
 

Parallel machine scheduling by column generation

Citation for published version (APA):
Akker, van den, J. M., Hoogeveen, J. A., & Velde, van de, S. L. (1997). Parallel machine scheduling by column
generation. (Memorandum COSOR; Vol. 9706). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/2fed5ba6-dc56-4f52-b803-fbf67423a70a


tLB
Eindhoven University

of Technology

Departnlent of Mathematics

and Computing Science

Memorandum COSOR 97-06

Parallel machine scheduling

by column generation

I.M. van den Akker

1.A. Hoogeveen

S.L. van de Velde

Eindhoven, March 1997

The Netherlands



Parallel machine scheduling

by column generation

J .M. van den Akker*

Department of Mathematical Models and Methods

National Aerospace Laboratory NLR

P.O. Box 90502, 1006 BM Amsterdam, The Netherlands

Email address:vdakker@nlr.nl

J.A. Hoogeveen

Department of Mathematics and Computing Science

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Email address:slam@win.tue.nl

S.L. van de Velde

Faculty of Mechanical Engineering

University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

Email address:s.1.vandevelde@wb.utwente.nl

September, 1995 - Revision: March 20, 1997

*Supported by Human Capital and Mobility (HCM), grant number:
ERBCHBGCT940513

1



Abstract

Parallel machine scheduling problems concern the scheduling of n jobs

on m machines to minimize some function of the job completion times.

If preemption is not allowed, then most problems are not only NP
hard, but also very hard from a practical point of view. In this paper,

we show that strong and fast linear programming lower bounds can

be computed for an important class of machine scheduling problems

with additive objective functions. Characteristic of these problems is

that on each machine the order of the jobs in the relevant part of the

schedule is obtained through some priority rule. To that end, we for

mulate these parallel machine scheduling problems as a set covering

problem with an exponential number of binary variables, n covering

constraints, and a single side constraint. We show that the linear pro

gramming relaxation can be solved efficiently by column generation,

since the pricing problem is solvable in pseudo-polynomial time. We

display this approach on the problem of minimizing total weighted

completion time on m identical machines. Our computational results

show that the lower bound is singularly strong and that the outcome

of the linear program is often integral. Moreover, they show that our

branch-and-bound algorithm that uses the linear programming lower

bound outperforms the previously best algorithm.

1980 Mathematics Subject Classification (Revision 1991): 90B35.

Keywords and Phrases: parallel machine scheduling, set covering for

mulation, linear programming, column generation, dynamic program

ming, total weighted completion time.
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1 Introduction

Parallel machine scheduling problems concern the scheduling of n jobs on

m parallel machines to minimize some function of the job completion times.

Problems in which preemption of jobs is not allowed decompose into two

subproblems: assigning jobs to machines and then sequencing the jobs on

each machine. We consider the class of problems with additive objective

functions that have all jobs in the relevant part of the schedule sequenced

according to some priority rule - we refer to it as class (A). The difficult

part lies then mainly in the assignment of jobs to machines, because for a

given assignment we can find the optimal schedule by sequencing the jobs in

the relevant part of the schedule according to the priority rule, after which

the non-relevant jobs are scheduled after the other jobs.

Class (A) contains important objective functions like total weighted com

pletion time, for which the whole schedule is relevant, and objective func

tions like the weighted number of tardy jobs and total weighted late work,

for which only the on-time part of the schedule is relevant. All these prob

lems are unary JVP-hard but solvable in pseudo-polynomial time for a fixed

number of machines m by applying the dynamic programming techniques of

Rothkopf (1966) and Lawler and Moore (1969). These pseudo-polynomial

algorithms, however, are impractical unless m = 2 or the processing times

are (very) small.

