiosis provides novel leads in attempts to engineer nitrogen-fixing root nodules in agricultural crop plants. Such a translational approach is anticipated to be challenging ${ }^{65}$, and the only published study so far, describing transfer of 8 LCO signaling genes, was unsuccessful ${ }^{66}$. If we interpret the
parallel loss of symbiosis genes in non-nodulating plants as evidence that these genes have been neofunctionalized to commit symbiotic functions, then this gene set is essential in any engineering approach. However, transfer of symbiosis genes may not be sufficient to obtain functional nodules. The lack of infection in nodules on hybrid plants that contain a full genome complement of Parasponia indicates the presence of an inhibitory mechanism in T. tomentosa. Such a mechanism may also be present in other non-host species. Consequently, engineering nitrogen-fixing nodules requires gene knockouts in nonnodulating plants to overcome inhibition of intracellular infection. Trema may be the best candidate species for such a (re)engineering approach, due to its high genetic similarity with Parasponia and the availability of transformation protocols ${ }^{67}$. Therefore, the presented Parasponia-Trema comparative system may not only be suited for evolutionary studies, but also can form an excellent experimental platform to obtain essential insights to engineer nitrogen fixing root nodules.

MATERIAL AND METHODS

Parasponia - Trema intergeneric crossing and hybrid genotyping

Parasponia and Trema are wind-pollinated species. A female-flowering P. andersonii individual WU1.14 was placed in a plastic shed together with a flowering T. tomentosa WU10 plant. Putative F_{1} hybrid seeds were germinated (see Supplementary Methods) and transferred to potting soil. To confirm the hybrid genotype a PCR marker was used that visualizes a length difference in the promoter region of LIKE-AUXIN 1 (LAX1) (primers: LAX1-f: ACATGATAATTTGGGCATGCAACA, LAX1-r: TCCCGAATTTTCTACGAATTGAAA, amplicon size P. andersonii: 974 bp; T. tomentosa: 483 bp). Hybrid plant H9 was propagated in vitro ${ }^{27,68}$. The karyotype of the selected plants was determined according to Geurts and De Jong 2013^{69}.

Nodulation and nitrogenase activity assays

All nodulation assays were conducted with Mesorhizobium plurifarium BOR2. This strain was isolated from P. andersonii root nodules grown in soil samples collected from the root rhizosphere of Trema orientalis plants in Malaysian Borneo, province of Sabah ${ }^{70}$. M. plurifarium was grown on yeast extract mannitol medium at $28^{\circ} \mathrm{C}^{30}$. Plants were grown in sterile plastic 1 liter pots containing perlite and EKM medium supplemented with 0.375 mM $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and rhizobium (OD600:0.05) ${ }^{71}$. Nodule number per plant was quantified 6 weeks post inoculation.

Acetylene reduction assays ${ }^{72}$ were conducted on nodules harvested 6 weeks post inoculation with Mesorhizobium plurifarium strain BOR2. Nodules were sampled per plant and collected in 15 ml headspace vials with screw lids. 2.5 ml of acetylene was injected into the vial and incubated for about 10 minutes, after which 1 ml headspace was used to quantify ethylene nitrogenase activity using an ETD 300 detector (Sensor Sense, Nijmegen,

The Netherlands; Isogen, Wageningen, The Netherlands) ${ }^{73}$.

To isolate P. andersonii nodules at 3 developmental stages nodules were separated based on morphology and size. Stage 1: nodules are round and $<1 \mathrm{~mm}$ in diameter in size. The outer cell layers of stage 1 nodules are transparent. Light microscopy confirmed that at this stage, rhizobia already reach the central part of the nodule, but are mainly present in the apoplast (Fig. 1h). Stage 2: nodules are brownish, and ~2 mm in size. Nodules have formed an apical meristem and 2-3 cell layers have been infected by rhizobia (Fig. 1i). Stage 3 : nodules are pinkish on the outside due to accumulation of haemoglobin and $>2 \mathrm{~mm}$ in size. Light microscopy showed that stage 3 nodules contain zones of fully infected cells (Fig. 1j). For each of these stages three biological replicates were used for RNA sequencing.

Arbuscular mycorrhization assay

Two week old seedlings were transferred to 800 ml Sand:Granule:Rhizophagus irregularis (Rir, INOQ TOP- INOQ GmbH, Schnega Germany) inoculum mixture (1:1:0.01), irrigated with $80 \mathrm{ml}^{1 / 2}$ strength modified Hoagland solution containing $20 \mu \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{HPO}_{4}{ }^{74}$ and grown for an additional 6 weeks at $28^{\circ} \mathrm{C}$, under a photoperiod of $16 / 8 \mathrm{~h}$ (day $/$ night). 50 ml additional nutrient solution was provided once a week. Mycorrhization efficiency was analysed as previously described ${ }^{75}$ for three aspects: 1) frequency of fungal colonization in 1 cm root segments; 2) average level of mycorrhization in all root fragments, and 3) arbuscular abundance in all root fragments (Supplementary Fig. 1). Arbuscules were WGA-Alexafluor 488-stained and imaged according to Huisman et al 2015^{76}.

DNA/RNA sequencing

Paired-end Illumina libraries (insert size 500bp, 100bp reads) were prepared for all accessions (Supplementary Table 5), mate-pair libraries ($3 \mathrm{~Kb}, 7 \mathrm{~Kb}$, and 10 Kb) and overlapping fragment libraries (450bp insert size, 250bp reads) were prepared for the
reference accessions (P. andersonii accession WU01 and T. orientalis accession RG33). Paired-end and mate-pair libraries were sequenced on an Illumina HiSeq2000, overlapping libraries were sequenced on an Illumina MiSeq. For the P. andersonii and T. orientalis reference genomes a total of $75 \mathrm{~Gb}(\sim 132 \mathrm{x}$ genome coverage) and 61 Gb ($\sim 121 \mathrm{x}$ coverage) of data was produced respectively. The other accessions were sequenced at an average coverage of $\sim 30 X$. See Supplementary Methods for further details on library preparation and sequencing. RNA samples from various tissues and nodulation stages were isolated from P. andersonii and Trema orientalis RG33 (Supplementary Methods, Supplementary Table 11). Library preparation and RNA sequencing was conducted by B.G.I. (Shenzhen, China).

Estimation of heterozygosity levels and genome size

To assess levels of heterozygosity and genome size we performed k-mer analyses. Multiplicities of 21-mers were extracted from the reads using Jellyfish (version 2.2.0) ${ }^{77}$ and processed using custom R scripts. First, a multiplicity threshold was determined below which most k-mers are considered to represent sequencing errors and which were excluded from further analysis. In principle, errors occur randomly and this generates a high frequency peak at multiplicity 1 after which frequency decreases and subsequently increases due to a broad frequency peak around the mean genome coverage. The error multiplicity threshold was therefore set at the multiplicity with the lowest frequency between these two peaks. Next, we identified the peak multiplicity as the one with the highest frequency. Homozygous genome coverage was estimated by scaling the peak multiplicity proportional to the difference of its frequency with that of multiplicities one below and above. Heterozygous coverage was defined as half that of the homozygous coverage (Supplementary Fig. 5). Finally, genome size was calculated as the total number of error-free k-mers divided by the estimated homozygous genome coverage (Supplementary Table 4). These estimates are generally comparable to those based on FACS measurements ${ }^{78}$ (Supplementary Table 3) except for genomes that differ much from the reference used to calibrate the FACS results (Medicago
truncatula, $\sim 500 \mathrm{Mb}$). This inconsistency is probably due to the non-linearity of the FACS measurements. We therefore consider the quantitative genome estimates based on k -mer analysis a more accurate estimation of genome size.

Characterization of repetitive sequences

Repetitive sequences are inherently difficult to assemble. We therefore characterized and quantified repetitive element using the ab initio graph-based clustering approach implemented in RepeatExplorer ${ }^{79}$. Analyses were based on random subsamples of 20,000 paired-end reads and included a reclustering step where clusters with shared mate pairs are merged (threshold $\mathrm{k}=0.2$). Repeat classification was based on the RepeatExplorer Viridiplantae dataset and on plant organellar sequences. Relative sizes of repetitive sequences in the genome were scaled by the genome size estimations based on k-mer analysis to generate absolute sizes in Mb (Fig. 2).

Assembly of reference genomes

The raw sequencing data were preprocessed. First, adapters (standard and junction) were removed and reads were trimmed using fastq-mcf (version 1.04 .676$)^{80}$. Minimum remaining sequence length was set to 50 for HiSeq data and 230 for MiSeq data. Duplicates were removed using FastUniq (version 1.1) ${ }^{80,81}$. Chloroplast and mitochondrial genomes were assembled first with IOGA (version 1) using reference sets of plant chloroplast and mitochondrial genomes ${ }^{82}$. Chloroplast and mitochondrial reads were identified and separated from the nuclear reads by mapping to four organellar assemblies (Parasponia andersonii, Trema orientalis, Morus indica, Malus x domestica) using BWA (version 0.7.10) ${ }^{83}$. Finally, a contamination database was produced by BLASTing contigs from earlier in-house draft genome assemblies from Parasponia andersonii and Trema orientalis against NCBIs nt database. Hits outside the plant kingdom were extracted using a custom script and corresponding sequences were downloaded from GenBank and a database of plant viruses
was added (http://www.dpvweb.net/seqs/allplantfasta.zip). Genomics reads were cleaned by mapping to this contamination database.