Additive objective functions pose a computational challenge, since it is

difficult to compute strong lower bounds. This is nicely witnessed by the

research effort that the problem of minimizing the total weighted completion

time on m identical parallel machines has attracted since the early days of

machine scheduling research; see for instance Eastman, Evan, and Issacs

(1964), Elmaghraby and Park (1974), Barnes and Brennan (1977), Sarin,

Ahn, and Bishop (1988). Using the notation scheme of Graham, Lawler,

Lenstra, and Rinnooy Kan (1979), we refer to this problem as PII 2:,7=1 WjCj

or as Pmll 2:,.7=1 WjCj when the number of machines m is fixed. The lower

bounds developed by Webster (1992, 1995), which require pseudo-polynomial

time, and Belouadah and Potts (1994) are a big leap forward. Belouadah and

Potts also report on the performance of a branch-and-bound algorithm that

uses their bound; it is capable of solving instances with up to 20 jobs and 5

machines and 30 jobs on 4 machines.

It is also remarkable that other parallel machine scheduling problems
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with additive objective functions have not received any attention yet. For

instance, no one ventured at the parallel machine problem of minimizing

the weighted number of tardy jobs or total late work, although their single

machine counterparts, which are binary NP-hard, attracted considerable

interest; see for instance Potts and Van Wassenhove (1988, 1992) and Hariri,

Potts, and Van Wassenhove (1995).

In this paper, we present a methodology that can be used to deal with the

problem PII 2:/;=1 wjGj and the other problems in class (A); we describe the

approach in detail for the former problem and indicate how it can be modified

to deal with the latter problems. The approach is based on formulating the

problem PII 'L}=1 wjGj as a set covering problem with an exponential num

ber of binary variables, n covering constraints, and a single side constraint.

We then solve the linear programming relaxation of this formulation by a

column generation approach that uses an O(n 'L}=1 Pj) algorithm to solve

the corresponding pricing problem, where Pj is the processing time of job

Jj (j = 1, ... , n). Obviously, if the optimal solution for the linear program

ming relaxation happens to be integral, then we have identified an optimal

solution for the problem Plj 'L}=1 wjGj . If not, then we apply a branch

and-bound algorithm to determine an optimal solution. Our computational

results show the compelling quality of the linear programming bound, which

makes branching often unnecessary, and the superiority of our branch-and

bound algorithm to the algorithms presented before.

When we were conducting this research, Chan, Kaminsky, Muriel, and

Simchi-Levi (1995) as well as Chen and Powell (1995) independently pro

posed and analyzed the column generation approach to this formulation of

the problem PII 'Lj=l wjGj . Chan, Kaminsky, Muriel, and Simchi-Levi em

phasized on worst-case performance analysis and probabilistic analysis. They

have established two main results. The first one is that the linear program

ming bound is asymptotically optimal for any number of machines; if m = 2,

then these values always coincide. Their second main result is that the value

of the optimal solution is at most equal to (1 + -12)/2 times the value of

the linear programming bound; this bound is strengthened to 1.04 in case

Wj = Pj for all j = 1, ... , n. Chen and Powell show how the formulation can

be obtained by Dantzig Wolfe decomposition. They also propose a branch

and-bound algorithm in which lower bounds are computed by solving the

linear programming relaxation through column generation. They do not

branch on the completion times, but on the original Xij variables that indi-
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cate that job i is processed immediately before job j on some machine. As

a consequence, they cannot use the O(n L: Pj) algorithm to solve the pricing

problem after the branching has started, but have to resort to an O(n2 L:Pj)

time algorithm.

This paper is organized as follows. In Section 2, we present the column

generation approach for the problem PII L:j=1 WjCj . In Section 3, we describe

our branch-and-bound algorithm. In Section 4, we report on our computa

tional experiments for randomly generated instances of this problem. In

Section 5, we discuss the adaptations of the formulation and the pricing al

gorithm necessary to apply them to other prominent problems in the class

(A). We draw conclusions and point out directions for future research in

Section 6.