The preprocessed data were de novo assembled using ALLPATHS-LG (release 48961) ${ }^{84}$. Relevant parameters were PLOIDY=2 and GENOME_SIZE=600000000. The assemblies were performed on the Breed4Food High Performance Cluster from Wageningen UR (http://breed4food.com).

Remaining contamination in the ALLPATHS-LG assembly was identified by blasting the assembled contigs to their respective chloroplast and mitochondrial genomes, the NCBI nr and univec databases (Downloaded 29 oktober 2014) and by mapping back genomic reads of the HiSeq 500bp insert size library. Regions were removed if they matched all of the following criteria: (1) significant blast hits with more than 98% identity (for the nr database only blast results that were not plant-derived were selected); (2) read coverage lower than 2 or higher than 50 (average coverage for the HiSeq 500bp insert size library is $\sim 30 \mathrm{x}$); (3) number of properly paired reads lower than 2.

Resulting contigs were subsequently scaffolded with two rounds of SSPACE (v3.0) ${ }^{85}$, standard with the mate pair libraries. In order to use reads mapped with BWA (v0.7.10) the SSPACE utility sam_bam2tab.pl was used. We used the output of the second run of SSPACE scaffolding as the final assembly.

Validation of the final assemblies showed that $90-100 \%$ of the genomic reads mapped back to the assemblies (Supplementary Table 5), and 94-98\% of CEGMA ${ }^{86}$ and BUSCO 87 genes were detected (Supplementary Table 6).

Annotation of reference genomes

Repetitive elements were identified following the standard Maker-P recipe (http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/Repeat Library Construction-

Advanced accessed october 2015) as described on the GMOD site: (1) RepeatModeler with Repeatscout v1.0.5, Recon v1.08, RepeatMasker version open4.0.5, using RepBase version 20140131^{88} and TandemRepeatFinder; (2) GenomeTools: LTRharvest and LTRdigest ${ }^{89}$; (3) MITEhunter with default parameters ${ }^{90}$. We created species-specific repeat libraries for both P. andersonii and T. orientalis separately and combined these into a single repeat library, filtering out sequences that are $>98 \%$ similar. We masked both genomes using RepeatMasker with this shared repeat library.

To aid the structural annotation we used $11 P$. andersonii and $6 T$. orientalis RNA sequencing datasets (Supplementary Table 11). All RNA-seq samples were assembled de novo using genome-guided Trinity ${ }^{91}$, resulting in one combined transcriptome assembly per species. In addition all samples were mapped to their respective reference genomes using BWA and processed into putative transcripts using cufflinks ${ }^{92}$ and transdecoder ${ }^{93}$. This resulted in one annotation file (gff) per transcriptome sample per species. As protein homolog evidence, only Swiss-Prot ${ }^{94}$ entries filtered for plant proteins were used. This way we only included manually verified protein sequences and prevented the incorporation of erroneous predictions. Finally, four gene-predictor tracks were used: 1) SNAP ${ }^{95}$, trained on P. andersonii transdecoder transcript annotations; 2) SNAP, trained on T. orientalis transdecoder transcript annotations; 3) Augustus ${ }^{96}$ as used in the BRAKER pipeline, trained on RNA-seq alignments ${ }^{97}$; 4) GeneMark-ET as used in the BRAKER pipeline, trained on RNA-seq alignments ${ }^{98}$.

First, all evidence tracks were processed by Maker- ${ }^{87,99}$. The results were refined with EVidenceModeler (EVM) ${ }^{100}$, which was used with all the same tracks as Maker-P, except for
the Maker-P blast tracks and with the addition of the Maker-P consensus track as additional evidence. Ultimately, EVM gene models were preferred over Maker-P gene models, except when there was no overlapping EVM gene model. Where possible, evidence of both species was used to annotate each genome (i.e. de novo RNA-seq assemblies of both species were aligned to both genomes).

To take maximum advantage of annotating two highly similar genomes simultaneously we developed a custom reconciliation procedure involving whole genome alignments. The consensus annotations from merging the EVM and Maker-P annotations were transferred to their respective partner genome using nucmer ${ }^{101}$ and RATT revision 18^{102} (i.e. the P. andersonii annotation was transferred to T. orientalis and vice versa), based on nucmer whole genome alignments (Supplementary Fig. 9). Through this reciprocal transfer, both genomes had two candidate annotation tracks, the original (called P and T) and the transferred (called P' on T. orientalis and T' on P. andersonii). This allowed for validation of both annotations simultaneously, assuming that two orthologous regions containing a single gene that has not changed since its common ancestor, should be annotated identically. If annotations between orthologous regions differ, we used RNA-seq evidence and protein alignments for curation, by picking one of four annotation combinations: P and T, P and $\mathrm{T}^{\prime}, \mathrm{P}^{\prime}$ and T , or P^{\prime} \& T^{\prime}. Picking one of these options is based on transcriptome coverage: the combination with the highest percentage of covered introns per annotation is the most likely. If there is insufficient coverage in any of the genomes, the combination with the highest pairwise identity based on protein alignments of the translated annotation is selected.

For the reconciliation procedure we developed a custom Python script. To deal with orthologous regions containing different numbers of annotations, we identified 'annotation clusters'. This was done iteratively by selecting overlapping gene models and transferred gene models with the same gene ID. Two annotations were considered to be overlapping if
they were on the same strand and at least one of each of their exons overlapped. This allowed for separate processing of genes on opposing strands, and 'genes within genes', i.e. a gene within the intron of another gene. The validation of annotation differences between P. andersonii and T. orientalis greatly reduces technical variation and improves all downstream analyses.

After automatic annotation and reconciliation 1,693 P. andersonii genes and 1,788 T. orientalis genes were manually curated. These were mainly homologs of legume symbiosis genes and genes that were selected based on initial data exploration.

To assign putative product names to the predicted genes we combined BLAST results against Swiss-Prot, TrEMBL and nr with InterProScan results (custom script). To annotate GO terms and KEGG enzyme codes Blast2GO was used with the nr BLAST results and interproscan results. Finally, we filtered all gene models with hits to InterPro domains that are specific to repetitive elements.

Phylogenetic reconstruction of Cannabaceae

Multiple sequence alignments were generated using MAFFT (version 7.017) ${ }^{103}$ and phylogenetic analyses were performed using MrBayes (version 3.2.2) ${ }^{104}$. The first phylogenetic reconstruction of the Cannabaceae was based on four markers comprising data from Yang et al. 2013^{29} supplemented with new data generated with primers and protocols published in this manuscript (Supplementary Table 12). Analysis was based on five optimal partitions and models of sequence evolution as estimated by PartitionFinder (version 2.0.0) ${ }^{105}$: atpB-rbcL combined with trnL-F (GTR+l+G); first codon position of rbcL (GTR+l+G); second position of rbcL (SYM+l+G); third position of rbcL (GTR+G); rps16 (GTR+G). An additional phylogenetic reconstruction of the Cannabaceae was based on whole chloroplast genomes (Supplementary Table 12). Analysis was based on eight optimal partitions and
models of sequence evolution as estimated by PartitionFinder: tRNA sequence (HKY+l), rRNA sequence (GTR+I), long single copy region (LSC) coding sequence (GTR+l+G), LSC non-coding sequence (GTR+G), short single copy region (SSC) coding sequence (GTR+G), SSC non-coding sequence (GTR+G), inverted repeat region (IR) coding sequence (GTR+G), and IR non-coding sequence (GTR+G). For both Cannabaceae reconstructions additional bootstrap support values were calculated using RAxML (version 8.2.9) ${ }^{105,106}$ using the same partitions applying the GTR+G model. All gene tree reconstructions were based on unpartitioned analysis of protein sequence with the POISSON+G model.

Orthogroup inference

To determine the relationships between P. andersonii and T. orientalis genes, as well as with other plant species we inferred orthogroups with OrthoFinder (version 0.4.0) ${ }^{107}$. Since orthogroups are defined as the set of genes that are descended from a single gene in the last common ancestor of all the species being considered, they can comprise orthologous as well as paralogous genes. Our analysis included proteomes of selected species from the Eurosid clade: Arabidopsis thaliana TAIR10 (Brassicaceae, Brassicales) ${ }^{108}$ and Eucalyptus grandis v2.0 (Myrtaceae, Myrtales) from the Malvid clade ${ }^{109}$; Populus trichocarpa v3.0 (Salicaeae, Malpighiales) ${ }^{110}$, legumes Medicago truncatula Mt4.0v1 ${ }^{111}$ and Glycine max Wm82.a2.v1 (Fabaceae, Fabales) ${ }^{112}$, Fragaria vesca v1.1 (Rosaceae, Rosales) ${ }^{48}$, P. andersonii and T. orientalis (Cannabaceae, Rosales) from the Fabid clade (Supplementary Table 7). Sequences were retrieved from phytozome (www.phytozome.net).