2 Column generation for PII L:j=l WjCj

2.1 Problem description

There are m identical machines, M I , ... , M m , available for processing n inde

pendent jobs, J1, ... , I n . Job Jj (j = 1, ... , n) has a processing requirement

of length Pj and a weight Wj' Each machine is available from time zero on

wards and can handle no more than one job at a time. Preemption of jobs is

not allowed. A feasible schedule is a specification of the job completion times

CI , ... ,Cn such that no machine processes more than one job at a time and

Cj - Pj ~ O. The objective is to find a schedule with minimum total weighted

completion time L:j=1 WjCj . The problem is N'P-hard in the strong sense

when the number of machines is part of the problem instance.

We review various basic properties of an optimal schedule that are useful

in our column generation approach. First of all, we have the following.

Theorem 1 (Elmaghraby and Park, 1974) There exists an optimal schedule

with the following properties:

(i) The jobs are processed contiguously from time zero onwards, and no

machine is idle before all jobs have been started.

(ii) The last job on any machine is completed between time Hmin =

L:j=1 pj/m - (m -l)Pmax/m and Hmax = L:j=1 pj/m + (m -l)Pmax/m,

where Pmax = maXI~j~nPj.
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(iii) On each machine the jobs are sequenced zn order of non-increasing

ratios Wj/Pj.

(iv) If Wj ~ Wk and Pj ~ PkJ then there exists an optimal schedule in which

job J j is started no later than job Jk.

There exists a dynamic programming algorithm based on the first three ob

servations runs in O(n(Ej=l Pj )m-l) time and space. Especially the space

requirement becomes unmanageable when m increases.

In the remainder of this subsection, we derive a time slot for each job in

which it needs to be executed. The time slot of each J j is specified by a release

date rj, before which it cannot be started, and a deadline dj , at which it has to

be finished. Initially, we have that rj = 0 and dj = Ek=l Pk / m +(m - 1)Pj / m

- the deadlines follow from property (ii) (Belouadah and Potts, 1994). Using

property (iv), we try to derive tighter release dates and deadlines. Reindex

the jobs in order of non-increasing ratios Wj/Pj; to avoid trivialities, we

assume that n > m. We define Pj as

Pj = {Jk Ik < j, Wk ~ Wj,Pk ~ Pj}

and 5 j as

5j = {Jk Ik > j, Wk ~ Wj,Pk ~ Pj}·

Accordingly, there is an optimal schedule in which all jobs in the set Pj start

no later than job Jj. If IPjl > m - 1, then we may conclude that at least

IPj I - m + 1 jobs belonging to Pj are completed before the starting time of

Jj . Hence, if pj is the sum of processing times of the IPj I - m + 1 smallest

jobs in the set Pj, then the earliest start time of J j is given by

rj=rpj/ml, (1)

where rx1is the smallest integer larger than or equal to x.

In a similar spirit, we try to tighten the deadline of Jj • Since there is an

optimal schedule in which J j starts no later than any job in 5j, we conclude

that the amount of work that needs to be done between the start time of Jj

and time Hmax amounts to at least EJkESj Pk +Pj. Accordingly, we have that

J j can start no later than

8j = Hmax - r( L Pk + pj)/ml
JkESj

If 8j +Pj < dj , then we let dj = 8j +Pj be the new deadline of Jj .

6
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We call a machine schedule s feasible if 1'j + Pj ~ Gj(s) ~ dj for each job

Jj included in s. Let 5 be the set containing all feasible machine schedules.

We introduce variables X s (s = 1, ... ,151) that assume value 1 if machine

schedule s is selected and 0 otherwise. The problem is then to select m

machine schedules, one for each machine, such that together they contain

each job exactly once and minimize total cost. Mathematically, the problem

is then to determine values X s that minimize

2.2 Mathematical formulation and column generation

The PII ,£j=1 wjGj problem belongs to the class (A) because of property

(iii), which follows directly from Smith's rule for the single-machine version

(Smith, 1956). We formulate it as a set covering problem with an expo

nential number of binary variables, n covering constraints, and a single side

constraint. Define a machine schedule as a string of jobs that can be assigned

together to any single machine. Let ajs be a constant that is equal to 1 if

job Jj is included in machine schedule sand 0 otherwise. Accordingly, the

column (als, ... ,ans)T represents the jobs in machine schedule s. Let Gj ( s)
be the completion time of job Jj in s; Gj ( s) is defined only if ajs = 1. Note

that since the jobs in s appear in order of their indices without any idle time

between their execution, we have that Gj (s) = '£{=1 aksPk - remember that

we have reindexed the jobs in order of non-increasing ratios Wj / Pj. Hence,

the cost cs of machine schedule s is readily computed as

(5)