Gene copy number variant detection

To assess orthologous and paralogous relationships between Parasponia and Trema genes, we inferred phylogenetic gene trees for each orthogroup comprising Parasponia and/or Trema genes using the neighbour-joining algorithm ${ }^{113}$. Based on these gene trees, for each Parasponia gene, its relationship to other Parasponia and Trema genes was defined as
follows. 1) orthologous pair: the sister lineage is a single gene from the Trema genome suggesting that they are the result of a speciation event; 2) inparalog: the sister lineage is a gene from the Parasponia genome, suggesting that they are the result of a gene duplication event; 3) singleton: the sister lineage is a gene from a species other than Trema, suggesting that the Trema gene was lost; 4) multi-ortholog: the sister lineage comprises multiple genes from the Trema genome, suggesting that the latter are inparalogs. For each Trema gene, relationship was defined in the same way but with respect to the Parasponia genome (Supplementary Table 8). Because phylogenetic analysis relies on homology we assessed the level of conservation in the multiple-sequence alignments by calculating the trident score using MstatX (https://github.com/gcollet/MstatX) ${ }^{114}$. Orthogroups with a score below 0.1 were excluded from the analysis. Examination of orthogroups comprising >20 inparalogs revealed that some represented repetitive elements; these were also excluded. Finally, orthologous pairs were validated based on the whole-genome alignments used in the annotation reconciliation.

Assembly of Parasponia and Trema draft genomes

To assess whether gene copy number variants of interest are also present in other, nonreference Parasponia and Trema genomes, we assembled genomic sequences of P. rigida, P. rugosa, T. levigata, and T. orientalis accession RG16 based on the medium-coverage sequence data that was also used for k-mer analysis (Supplementary Table 4-5). Assembly was performed with the iterative de Bruijn graph assembler IDBA-UD (version 1.1.1) ${ }^{115}$, iterating from 30-mers (assembling low-coverage regions) to 120-mers (accurately assembling regions of high coverage), with incremental steps of 20 . Genes of interest were manually annotated and putatively lost genes or gene fragments were confirmed based on (I.) mapping the medium-coverage reads to the respective P. andersonii or T. orientalis RG33 reference genome and (II.) genomic alignments (Supplementary Fig. 18-19).

Nodule-enhanced genes

To assess gene expression in Parasponia nodules, RNA was sequenced from the three nodule stages described above as well as uninoculated roots (Supplementary Table 11). RNA-seq reads were mapped to the Parasponia reference genome with HISAT2 (version 2.02) ${ }^{116}$ using an index that includes exon and splice site information in the RNA-seq alignments. Mapped reads were assigned to transcripts with featureCounts (version 1.5.0) ${ }^{117}$. Normalization and differential gene expression were performed with DESeq2. Nodule enhanced genes were selected based on >2.0 fold-change and $p<=0.05$ in any nodule stage compared with uninoculated root controls. Genes without functional annotation or orthogroup membership were excluded. To assess expression of Parasponia genes in the hybrid nodules, RNA was sequenced from nodules and uninoculated roots. Here, RNA-seq reads were mapped to a combined reference comprising two parent genomes from P. andersonii and T. tomentosa.

References

1. Soltis, D. E. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. U. S. A. 92, 2647-2651 (1995).
2. Udvardi, M. \& Poole, P. S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781-805 (2013).
3. Ott, T. et al. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. 15, 531-535 (2005).
4. Burrill, T. J. \& Hansen, R. Is symbiosis possible between legume bacteria and nonlegume plants? Bulletin (University of Illinois (Urbana-Champaign campus). Agricultural Experiment Station); no. 202 202, 115-181 (1917).
5. Stokstad, E. The nitrogen fix. Science 353, 1225-1227 (2016).
6. Werner, G. D. A., Cornwell, W. K., Sprent, J. I., Kattge, J. \& Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N_{2}-fixation in angiosperms. Nat. Commun. 5, 4087 (2014).
7. Li, H.-L. et al. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change. Sci. Rep. 5, 14023 (2015).
8. Doyle, J. J. Phylogenetic perspectives on the origins of nodulation. Mol. Plant. Microbe. Interact. 24, 1289-1295 (2011).
9. Doyle, J. J. Chasing unicorns: Nodulation origins and the paradox of novelty. Am. J. Bot. 103, 1865-1868 (2016).
10. Limpens, E. et al. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302, 630-633 (2003).
11. Madsen, E. B. et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637-640 (2003).
12. Radutoiu, S. et al. Plant recognition of symbiotic bacteria requires two LysM receptorlike kinases. Nature 425, 585-592 (2003).
13. Arrighi, J. F. et al. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142, 265-279 (2006).
14. Marsh, J. F. et al. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive Calcium/Calmodulin-Dependent Protein Kinase. Plant Physiol. 144, 324-335 (2007).
15. Broghammer, A. et al. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc. Natl. Acad. Sci. U. S. A. 109, 13859-13864 (2012).
16. Schauser, L., Roussis, A., Stiller, J. \& Stougaard, J. A plant regulator controlling development of symbiotic root nodules. Nature 402, 191-195 (1999).
17. Soyano, T., Kouchi, H., Hirota, A. \& Hayashi, M. NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet. 9, e1003352 (2013).
18. Vernié, T. et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. Plant Cell tpc.15.00461 (2015).
19. Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763-775 (2008).
20. Oldroyd, G. E. D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252-263 (2013).
21. Geurts, R., Xiao, T. T. \& Reinhold-Hurek, B. What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci. 21, 199-208 (2016).
22. Clason, E. W. The vegetation of the upper-Badak region of mount Kelut (east java). Bulletin Jard. Bot. Buitenzorg Serie III, 509-518 (1936).
23. Trinick, M. J. Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244, 459-460 (1973).
24. Akkermans, A. D. L., Abdulkadir, S. \& Trinick, M. J. Nitrogen-fixing root nodules in Ulmaceae. Nature 274, 190-190 (1978).
25. Becking, J. H. In: Biological nitrogen fixation (eds. Stacey, G., Burris, R. H. \& Evans, H. J.) 497-559 (Routledge, Chapman and Hall, 1992).
26. Marvel, D. J., Torrey, J. G. \& Ausubel, F. M. Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts. Proc. Natl. Acad. Sci. U. S. A. 84, 13191323 (1987).
27. Op den Camp, R. et al. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331, 909-912 (2011).
28. Granqvist, E. et al. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and non-legumes. New Phytol. 207, 551-558 (2015).
29. Yang, M.-Q. et al. Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62, 473-485 (2013).
30. Op den Camp, R. H. M. et al. Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol. Plant. Microbe. Interact. 25, 954-963 (2012).
31. Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 77, 817-837 (2014).
32. Combier, J.-P. P. et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev. 20, 30843088 (2006).
33. Baudin, M. et al. A Phylogenetically conserved group of Nuclear Factor-Y transcription factors interact to control nodulation in legumes. Plant Physiol. 169, 2761-2773 (2015).
34. Arrighi, J.-F. et al. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc. Natl. Acad. Sci. U. S. A. 105, 9817-9822 (2008).
35. Sturms, R., Kakar, S., Trent, J. \& Hargrove, M. S. Trema and Parasponia hemoglobins reveal convergent evolution of oxygen transport in plants. Biochemistry 49, 4085-4093 (2010).
36. Kakar, S. et al. Crystal structures of Parasponia and Trema hemoglobins: Differential heme coordination is linked to quaternary structure. Biochemistry 50, 4273-4280 (2011).
37. Żmieńko, A., Samelak, A., Kozłowski, P. \& Figlerowicz, M. Copy number polymorphism in plant genomes. Theor. Appl. Genet. 127, 1-18 (2014).
38. Shadle, G. et al. Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68, 1521-1529 (2007).
39. Gallego-Giraldo, L. et al. Lignin modification leads to increased nodule numbers in alfalfa. Plant Physiol. 164, 1139-1150 (2014).
40. Kawaharada, Y. et al. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523, 308-312 (2015).
41. Kawaharada, Y. et al. Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat. Commun. 8, 14534 (2017).
42. Borisov, A. Y. et al. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol. 131, 1009-1017 (2003).
43. Clavijo, F. et al. The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol. 208, 887-903 (2015).
44. Natsume, S. et al. The draft genome of hop (Humulus lupulus), an essence for brewing. Plant Cell Physiol. 56, 428-441 (2015).
45. He, N. et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat. Commun. 4, ncomms3445 (2013).
46. Huang, J. et al. The jujube genome provides insights into genome evolution and the
domestication of sweetness/acidity taste in fruit trees. PLoS Genet. 12, e1006433 (2016).
47. Verde, I. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45, 487494 (2013).
48. Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109-116 (2011).
49. Velasco, R. et al. The genome of the domesticated apple (Malus \times domestica Borkh.). Nat. Genet. 42, 833-839 (2010).
50. Sigman, D. M., Hain, M. P. \& Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47-55 (2010).
51. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453, 379-382 (2008).
52. Gerhart, L. M. \& Ward, J. K. Plant responses to low [CO2] of the past. New Phytol. 188, 674-695 (2010).
53. Polley, H. W., Johnson, H. B. \& Mayeux, H. S. Increasing CO2: Comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75, 976-988 (1994).
54. Sage, R. F. Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Glob. Chang. Biol. 1, 93-106 (1995).
55. Baker, D. \& Miller, N. G. Ultrastructural evidence for the existence of actinorhizal symbioses in the late Pleistocene. Can. J. Bot. 58, 1612-1620 (1980).
56. Sprent, J. I. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174, 11-25 (2007).
57. Gulbranson, E. L. et al. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia. Geology (2017). doi:10.1130/G39213.1
58. Nguyen, T. V. et al. An assemblage of Frankia Cluster II strains from California contains
the canonical nod genes and also the sulfotransferase gene nodH. BMC Genomics 17, 796 (2016).
59. Delaux, P.-M. et al. Algal ancestor of land plants was preadapted for symbiosis. Proc. Natl. Acad. Sci. U. S. A. 112, 13390-13395 (2015).
60. Kamel, L., Keller-Pearson, M., Roux, C. \& Ané, J.-M. Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New Phytol. 213, 531-536 (2017).
61. Winship, L. J., Martin, K. J. \& Sellstedt, A. The acetylene reduction assay inactivates root nodule uptake hydrogenase in some actinorhizal plants. Physiol. Plant. 70, 361-366 (1987).
62. Silvester, W. B. \& Winship, L. J. Transient responses of nitrogenase to acetylene and oxygen in actinorhizal nodules and cultured frankia. Plant Physiol. 92, 480-486 (1990).
63. Silvester, W. B., Berg, R. H., Schwintzer, C. R. \& Tjepkema, J. D. in Nitrogen-fixing Actinorhizal Symbioses (eds. Pawlowski, K. \& Newton, W. E.) 105-146 (Springer Netherlands, 2007).
64. Silvester, Warwick B., Harris Sharon L., Tjepkema, John D. in The Biology of Frankia and Actinorhizal Plants (ed. Schwintzer, Christa R. , , Tjepkema, John D) 157-176 (Academic Press, 2012).
65. Rogers, C. \& Oldroyd, G. E. D. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J. Exp. Bot. 65, 1939-1946 (2014).
66. Untergasser, A. et al. One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE. PLoS One 7, e47885 (2012).
67. Cao, Q., den Camp, R. O., Kalhor, M. S., Bisseling, T. \& Geurts, R. Efficiency of Agrobacterium rhizogenes-mediated root transformation of Parasponia and Trema is temperature dependent. Plant Growth Regul. 68, 459-465 (2012).
68. Davey, M. R. et al. Effective nodulation of micro-propagated shoots of the non-legume Parasponia andersonii by Bradyrhizobium. J. Exp. Bot. 44, 863-867 (1993).
69. Geurts, R. \& de Jong, H. Fluorescent In Situ Hybridization (FISH) on pachytene chromosomes as a tool for genome characterization. Methods Mol. Biol. 1069, 15-24 (2013).
70. Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347-350 (2015).
71. Becking, J. H. The Parasponia parviflora—Rhizobium symbiosis. Host specificity, growth and nitrogen fixation under various conditions. Plant Soil 75, 309-342 (1983).
72. Bergersen, F. J. The quantitative relationship between nitrogen fixation and the acetylene-reduction assay. Aust. Jnl. Of Bio. Sci. 23, 1015-1026 (1970).
73. Cristescu, S. M., Persijn, S. T., te Lintel Hekkert, S. \& Harren, F. J. M. Laser-based systems for trace gas detection in life sciences. Appl. Phys. B 92, 343-349 (2008).
74. Hoagland, D. R., Arnon, D. I. \& Others. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347, (1950).
75. Trouvelot, A, Kough J L, Gianinazzi-Pearson V. in Physiological and Genetic Aspects of Mycorrhizae (ed. Gianinazzi-Pearson, G. S., V.) 217-221 (INRA Press, 1986).
76. Huisman, R. et al. Haustorium formation in Medicago truncatula roots infected by Phytophthora palmivora does not involve the common endosymbiotic program shared by arbuscular mycorrhizal fungi and rhizobia. Mol. Plant. Microbe. Interact. 28, 1271-1280 (2015).
77. Marçais, G. \& Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764-770 (2011).
78. Hare, E. E. \& Johnston, J. S. Genome size determination using flow cytometry of propidium iodide-stained nuclei. Methods Mol. Biol. 772, 3-12 (2011).
79. Novák, P., Neumann, P., Pech, J., Steinhaisl, J. \& Macas, J. RepeatExplorer: a Galaxybased web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792-793 (2013).
80. Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J. 7, 1-8
(2013).
81. Xu, H. et al. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One 7, e52249 (2012).
82. Bakker, F. T. et al. Herbarium genomics: plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly pipeline. Biol. J. Linn. Soc. Lond. 117, 33-43 (2016).
83. Li, H. \& Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009).
84. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. U. S. A. 108, 1513-1518 (2011).
85. Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. \& Pirovano, W. Scaffolding preassembled contigs using SSPACE. Bioinformatics 27, 578-579 (2011).
86. Parra, G., Bradnam, K. \& Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067 (2007).
87. Simão, F. A., Waterhouse, R. M., loannidis, P., Kriventseva, E. V. \& Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212 (2015).
88. Bao, W., Kojima, K. K. \& Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
89. Gremme, G., Steinbiss, S. \& Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645-656 (2013).
90. Han, Y. \& Wessler, S. R. MITE-Hunter: a program for discovering miniature invertedrepeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010).
91. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652 (2011).
92. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).
93. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-1512 (2013).
94. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204-12 (2015).
95. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
96. Stanke, M., Diekhans, M., Baertsch, R. \& Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637-644 (2008).
97. Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. \& Stanke, M. BRAKER1: Unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767-769 (2016).
98. Lomsadze, A., Burns, P. D. \& Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).
99. Campbell, M. S. et al. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 164, 513-524 (2014).
100.Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
101.Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
102.Otto, T. D., Dillon, G. P., Degrave, W. S. \& Berriman, M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res. 39, e57 (2011).
103.Katoh, K. \& Standley, D. M. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. Mol. Biol. Evol. 30, 772-780 (2013).
104.Ronquist, F. \& Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574 (2003).
105.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. \& Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773 (2016).
106.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313 (2014).
107.Emms, D. M. \& Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
108.Swarbreck, D. et al. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 36, D1009-14 (2008).
109.Myburg, A. A. et al. The genome of Eucalyptus grandis. Nature 510, 356-362 (2014).
110.Tuskan, G. A. et al. The Genome of Black Cottonwood, Populus trichocarpa (Torr. \& Gray). Science 313, 1596-1604 (2006).
100. Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520-524 (2011).
112.Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178183 (2010).
113.Saitou, N. \& Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425 (1987).
114.Valdar, W. S. J. Scoring residue conservation. Proteins 48, 227-241 (2002).
115.Peng, Y., Leung, H. C. M., Yiu, S. M. \& Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420-1428 (2012).
116.Kim, D., Langmead, B. \& Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360 (2015).
117.Liao, Y., Smyth, G. K. \& Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930 (2014).

Acknowledgments

This work was supported by NWO-NSFC Joint Research project (846.11.005) to WCY, TB and RG, NWO-VICI (865.13.001) to RG, NWO-VENI (863.15.010) to WK, the European Research Council (ERC-2011-AdG294790) to TB and China Scholarship Councils (201303250067) to FB and (201306040120) to DS. We thank Shelley James and Giles Oldroyd for providing germplasm.

All custom scripts and code are available on https://github.com/holmrenser/parasponia code. The data reported in this paper are tabulated in the Supplementary Materials and archived at NCBI under BioProject numbers PRJNA272473 and PRJNA272482. All analyzed data can be browsed or downloaded through a WebPortal on www.parasponia.org. [For reviewing purposes, an account is available with username reviewer and password D7yGNEkNv25e].

Contributions

This research was led by RG, who together with TB conceived the project. Trema orientalis accessions, including rhizosphere samples, were collected in Sabah Parks (Malaysian Borneo) by RG in an expedition organised by MS and RR. FACS studies to estimate genome sizes were done by FB and RHe. Plant propagations and tissue isolations were done by FB, WL, QC, TS, DS, YR, MH, WY and RG. Arbuscular mycorrhiza assays were done by TS, YR and WK. Studies on hybrid plants were done by FB, QC, DJvdH and EF, and ARA assays by FB and EF. Light and electron microscopy studies were conducted by FB and EF. DNA and RNA was isolated by JV, JH and WL, and sequencing was done by ES. Chloroplast analysis was conducted by RvV, RHo and BG, Bioinformatic analyses were done by RvV, RHo, LS, $J J$ and SS, and manual curations by RvV, RHo, LR, AvZ, TAKW, JJ, KM, WK, and RG. RvV, RHo, LR, MES, TB, SS, and RG wrote the manuscript.