(4)

(3)
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Condition (3) and the integrality conditions (5) ensure that exactly m ma

chine schedules are selected. Conditions (4) ensure that each job is executed

exactly once. Note that the equality sign in the conditions (3) and (4) can be

changed into 'smaller than' and 'larger than', respectively, without loosing

the validity of the formulation.

The number of columns involved in this formulation is equal to Lk:r'+l (~).
Neither the set covering problem, nor its linear programming relaxation,

which is obtained by replacing conditions (5) by the conditions X s 2: 0 for all

s E 5, can therefore be solved by a method that first generates all feasible

columns explicitly. Instead, we resort to an iterative method that considers

the feasible columns implicitly: column generation. Starting with a restricted

linear programming problem in which only a subset S of the variables is avail

able, the column generation method solves the linear programming relaxation

of the set covering formulation by adding new columns that may decrease

the solution value, if the optimal solution has not been determined yet; these

new columns are not obtained through enumeration, but through a pricing

algorithm that solves an optimization problem, which is called the pricing

problem.

The primary issue is the design of the pricing algorithm, which we discuss

in the next subsection. Our pricing algorithm is a dynamic programming al

gorithm that usually generates more than one column with negative reduced

cost. We also discuss the issue of which and how many such columns should

be added to S per iteration.

In Section 2.4, we design a heuristic to generate the initial set S. We

also discuss an implementation issue like the proper size of the initial set S.
In Section 2.5, we give a step-wise description of our implementation of the

column generation algorithm. In Section 2.6, we discuss a special type of

fractional solution to the linear programming problem.

2.3 The pricing algorithm

From the theory of linear programming, we know that a solution to a min

imization problem is optimal if the reduced cost of each variable is non

negative. In our problem, the reduced cost c ~ of any machine schedule s
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is given by

n

c~ = Cs - AO - L: Ajajs,
j=1

where AO is the given value of the dual variable corresponding to condition (3)

and AI, ... , An are the given values of the dual variables corresponding to

conditions (4). To test whether the current solution is optimal, we determine

if there exists a machine schedule s E S with negative reduced cost. To that

end, we solve the pricing problem of finding the machine schedule in S with

minimum reduced cost. Since Ao is a constant that is included in the reduced

cost of each machine schedule, we essentially have to minimize

n n J

Cs - L: Ajajs = L:[Wj(L: aksPk) - Aj]ajs
j=1 j=1 k=1

subject to the release dates and the deadlines of the jobs. Our algorithm,

which we call the pricing algorithm, tests whether a feasible solution to the

linear programming relaxation is optimal; if the outcome is negative, then it

outputs a set of feasible machine schedules s with << 0 among which the

machine schedule with minimum reduced cost.

Our pricing algorithm is based on dynamic programming and uses a for

wa.rd recursion that exploits the property that on each machine the jobs

are sequenced in order of increasing indices; recall that we indexed the jobs

in order of non-increasing ratios Wj/Pj. Let Fj(t) denote the minimum re

duced cost for all feasible machine schedules that consist of jobs from the

set {JI, ... , Jj } in which the last job is completed at time t. Furthermore,

let P(j) = 'L{=1 Pk. For the machine schedule that realizes Fj(t), there are

two possibilities: either Jj is not part of it, or the machine schedule contains

Jj . As to the first possibility, we must select the best machine schedule with

respect to the first j -1 jobs that finishes at time t; the value of this solution

is Fj- 1(t). The second possibility is feasible only if rj + pj :::; t :::; dj . If it

is, then we add Jj to the best machine schedule for the first j - 1 jobs that

finishes at time t - Pj; the value of this solution is Fj- 1(t - Pj) +Wjt - Aj.