Figure 1: Nodulation phenotype of Parasponia and interspecific Parasponia x Trema F ${ }_{1}$ hybrid plants. (a) Phylogenetic reconstruction based on whole chloroplast of Parasponia and Trema. The Parasponia lineage (marked blue) is embedded in the Trema genus (marked red). Species selected for interspecific crosses are indicated, species used for reference genome assembly are in bold. Node labels indicate posterior probabilities. (b) Mean number of nodules on roots of P. andersonii and P. andersonii $\times T$. tomentosa F_{1} hybrid plants ($\mathrm{n}=7$). (c) Mean nitrogenase activity in acetylene reductase assay of P. andersonii and P. andersonii $\times T$. tomentosa F_{1} hybrid nodules ($\mathrm{n}=4$). Barplot error bars indicate standard deviations; dots represent individual measurements (d) P. andersonii nodule. (e) P. andersonii x T. tomentosa F_{1} hybrid nodule. (f,g) Ultrastructure of nodule tissue of P. andersonii (\mathbf{f}) and F_{1} hybrid (\mathbf{g}). Note the intracellular fixation thread (FT) in the $-40-$
cell of P. andersonii in comparison with the extracellular, apoplastic colonies of rhizobia (AC) in the hybrid nodule. (h-i) Light microscopy images of P. andersonii nodules in three subsequent developmental stages. (h) Stage 1: initial stages of colonization when infection threads (IT) enter the host cells. (i) Stage 2: progression of rhizobium infection in nodule host cell, (j) Stage 3: nodule cells completely filled with fixation threads. Note difference in size between the infected (IC) and non-infected cells (NC). (k) Light microscopy image of F1 hybrid nodule cells. Note rhizobium colonies in apoplast, surrounding the host cells (AC). Nodules have been analysed 6 weeks post inoculation with Mesorhizobium plurifarium BOR2. Abbreviations: FT: fixation thread, CW: cell wall, AC: apoplastic colony of rhizobia, IT: infection threads, IC: infected cell, NC: non-infected cell.

Figure 2: Parasponia and Trema genome structure. Estimated genome sizes and fractions of different classes of repeats as detected by RepeatExplorer, calibrated using kmer based genome size estimates. (a) Total genome sizes and fractions of major repeat classes showing 1) a conserved size of around 300 Mb of non-repetitive sequence, and 2) a large expansion of gypsy-type LTR retrotransposons in all Parasponia compared with all Trema species. (b) Estimated size of gypsy-type LTR subclasses in Parasponia and Trema showing that expansion of this class was mainly due to a tenfold increase of Ogre/Tat to around 75 Mb in Parasponia.

Figure 3: Parasponia-specific adaptations in class 1 hemoglobin protein HB1. (a)
Phylogenetic reconstruction of class 1 (OG0010523) and class 2 hemoglobins (OG0002188). Symbiotic hemoglobins are marked in bold; legumes and the actinorhizal plant casuarina have recruited class 2 hemoglobins for balancing oxygen levels in their nodules. Conversely, Parasponia has recruited a class 1 hemoglobin HB1 confirming parallel evolution of symbiotic oxygen transport in this lineage. Medicago truncatula (Medtr); Glycine max (Glyma), Populus trichocarpa (Potri); Fragaria vesca (Fvesca); Eucalyptus grandis (Eugr); Arabidopsis thaliana (AT). Node values indicate posterior probabilities; Scale bar represents
substitutions per site. Parasponia marked in blue, Trema in red. (b) Expression profile of PanHB1 and PanHB2 in P. andersonii roots, stage 1-3 nodules, and in P. andersonii x T. tomentosa F_{1} hybrid roots and nodules (line H9). Expression is given in DESeq2 normalized read counts, error bars represent standard error of three biological replicates, dots represent individual expression levels. (c) Crystal structure of the asymmetric dimer of PanHB1 as deduced by Kakar et al. 2011 ${ }^{36}$. Dashed line separates the two units. (d) Protein sequence alignment of class 1 hemoglobins from Parasponia spp., Trema spp., Humulus lupulus, and Morus notabilis. Only amino acids that differ from the consensus are drawn. A linear model of the crystal structure showing alpha helices and turns is depicted above the consensus sequence. There are seven amino acids that consistently differ between all Parasponia and all Trema species we sampled: $\mathrm{Ala}(21), \mathrm{Gln}(35), \operatorname{Asp}(97)$, $\operatorname{Ile}(101)$, $\operatorname{Thr}(108)$, $\operatorname{Val}(144)$, and Phe(155). These differences therefore correlate with the functional divergence between P. andersonii PanHB1 and T. tomentosa TtoHB1 ${ }^{35,36}$. All seven consistently different sites are identical for all sampled Trema species, and five are identical for Trema, Humulus, and Morus; at both the amino acid and nucleotide level. This shows that these sites are conserved in all species except Parasponia and therefore supports adaptation of HB1 in the common ancestor of Parasponia. This suggests that the ancestral form of HB1 had oxygen affinities and kinetics that were not adapted to rhizobium symbiosis.

Figure 4: Clustering of commonly utilized symbiosis genes based on expression profile. (a) Principal component analysis plot of the expression profile of 85 commonly utilized symbiosis genes in 18 transcriptome samples: P. andersonii roots and nodules (stage 1-3), hybrid roots and nodules (line H9). All samples have three biological replicates. First two components are shown, representing 78% of the variation in all samples. Colors indicate clusters (K -means clustering using pearson correlation as distance measure, $\mathrm{k}=2$) of genes with similar expression patterns. The three genes with the highest pearson correlation to the cluster centroids are indicated as black dots. (b-c) Expression profiles of representative genes for each cluster. (b) Cluster 1 represents genes related to organogenesis: these genes are upregulated in both P. andersonii and hybrid nodules. (c) Cluster 2 represents genes related to infection and fixation: these genes are highly upregulated in P. andersonii nodules, but do not respond in the hybrid nodule. PanCML1: P. andersonii CALMODULIN 1; PanOBO1: P. andersonii ORGAN BOUNDARY-LIKE 1; PanNFYA1: P. andersonii NUCLEAR TRANSCRIPTION FACTOR-YA 1; PanNIP: P. andersonii AQUAPORIN NIP NODULIN26-LIKE; PanNPF3: P. andersonii NITRATE/PEPTIDE TRANSPORTER FAMILY 3; PanMOT1: P. andersonii MOLYBDATE -45-
bioRxiv preprint doi: https://doi.org/10.1101/169706; this version posted July 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 5: Expression profile of Parasponia symbiosis genes that are lost in Trema species. Expression of symbiosis genes in P. andersonii stem, leaf, female and male flowers, lateral root primordia, roots and 3 nodule stages (S1-3), and in P. andersonii x T. tomentosa F_{1} hybrid roots and nodules (line H9). Expression is given in DESeq2 normalized read counts, error bars represent standard error of three biological replicates for lateral root primordia, root, and nodule samples. Dots represent individual expression levels. PanNFP2:
P. andersonii NOD FACTOR PERCEPTION 2, PanNIN: P. andersonii NODULE INCEPTION, PanLEK1: P. andersonii LECTIN RECEPTOR KINASE 1, PanCRK11: P. andersonii CYSTEINE-RICH RECEPTOR KINASE 11, PanDEF1: P. andersonii DEFENSIN 1; PanRPG: P. andersonii RHIZOBIUM DIRECTED POLAR GROWTH.

Figure 6: Parasponia NFP1 and NFP2 are homologous to legume LCO receptors MtNFP/LjNFR5. Phylogenetic reconstruction of the NFP/NFR5 orthogroup. NFP2 protein sequences of T. levigata, T. orientalis, Morus notabilis, Malus x domestica and Prunus persica have been deduced from pseudogenes. Included species: Parasponia andersonii (Pan); Parasponia rigida (Pri); Parasponia rugosa (Pru); Trema orientalis RG33 (Tor); Trema orientalis RG16 (TorRG16); Trema levigata (Tle); medicago (Medicago truncatula, Mt); lotus (Lotus japonicus, Lj); soybean (Glycine max, Glyma); peach (Prunus persica, Ppe); woodland strawberry (Fragaria vesca, Fvesca); black cotton poplar (Populus trichocarpa, -49-

Potri); eucalyptus (Eucalyptus grandis, Eugr); jujube (Ziziphus jujube), apple (Malus x domestica), mulberry (Morus notabilis), hops (Humulus lupulus (natsume.shinsuwase.v1.0)), cassave (Manihot esculenta), rice (Oryza sativa), tomato (Solanum lycopersicum), castor bean (Ricinus communis). Node numbers indicate posterior probabilities, scale bar represents substitutions per site. Parasponia proteins are marked in blue, Trema in red.

Figure 7: Parallel loss of symbiosis genes in non-nodulating Rosales species. Pseudogenization or loss of NOD FACTOR PERCEPTION 2 (NFP2), NODULE INCEPTION (NIM) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG) in two phylogenetically independent Trema lineages, Humulus lupulus, Morus notabilis, Prunus persica, and Malus x domestica. In Ziziphus jujuba NFP2 is lost and RPG is pseudogenized, but NIN is intact. In Fragaria vesca all three genes are lost (not shown). Introns are indicated but not scaled. Triangles indicate frame-shifts; X indicate premature stop codons; LTR indicates long terminal repeat retrotransposon insertion (not scaled); arrows indicate alternative transcriptional start site in NIN. SP = signal peptide (red); LysM: 3 Lysin Motif domains (magenta); TM = transmembrane domain (lilac); PK = protein kinase (pink); CD = 4 conserved domains (grey); RWP-RK: conserved amino acid domain (orange); PB1 = Phox and Bem1 domain (yellow); NT-C2 = N-terminal C2 domain (green).