The initialization is then

Fj(t) = {-AO' if j = 0 and t = 0,
00, otherwise.
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The recursion is then for j = 1, ... ,n, t = 0, ... ,min{P(j), m a x 1 9 ~ j dd

Fj(t) = {min{Fj_l(t), Fj_1(t - Pj) +Wjt - Aj}, if T'j + ~j :::; t :::; dj, (6)
F j - 1 ( t), otherwIse.

The optimal solution value is then found as

Accordingly, if F* 2: 0, then the current linear programming solution is

optimal. If F* < 0, then it is not, and we need to introduce new columns

to the problem. Candidates are associated with those t for which Fn(t) < 0;

they can be found by backtracing.

An important implementation issue is the number of columns to add

to the linear program after having solved the pricing algorithm. The more

columns we add per iteration, the fewer linear programs we need to solve 

but the more columns we add per iteration, the bigger the linear programs be

come. An empirically good choice appeared to be adding those three columns

that correspond to those three t for which Fn(t) is most negative.

Note that the pricing algorithm requires O(n 'L'j=l Pj) time and space.

This means that our column generation approach is not sensible if m =

2: the P211 'L'j=l WjCj problem is better solved directly through dynamic

programmmg.

2.4 The randomized list scheduling heuristic

We need a set S of initial columns to compute the initial dual variables. For

this purpose, we use a simple but fast randomized list scheduling heuristic

to generate many different solutions for the PII 'L'j=l WjCj problem, followed

by an iterative local improvement method for the ten best solutions.

This randomized list scheduling algorithm generates a schedule by assign

ing the first n - 1 jobs, in order of non-increasing ratios Wj/Pj, randomly to

the machines, where an earlier available machine has a larger probability of

getting the next job on the list. Specifically, the first available machine has

a probability of 80% of getting the next job, the second available machine

has a probability of 15%, and the third available machine has a probability

of 5%. The last job is always assigned to the earliest available machine.
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Such a heuristic works very fast, is expected to give a reasonable solution

that satisfies property (iii) of Theorem 1, and is likely to give an alternative

solution if it is run again. We therefore run the heuristic between 2,000 and

5,000 times, depending on the size of the instance, thus obtaining many al

ternative solutions. We store the ten best solutions and apply neighborhood

search to try and improve on each of these solutions. The neighborhood of a

feasible schedule consists of all schedules in which the jobs on each machine

are sequenced in order of non-increasing ratios Wj / Pj that can be obtained

by the following two types of changing operations: moving a job from one

machine to another; and swapping two jobs scheduled on two different ma

chines. If there is a better schedule in the neighborhood, then we adopt it as

the new schedule. This process is repeated and terminates when no further

improvement can be found.

Using this procedure, we obtain a set S consisting of 10m columns. Note

that we cannot guarantee that that rj +Pj :S Cj (s) :S dj for each Jj and

s E S. This is no problem at all - these time slots are derived only to speed

up the pricing algorithm.

2.5 Solving the linear programming relaxation

In this subsection, we give a step-wise description of our iterative column

generation algorithm to solve the linear programming relaxation.

COLUMN GENERATION ALGORITHM

Step 1. Run the randomized list scheduling heuristic 2,000 - 5,000 times,

store the 10 best solutions, and try to improve these solutions by iterative lo

cal improvement. The resulting solutions constitute the initial variable set S.
Step 2. Solve the linear programming relaxation to obtain the vector of cur

rent dual multipliers A.

Step 3. Use the pricing algorithm to determine if there are any machine

schedules s with negative reduced cost.

Step 4- If such machine schedules exist, then add three machine schedules

with most negative reduced cost to the set S - go to Step 2.

Step 5. If no such machine schedule exists, then stop: we have solved the

linear programming relaxation to optimality.

Let now x* denote the optimal solution to the linear programming relax-
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ation of the set covering formulation and let S* denote the set containing all

columns s for which x: > O. If x* is integral, then x* constitutes an optimal

solution for PII 2:7=1 wjGj and we are done. If x* is fractional, then we need

in principle to apply branch-and-bound to close the integrality gap and find

an optimal integral solution for our problem, unless x* is a special type of

fractional solution that can be converted without much effort into an integral

solution of the same objective value. This special type is discussed in the

next subsection.

2.6 A special type of fractional solution

In this section, we discuss a special type of fractional solution to the linear

programming relaxation, namely the case in which for each job the comple

tion time is equal in each machine schedule in S* in which it occurs. This

special case is less esoteric than it may seem on first sight - it occurred

quite often in our computational experiments. The next result is then a

powerful tool to convert such a fractional solution of the linear programming

relaxation into an integral solution with the same objective solution. The

resulting integral solution is then optimal for the original problem.

Theorem 2 If Gj(s) = Gj for each job Jj (j = 1, ... , n) and for each s

with x: > 0, then the schedule obtained by processing Jj in the time interval

[Gj - Pj, Gj] (j = 1, ... , n) is feasible and has minimum cost.

Proof. The schedule in which job Jj (j = 1, ... , n) is processed from time

Gj - Pj to time Gj is feasible if and only if at most m jobs are processed

at the same time and no job starts before time zero. The second condition

is obviously satisfied, since the Gj values originate from feasible machine

schedules. The first constraint is satisfied if we show that at most m jobs

are started at time zero and that the number of jobs started at any point

in time t E [1, T] is no more than the number of jobs completed at that

point in time, where T denotes the latest point in time that a job is started.

Let A(t) ~ S* be the set of all machine schedules in which at least one job

starts at time t; similarly, let B(t) ~ S* be the set of all machine schedules

in which at least one job completes at time t. As Gj(s) = Gj , for any

machine schedule containing Jj , the number of jobs started at time t is equal

to 2:sEA(t) x:; similarly, the number of jobs completed at time t is equal to

12



2:sEB(t) X:. Because of condition (3), we know that at most m jobs are started

at time zero. Since each machine schedule s is constructed such that there

is no idle time between the jobs, a job in s can start at time t only if some

other job in s is completed at time t. Hence, A(t) C B(t), which means that

the indicated schedule is feasible. It is readily checked that the condition

Cj (s) = Cj implies that the cost of this schedule is equal to the cost of the

fractional solution, and hence minimal. 0

If x* is fractional and does not satisfy the conditions of Theorem 2, then

we need a branch-and-bound algorithm to find an optimal solution. This

algorithm is presented in the next section.

3 The branch-and-bound algorithm

If the optimal solution to the linear program neither is integral, nor satisfies

the conditions of Theorem 2, then a branch-and-bound algorithm is required

to find an optimal solution. From other applications, we know that the

branching strategy of fixing a variable at either zero or one does not work

in combination with column generation, as the pricing algorithm may come

up with this column again, even though we fixed the variable at zero. Our

partitioning strategy is based upon splitting the set of possible completion

times.

If we have a fractional optimal solution that does not satisfy the condi

tions of Theorem 2, then there is at least one job Jj for which

L Cj(s)x: > min{Cj(s) Ix: > O};
sES'

we call such a job Jj a fractional job. Our partitioning strategy reflects this

property. We design a binary branch-and-bound tree for which in each node

we first identify the fractional job with smallest index, and, if any, then create

two descendant nodes: one for the condition that Cj ::; min{Cj(s) Ix: > O}

and one for the condition that Cj ~ min{CAs) Ix: > O} + 1. The first

condition essentially specifies a new deadline for Jj by which it must be

completed, which is smaller than its current deadline dj • For the problem

corresponding to this descendant node, we have therefore that
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Since the jobs in Pj start no later than J j and dj - pj is the latest possible

start time of Jj, we must have that each Jk E Pj is completed by time

dj - Pj +Pk, which may be smaller than its current deadline dk • Hence, we

let

dk +- min{dk,dj - pj + Pk}

for each Jk E Pj.