Supplementary Figure 1: Arbuscular mycorrhization of Parasponia and Trema species.
(a) Mycorrhization efficiency of Parasponia andersonii WU01.14 (Pan), Parasponia rigida WU20 (Pri), Trema orientalis RG33 (Tor) and Trema levigata WU50 (Tle), 6 weeks post inoculation with Rhizophagus irregularis (Rir, $\mathrm{n}=10$, error bars denote standard errors). (b, c) Confocal image of WGA-Alexafluor 488-stained arbuscules in root segment of either P. andersonii (Pan) (b) or T. orientalis (Tor) (c).

Supplementary Figure 2: Genotyping of Parasponia andersonii x Trema tomentosa F_{1} hybrid plants. (a) Genotyping of 17 putative F_{1} hybrid plants of the cross P. andersonii (Pan) x T. tomentosa (Tto) using amplified length polymorphism due to an indel in the LAX1 promoter. M: generuler DNA ladder mix (Fermentas). Hybrid plants 4, 8, 9, 16, 19 and 36 were used for further experiments. (b-d) Mitotic metaphase chromosome complement of P. andersonii $(2 \mathrm{n}=2 \mathrm{x}=20)(\mathbf{b})$, T. tomentosa $(2 \mathrm{n}=4 \mathrm{x}=40)$ (c), and P. andersonii x T. tomentosa F1 hybrid ($2 \mathrm{n}=3 \mathrm{x}=30$) (d).

Supplementary Figure 3: Nodulation efficiency of Parasponia andersonii. Mean number of nodules on roots of P. andersonii inoculated with either Mesorhizobium plurifarium BOR2 ($\mathrm{n}=6$) or Bradyrhizobium elkanii WUR3 microsymbionts ($\mathrm{n}=5$) (6 weeks post inoculation). Dots represent individual measurements.

Supplementary Figure 4: Longitudinal sections of root nodules of Parasponia

 andersonii x Trema tomentosa F1 hybrid plants. Hybrid plants $\mathrm{H} 4, \mathrm{H} 8, \mathrm{H} 9, \mathrm{H} 16, \mathrm{H} 19$ and H36 were clonally propagated and inoculated and inoculated with either Bradyrhizobium elkanii WUR3 (a-c) or Mesorhizobium plurifarium BOR2 (d-f). (a) H4 nodule induced by B. elkanii WUR3. (b) H8 nodule induced by B. elkanii WUR3. (c) H9 nodule induced by B. elkanii WUR3. (d) H16 nodule induced by M. plurifarium BOR2. (e) H19 nodule induced by M. plurifarium BOR2. (f) H36 nodule induced by M. plurifarium BOR2. Note absence of intracellular infection in all sectioned nodules.

Supplementary Figure 5: Genome coverage and heterozygosity estimates based on k-

 mer analysis of Trema and Parasponia species. Plots of 21 -mer multiplicity frequencies based on jellyfish output showing that T. levigata and T. orientalis RG16 are relatively heterozygous. Solid red lines indicate estimated genome coverage corresponding to homozygous sequence; dashed red lines indicate half the estimated genome coverage corresponding to heterozygous sequence; blue lines indicate estimated error multiplicity threshold.
combined analysis of four plastid markers. Node values indicate posterior probability / RAxML bootstrap support; scale bar represents substitutions per site. Parasponia lineage is in blue, Trema lineages are in red. Note that sister relationship of Parasponia and T. levigata has low bootstrap support, but is independently supported by four shared sequence insertions (Supplementary Fig. 8). Accessions selected for comparative genome analysis in bold. GenBank accession numbers are in Supplementary Table 12.

Supplementary Figure 7: Phylogenetic reconstruction of the Cannabaceae based on chloroplast genomes. Bayesian tree based on a combined analysis of eight data partitions (see Methods). Parasponia lineage is in blue, Trema lineages are in red. Note that sister relationship of Parasponia and T. levigata has low bootstrap support but is independently supported by fou rshared sequence insertions (Supplementary Fig. 8). Node values indicate posterior probability / RAxML bootstrap support; scale bar represents substitutions per site. GenBank accession numbers are in Supplementary Table 12.

5,120
5,1,10
5,1,40
5,1,50
P. andersonii TGGTAGACCAACTCTTGTCTCTTATCTTAGTCGATTCCATTATICTATATTTA

P. rugosa mgtagaccanctettetctcttanctuagtigaticcattatmetataittagantitaganit

T. orientalis RG16 mgTAGACCAACTCTTGTCTCTTATCMTA------ MCCATTATICTATGTCTA-TATMTAATAIT
T. orientalis RG33 ITGTAGACCAACTCTTGTCTCTTATCTTA------TCCATTATTCTATGTCTA-TATITAATATT

Cannabis sativa TGTAGACCTACTCTTGTCTCTTATGTTA

- Trcattatictait

Humulus lupulus IIGTAGACCAACTCTTGTCTCTTATGTTA------ ICCATTATMCTAT

Morus notabilis mGTAGACCAACTCTTGTCTCTTAMGI----TA-MCCATTATMCTACTTTAATATCTTATTAMA

T. orientalis RG16 \#GGCAGCAACATACCATTTTTGGGGATTTCl----TTIGTATCAAAGAATCATACGAATGA重CAB
T. orientalis RG33 mgGCAGCAACATACCATTTTTGGGGATTTC----TTMGTATCAAAGAATCATACGAATGAMCA要 Cannabis sativa
Humulus lupulus Chaetachme aristata Gironniera celtidifolia Morus notabilis
Prunus persica
P. andersonii
P. rigida
P. rugosa
T. levigata
T. orientalis RG16
T. orientalis RG33
Cannabis sativa
Humulus lupulus
Chaetachme aristata
Gironniera celtidifolia
Morus notabilis
Prunus persica

T. levigata mCAGAAAAGTGATCCA TTTTTTTMATHATCATTTATCATCATTTAGCTGAATAAAAAATTACEA
T. orientalis RG16
T. orientalis RG33

Cannabis sativa Humulus lupulus Chaetachme aristata Gironniera celtidifolia

Morus notabilis
Prunus persica TCAGAAAAGTGATCCATTTTTTMATT -ATCATTTAGCTGAATAAAAAATTACGA HCAGAAAAGTGATCCATTTTTTTMATM--------- ATCATTTAGCTGAATAAAAAATTACGA TCCGAAAAAAATCCT-TTTTTTGTTAT------CATTTAGATTTAGACGAATAAAATATTATG-ICAGAAAAAAAAAATATTTTTTTTTAT------C------ ATTTAGACGAATAAAATATTATGTYAGNTACCCCCTCTTTCTMT
mTATAAAAATATAAGCTTAMAMAT

e
P. andersonii
P. rigida
P. rugosa
T. levigata
T. orientalis RG16
T. orientalis RG33 Cannabis sativa Humulus lupulus Chaetachme aristata Gironniera celtidifolia

Morus notabilis
sequence insertions in chloroplast genomes supporting (a-d) or refuting (e) sister relationship of Parasponia and Trema levigata. (a) matK-rps16 intergenic spacer, (b) rps16-psbK intergenic spacer, (c) atpF intron, (d, e) petA-psbJ intergenic spacer. Numbers indicate alignment coordinates; colours indicate percent identity while ignoring gaps: green $=100 \%$, olive $=80-100 \%$, yellow $=60-80 \%$; black rectangles mark shared sequence insertions concerned.

Supplementary Figure 9: Whole genome alignment dotplot for P. andersonii and T. orientalis RG33. Maximal unique matching (MUM) alignments were generated using nucmer 4.0.0beta with the following settings: breaklength 500, mincluster 200, maxgap 100, minmatch 80, minalign 7000. Forward alignments are red, reverse alignments are blue. Scaffolds are ordered by alignment size, which results in a clear diagonal line indicating the collinearity of the two genomes.

Supplementary Figure 10: Identity of P. andersonii - T. orientalis putative orthologous gene pairs. Histograms of (a) percent nucleotide identity (calculated by taking the fraction of identical nucleotides ignoring end gaps using global alignments produced by MAFFT version 7.017^{103}) and (b) length difference of all 25,605 orthologous gene pairs from P. andersonii and T. orientalis as a percentage of the longest gene. Red line indicates median, blue line indicates mean.

Stage 3

Supplementary Figure 11: Venn diagram of P. andersonii nodule enhanced genes in 3

 developmental stages. Nodule developmental stages according to Fig. 1h-j. List of genes is given in Supplementary Table 9. Parasponia andersonii genes are considered 'nodule enhanced' when expression is increased >2-fold in any of 3 nodule developmental stages when compared to non-inoculated root sample. Largest fraction concerns genes enhanced in all 3 stages.

Supplementary Figure 12: Statistical testing of common utilization of genes in Parasponia and medicago. To assess common utilization of genes in Parasponia and medicago nodules we performed statistical testing of overlap between Parasponia andersonii and medicago nodule-enhanced genes. Overlap was calculated based on orthogroup membership (i.e. when an orthogroup contains nodule-enhanced genes from P. andersonii and medicago it is scored as overlap). Significance of set overlaps is usually calculated based on the hypergeometric distribution. However, because larger orthogroups have higher chance of overlap, the hypergeometric is not suitable. We therefore assessed significance with a permutation test where the null distribution is based on overlap found when geneorthogroup membership is randomized ($n=10,000$).Figure shows density plots of both hypergeometric distribution and permutation random variates. Vertical line shows the observed number of 102 overlapping orthogroups ($p<0.02$ based on permutation test).

Supplementary Figure 13: Venn diagram of P. andersonii symbiosis gene sets. Nodule enhanced genes have a significantly enhanced expression level (fold change $>2, p<0.05$, DESeq2 Wald test) in any of three developmental stages ($\mathrm{N}=1725$; Supplementary Fig. 11; Supplementary Table 9). Commonly utilized genes are nodule-enhanced in P. andersonii as well as in the legume medicago ${ }^{31}(\mathrm{~N}=85$; Supplementary Table 10, Supplementary Data File 2). Legume symbiosis genes are orthologs of genes that were characterized to function in legume-rhizobium symbiosis ($\mathrm{N}=117$; Supplementary Table 1, Supplementary Data File 1).

Supplementary Figure 14: Expression profile of PanHCT1 and PanHCT2 genes.

 Expression of P. andersonii HYDROXYCINNAMOYL-COA SHIKIMATE TRANSFERASE 1 (PanHCT1) and PanHCT2 in P. andersonii roots, stage 1-3 nodules, and in P. andersonii x T. tomentosa F_{1} hybrid roots and nodules (line H9). PanHCT1 and PanHCT2 represent the only Parasponia-specific gene duplication in the defined symbiosis gene set, as PanHCT1 is upregulated in nodules. Expression is given in DESeq2 normalized read counts, error bars represent standard error of three biological replicates, dots represent individual expression levels.

Supplementary Figure 15: Phylogenetic reconstruction of Hydroxycinnamoyl-CoA

 Shikimate Transferase (HCT) orthogroup. HCT orthogroup was created by merging OG0001291, OG0016758, OG0016791, OG0018560, OG0020327, OG0020921, OG0022256 \& OG0023772, supplemented with HCT1 and HCT2 orthologs of P. rigida, P. rugosa, T. orientalis RG16 and T. levigata. PriHCT2 is a putative pseudogene and was not included. HCT1 and HCT2 represent the only Parasponia specific gene duplication in the defined symbiosis gene set, as PanHCT1 was found to be upregulated in nodules. Species included: Parasponia andersonii (Pan); P. rigida (Pri); P. rugosa (Pru) (all in blue); Trema orientalis (Tor); T. orientalis RG16 (TorRG16); T. levigata (Tle) (all in red); Medicago truncatula (Mt); Glycine max (Glyma), Populus trichocarpa (Potri); Fragaria vesca (Fvesca); Eucalyptus grandis (Eugr); Arabidopsis thaliana (AT). Phylogenetic inference was calculated using MrBayes 3.2.2. Scale bar represents substitutions per site.

Arabidopsis AtLYK3

0.3

Supplementary Figure 16: Phylogenetic reconstruction of the EPR3 orthogroup. Alignment of orthogroup OG0010070 containing exopolysaccharide receptor LjEPR3. Note that all Parasponia species lack a functional EPR (Supplementary Fig. 15). Species included: Trema orientalis RG33 (Tor); Trema orientalis RG16 (TorRG16); Trema levigata (Tle) (all in red); Parasponia Andersonii (Pan); Parasponia Rigida (Pri) Parasponia Rugosa (Pru) (all in blue). Medicago truncatula (Mt); Glycine max (Glyma), Populus trichocarpa (Potri); Fragaria vesca (Fvesca); Eucalyptus grandis (Eugr). Phylogenetic inference was calculated using MrBayes 3.2.2. Scale bar represents substitutions per site.

Supplementary Figure 18: Read mappings of Trema orientalis RG16 and T. levigata to

 the Parasponia andersonii genome. Read mappings to gene region of (a) PanNFP2, illustrating absence of a large part of the gene in T. orientalis RG16, (b) PanNIN, illustrating absence of a large part of the canonical first exon in T. levigata, (c) PanRPG, illustrating absence of the gene in T. levigata. Coordinates on the x-axis correspond to those of the P. andersonii scaffold; orange bars depict P. andersonii gene models; histograms depict read coverage in grey; nucleotide differences from the P. andersonii reference scaffold are in color -72-

Supplementary Figure 19: Genomic alignments of Trema orientalis RG16 or Trema levigata to Parasponia andersonii NFP2, NIN, and RPG gene regions. Genome alignment(s) of (a) T. orientalis RG16 with PanNFP2 gene region, (b) T. levigata with PanNIN gene region, (c) T. levigata with PanRPG gene region. Coordinates correspond to those on the draft genome scaffolds; Parasponia andersonii gene and CDS models are depicted in black and orange, respectively; different genomic scaffolds are separated by dashed lines.

Supplementary Figure 20: Expression profile of PanNFP1 and PanNFP2 genes.

 Expression of P. andersonii NOD FACTOR PERCEPTION 1 (PanNFP1) and PanNFP2 in P. andersonii roots, stage 1-3 nodules, and in P. andersonii x T. tomentosa F1 hybrid roots and nodules. Expression is given in DESeq2 normalized read counts, error bars represent standard error of three biological replicates, dots represent individual expression levels.

Supplementary Figure 21: Expression of P. andersonii NODULE INCEPTION (PanNIM)

 gene splice variants. PanNIN. 1 encodes a canonical symbiotic protein, whereas PanNIN. 2 encodes a shorter protein variant that is the result of an alternative start site in an intron. Expression levels were determined by identifying unique DNA sequences for both variants; spanning the intron in case of PanNIN. 1 (CTGCCAAGCGCTTGAGGCTGTTGATCTT), or including the start site of PanNIN. 2 (GCCAATTACCTTGCAGGCTGTTGATCTT) and counting all occurrences in the RNA-seq reads. DESeq2 size factors were used to normalize these counts. The fraction of these normalized counts between PanNIN. 1 and PanNIN. 2 was used to scale the expression levels. Error bars represent standard error of three biological replicates, dots represent individual expression levels.

Supplementary Figure 22: Phylogenetic reconstruction of NIN orthogroup. Alignment of OG0001118, which includes NIN and NLP1 (NIN-LIKE PROTEIN 1)-like proteins, supplemented with additional species. AtNLP4 and AtNLP5 were included as outgroup. Parasponia spp. marked in blue, Trema spp. In red. Note that in Trema species NIN only occurs in truncated forms (Fig. 7). Included species: Parasponia andersonii (Pan); Parasponia rigida (Pri); Parasponia rugosa (Pru); Trema orientalis RG33 (Tor); Trema orientalis RG16 (TorRG16); Trema levigata (Tle); medicago (Medicago truncatula, Mt); lotus (Lotus japonicus, Lj); soybean (Glycine max, Glyma); peach (Prunus persica, ppe); woodland strawberry (Fragaria vesca, Fvesca); back cotton poplar (Populus trichocarpa, Potri); eucalyptus (Eucalyptus grandis, Eugr); arabidopsis (Arabidopsis thaliana, At), jujube
(Ziziphus Jujube) apple (Malus x domestica), mulberry (Morus Notabilis), hop (Humulus Lupulus (natsume.shinsuwase.v1.0)), and casuarina (Casuarina glauca). Node numbers indicate posterior probabilities, scale bar represents substitutions per site.

Supplementary Figure 23: Phylogenetic reconstruction of the RPG orthogroup. Alignment of OG0014072 was supplemented with RPG homologs of additional species. Parasponia spp. marked in blue, Nitrogen fixation clade in bold. Included species: Parasponia andersonii (Pan) Parasponia rigida (Pri); Parasponia rugosa (Pru) Medicago truncatula (Mt); Lotus japonicus (Lj); Glycine max (Glyma), Populus trichocarpa (Potri); Eucalyptus grandis (Eugr). Trema orientalis RG33 (Tor); Trema. orientalis RG16 (TorRG16). Ziziphus jujube (Zj). No other functional RPG proteins could be detected in Rosales species, including Fragaria vesca Ziziphus Jujube, Malus Domestica, Morus Notabilis, and Humulus

Lupulus (natsume.shinsuwase.v1.0). Outgroup: M. truncatula MtRRP1 (RPG RELATED PROTEIN 1, Medtr1g062200.1). Node numbers indicate posterior probabilities, scale bar represents substitutions per site.

Supplementary Figure 24: Annotation of Prunus persica locus ppa018195m.g

representing PpNIN. (a) Comparison of the exon-intron structure of two publicly released gene models (named Prupe.8g17800_v1 and Prupe.8g178400_v2) and the gene model used here (Ppnin pseudogene). Yellow arrows: exons. Red bars indicate 2 single-nucleotide insertions that affect the coding region of the Ppnin pseudogene. (b) Alignment of derived/deduced NIN proteins of 3 Prunus persica gene models Prupe.8g17800_v1, Prupe.8g178400_v2, and Ppnin pseudogene, with Medicago truncatula MtNIN, Lotus japonicus LjNIN, Ziziphus jujube ZjNIN, Parasponia andersonii PanNIN.1, and Casuarina glauca CgNIN. Six conserved domains are annotated in MtNIN (cyan). Exon structure for all NIN genes indicated in yellow (except CgNIN for which no gene sequence is available). Deviations in the three Prunus persica derived/deduced NIN proteins are marked in red boxes.	Name	ID	CNV type	Class	Description
PanNFP2	PanWU01x14_asm01_ann01_320250	loss in Trema	LS,NE	LysM domain containing receptor kinase,	
PanCRK11	PanWU01x14_asm01_ann01_285030	loss in Trema	NE	Cystative rhizobium LCO receptor	

Table 1. Copy number variants in nodulation genes that are consistent between Parasponia and Trema genera.