The second condition specifies a release date min{Cj (s) Ix; > a} + 1 - Pj

before which Jj cannot be started, which is larger than its current release

date rj. For the problem corresponding to this descendant node, we have

therefore that

rj = min{Cj(s) Ix: > a} +1- Pj.

Since the jobs in Sj start no earlier than J j , we can possibly increase the

release dates of these jobs as well. For each Jk E Sj, we let

rk +- max{rk' rj}.

Hence, this partitioning strategy not only reduces the feasible scheduling

interval of J j - it may also reduce the feasible scheduling intervals of the

jobs in Pj and Sj.

The nice thing of this partitioning strategy is that either type of condition

can easily be incorporated in the pricing algorithm without increasing its time

or space requirement: we can use exactly the same recursion as before.

It may be so that the instance that corresponds to our current node

does not have a feasible solution, that is, there exists no solution for which

rj + Pj ~ Cj ~ dj for each j = 1, ... ,n. The problem of finding out if there

exists a feasible solution is of course NP-complete. We therefore check a

necessary condition for the existence of a feasible solution - if it fails this

check, then we may prune the corresponding node and backtrack.

This necessary condition proceeds by treating each deadline dj as a due

date dj by which Jj should be completed (and hence it may be exceeded)

and considering the problem of scheduling the current set of jobs with their

processing times, release dates and due dates, so as to minimize the maxi

mum lateness Lmax = maxl<j<n(Cj - dj ). We then compute a lower bound

on the optimal solution value of this NP-hard problem. Various lower bound

procedure procedures exist, but we use the so-called set-based lower bound

14



by Vandevelde, Hoogeveen, Hurkens, and Lenstra [1997], which can be com

puted in O(n 2
) time.

It may also be that the current set of columns S, which was formed while

solving the linear programming relaxation in the previous node, does not

constitute a feasible solution, due to the new release dates and deadlines.

We might use a heuristic to try and generate additional columns that satisfy

all release dates and deadlines of the current instance - but there is no

guarantee of success, since finding even a feasible solution to the problem

is an NP-hard problem. If we would pursue this venue, then, if a greedy

heuristic does not succeed in finding a feasible solution, we would need to

apply an enumerative algorithm.

We work around this problem in the following way. We first remove the

infeasible columns that are not part of the current solution to the linear pro

gramming relaxation - these columns can be deleted with impunity. As

to the infeasible columns that are currently part of the linear programming

solution, we increase their costs to some big value, say M, such that the

current solution value increases to a value larger than the incumbent upper

bound. Using this trick, we can proceed with the column generation algo

rithm to solve the current instance of the problem, because we have ensured

that there exists at least one feasible solution.

If we backtrack, then we reduce the costs of these columns to their true

values.

4 Computational experiments

In this section, we report on our computational results for the problem

PII 'Lj=1 WjCj . The algorithms were coded in the computer language C; the

experiments were conducted on an HP9000j71O, which is a 55 mips machine.

To solve the linear programs, we used the package CPLEX, version 2.1.

We incorporated some speed-ups in the pricing algorithm to reduce the

empirical running time. Since these speed-ups are not of interest for the red

line of the paper, we have included the details in Appendix A.

We tested our algorithm on three classes of randomly generated instances:

(i) instances with processing times drawn from the uniform distribution

[1,10] and weights from the uniform distribution [10,100];
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(ii) instances with processing times and weights both drawn from the uni

form distribution [1,100];

(iii) instances with processing times and weights both drawn from the uni

form distribution [10,20].

First, we report on the performance of our algorithm for instances with

n = 20,30,40,50 jobs and m = 3,4,5 machines. Later on, we report our

experience with larger instances with up 100 jobs and 10 machines. For each

combination of n, m, and instance class, we have generated 25 instances.

As we will see, the performance of our algorithm increases with the number

of machines for fixed n, which contrasts with other branch-and-bound algo

rithms, including the one by Belouadah and Potts (1994). Problems with

three machines are the hardest to solve for our algorithm. Recall that prob

lems with m = 2 are better solved directly by dynamic programming than

by our algorithm.

We divide these instances into 'easy' instances, for which no branching

was required, and 'hard' instances, for which the branch-and-bound algo

rithm needed to be invoked. For each combination of nand m, we report on

the number of 'easy' instances out of 25 and the average time to solve the

linear programming problem for them. For the 'hard' instances, we report on

the maximum number of nodes in the branch-and-bound tree, the maximum

computation time to solve a hard instance, and the maximum gap between

linear programming solution value and optimal solution value in absolute

terms. The maximum percent excess of the optimal solution value over the

linear programming solution was always smaller than 0.05% and goes un

reported. Finally, we report the number of instances for which the gap is

zero.

Tables 1-3 summarize our computational results for the randomly gen

erated instances with up to 50 jobs and 5 machines. The headers of the

16
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Table 1 displays our results for instances belonging to class (i), which is

used by Belouadah and Potts (1994) as well to test the performance of their

branch-and-bound algorithm. They report that their algorithm fails to solve

instances within one minute of computation time on a CDC 7600 computer,

which is about twice as slow as our machine, if n = 30 and m = 3 or m = 4,

and if n = 20 and m = 5. Note that instances of this size are a piece of cake

for our algorithm.

First of all, Table 1 shows the quality of the linear programming lower

bound: branching is often not required, particularly for the instances with

n :S 30, and the lower bound is tight for 281 instances out of 300. Accord

ingly, if the linear programming solution is not integral, then it is often a

question of finding an integral solution of the same value; this is an impor

tant reason that the rule stipulated in Theorem 1 is so useful. If branching is

required, then we need few nodes only to find and verify an optimal solution.

Table 1 confirms the claim that we made earlier: for fixed n, the instances

grow easier with increasing m. This is plausible: the more machines involved,

the fewer jobs we may expect to appear in. the optimal machine schedules,

and accordingly the smaller the relevant solution space will be. Also note

that for n = 40 and n = 50 the linear programming solution is more often

fractional than for n :S 30, although the corresponding value is as often tight.

A likely reason for this phenomenon is that the number of optimal fractional

columns are:

n

m

NB

ACT

MNN

MCT

MGAP

ILP=LP

- number of jobs;

number of machines;

number of instances out of 25 for which branching

was not required;

average computation time in seconds for the 'easy'

instances;

maximum number of search tree nodes;

maximum computation time in seconds for the

'hard' instances;

maximum gap between optimal solution value and

lower bound;

number of instances out of 25 for which the optimal

solution value and lower bound concur.



'easy' instances 'hard' instances

n m NB ACT MNN MCT MGAP ILP=LP

20 3 24 0.57 2 1.17 0 25

20 4 23 0.41 4 0.78 2 24

20 5 24 0.37 2 0.53 0 25

30 3 17 4.26 2 8.72 1 24

30 4 13 2.52 2 5.73 1 24

30 5 19 1.82 3 2.72 0 25

40 3 7 25.90 10 96.04 1 23

40 4 4 10.41 12 24.83 5 20

40 5 10 6.24 10 14.37 2 22

50 3 2 1.88 14 434.34 1 24

50 4 2 36.83 14 138.61 3 21

50 5 2 14.98 6 46.04 2 24

Table 1: Results for randomly generated instances.

solutions grows with n and the chances of 'hitting' an integral one decreases

accordingly.

Since the pricing algorithm requires pseudo-polynomial time, we may

expect that the performance of our algorithm deteriorates with the size of

the processing times of the jobs. Table 2 displays our results for instances

belonging to class (ii), where the processing times are drawn from the uniform

distribution [1,100].

Table 2 indicates that these instances are indeed harder to solve. Not

only do we need more time to solve the linear programs, which is entirely

attributable to the pricing algorithm, but also slightly more search nodes.

The extra time effort is modest, however. Note that the maximum gap is

slightly bigger in comparison with