Gene ID corresponds to that in P. andersonii, or T. orientalis in case of gene loss in Parasponia species. LS: putative ortholog of legume genes that function in symbiosis (see: Supplementary Table 1), NE: nodule enhanced expression in P. andersonii (see: Supplementary Table 9), CR: genes that are commonly utilized in P. andersonii and medicago (see: Supplementary Table 10). Expression profiles of the P. andersonii genes are depicted in Fig. 4.

Supplementary Table 1: Parasponia andersonii and Trema orientalis RG33 putative orthologs of legume genes that function in rhizobium symbiosis.

Genes have been classified according to function of encoded proteins. CNV between P. andersonii and T. orientalis are marked in red. Genes for which no putative ortholog could be identified are indicated (not identified). The P. andersonii and T. orientalis genes are classified as either 'putative ortholog', 'closest homolog' or 'inparalog' depending on the phylogenetic relation with the legume symbiosis gene. Orthogroup number corresponds to orthogroups in Supplementary Table 7. It is indicated in case gene has been found to function in other symbiosis. AM: arbuscular mycorrhiza, and ANS: actinorhizal nodule symbiosis. Gm: Glycine max; Lj: Lotus japonicus; Ms: Medicago sativa; Mt: Medicago truncatula; Ps Pisum sativum; Pv: Phaseolus vulgaris.

Supplementary Table 2: Intergeneric crossings between Parasponia and Trema species.

Results column indicates whether intergeneric crosses could be obtained (positive) or not (negative).

Supplementary Table 3: Parasponia-Trema germplasm collection.

Supplementary Table 4: Genome size estimations based on estimated genome coverage.

Supplementary Table 5: Genome sequencing strategy.

Supplementary Table 6: Assembly results of Parasponia - Trema genome sequences.
\# N is number of gap sequences; $\mathrm{GC} \%$ is guanine-cytosine content; BUSCO ${ }^{87}$ and CEGMA ${ }^{86,87}$ are tools that assess completeness of genome assemblies by checking sets of conserved genes. For BUSCO a set of 1,440 plant specific genes was used.

Supplementary Table 7: Inferred orthogroups.

Eurosid orthogroups generated by OrthoFinder based on gene models from Parasponia andersonii, Trema orientalis, Medicago truncatula, Glycine max, Fragaria vesca, Populus trichocarpa, Arabidopsis thaliana and Eucalyptus grandis.

Supplementary Table 8: Gene models in Parasponia andersonii and Trema orientalis RG33

 reference genomes.Inparalogs: species specific duplications; singletons: loss of gene in other species; multiorthologs: duplication in the other species; CNVs: copy number variants. We found no significant enrichment of these CNVs in the symbiosis genes in Supplementary Table 1 and nodule enhanced genes in Suppplementary table 9 (hypergeometric test, $\mathrm{p}=0.99$). For BUSCO a set of 1,440 plant specific genes was used.

Supplementary Table 9: Parasponia nodule-enhanced gene set.
P. andersonii genes with enhanced expression in three nodule developmental stages compared to non-inoculated roots (>2-fold increase). Stage 1: initial stages of colonization when infection threads entering the host cells. Stage 2: progression of rhizobium infection in nodule host cells, Stage 3: nodule cells filled with fixation threads. Plants were inoculated with M. plurifarium BOR2. OrthoGroup number corresponds to Supplementary Table 7,

STAT: trident alignment conservation score, CLASS: gene homology classification (nv = orthologous pair not validated by whole-genome alignments) FC: gene expression log foldchange in nodule versus root, P: P-value adjusted for multiple testing based on false discovery rate estimation. Genes that are putatively orthologous to legume genes with symbiotic function are classified as 'LEGUME SYMBIOSIS GENE'. Conserved CNVs between Parasponia and Trema species are shaded pink.

Supplementary Table 10: Commonly utilized symbiosis gene set.
P. andersonii genes with enhanced expression in three nodule developmental stages compared to non-inoculated roots (>2-fold increase) (Supplementary Table 9), of which a putative ortholog in Medicago truncatula also has been identified as a gene with a nodule enhanced expression ${ }^{31}$. Cluster numbers indicate expression profile clusters of commonly utilized genes as shown in Fig. 5. DESeq2 normalized read counts are included for P. andersonii and hybrid roots, hybrid nodules and three stages of P. andersonii nodules. Stage 1: initial stages of colonization when infection threads enter the host cells. Stage 2 : progression of rhizobium infection in nodule host cells, Stage 3: nodule cells filled with fixation threads. Plants were inoculated with M. plurifarium BOR2. OrthoGroup number corresponds to Supplementary Table 7, STAT: trident alignment conservation score, CLASS: Parasponia-Trema gene homology classification (nv = orthologous pair not validated by whole-genome alignments), FC: gene expression log fold-change gene expression in nodule versus roots, P : P -value adjusted for multiple testing based on false discovery rate estimation. Genes that are putatively orthologous to legume and actinorhizal genes with symbiotic function are classified as 'LEGUME SYMBIOSIS GENE'. Conserved CNVs between Parasponia and Trema spp are in bold.

Supplementary Table 11: Sequenced RNA samples.

Supplementary Table 12: GenBank Accession numbers of sequences.

Tab 1: sequences used in phylogenetic reconstructions of Cannabaceae. Tab 2: sequences of genes with copy number variants. Sequences generated for this study are in bold; pseudogenes are marked with grey background.

Supplementary Data File 1: Phylogenetic analysis of Parasponia andersonii and Trema orientalis RG33 putative orthologs of legume genes that function in symbioses.

 Phylogenetic trees (based on Neighbour Joining) of orthogroups containing published genes that function in symbiosis (see also Supplementary Table 1). OrthoGroup number corresponds to Supplementary Table 7; Node labels indicate bootstrap support values. Legume symbiosis genes and symbiotic homologs from actinorhizal species are marked in bold; proteins from Arabidopsis thaliana (AT) are marked in green; Eucalyptus grandis (Eucgr) in olive; Populus trichocarpa (Potri) in light blue; Medicago truncatula (Medtr) in purple; Glycine max (Glyma) in mint; Fragaria vesca (Fvesca) in pink; P. andersonii (Pan) in dark blue; and T. orientalis (Tor) in dark red. Legume or actinorrhizal symbiosis genes from species not included in the orthogroup inferences are in black. Agl: Alnus glutinosa; Cgl: Casuarina glauca; Dgl Datisca glomerata; Lja: Lotus japonicus; Msa: Medicago sativa; Mtr: Medicago truncatula; Phy: Petunia hybrida; Psa: Pisum sativum; Pvu: Phaseolus vulgaris.Supplementary Data File 2: Phylogenetic analysis of genes utilized in Parasponia and medicago root nodules. Phylogenetic trees (based on Neighbour Joining) of orthogroups containing genes with significantly enhanced expression level in any of three Parasponia nodule developmental stages (Supplementary Fig. 11; Supplementary Table 9) as well as genes with significantly enhanced expression in nodules of medicago ${ }^{31}$ (Supplementary

Table 10). OrthoGroup number corresponds to Supplementary Table 7; Node labels indicate bootstrap support values. Nodule-enhanced genes are marked in bold; proteins from Arabidopsis thaliana (AT) are marked in green; Eucalyptus grandis (Eucgr) in olive; Populus trichocarpa (Potri) in light blue; Medicago truncatula (Medtr) in purple; Glycine max (Glyma) in mint; Fragaria vesca (Fvesca) in pink; P. andersonii (Pan) in dark blue; and T. orientalis (Tor) in dark red. Agl: Alnus glutinosa; Cgl: Casuarina glauca; Dgl Datisca glomerata; Lja: Lotus japonicus; Msa: Medicago sativa; Mtr: Medicago truncatula; Phy: Petunia hybrida; Psa: Pisum sativum; Pvu: Phaseolus vulgaris.

[^0]: Affiliations:
 ${ }^{1}$ Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Wageningen, The Netherlands.
 ${ }^{2}$ Wageningen University, Department of Plant Science, Bioinformatics Group, Wageningen, The Netherlands.
 ${ }^{3}$ Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
 ${ }^{4}$ Department of Plant Science, Laboratory of Plant Developmental Biology, Wageningen, The Netherlands.
 ${ }^{5}$ Beijing University of Agriculture, College of Biological Science and Engineering \& Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit trees, Beijing, China.
 ${ }^{6}$ Wageningen UR, Plant Research, BU Bioscience, Wageningen, The Netherlands.
 ${ }^{7}$ Sabah Parks, Kota Kinabalu, Sabah, Malaysia.
 ${ }^{8}$ Naturalis Biodiversity Center, Leiden, The Netherlands.
 ${ }^{9}$ Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Malaysia.
 ${ }^{10}$ Wageningen University, Department of Plant Science, Laboratory of Biosystematics, Wageningen, The Netherlands.
 \dagger, \ddagger : These authors contributed equally
 *Corresponding author: Rene Geurts, rene.geurts@wur.nl

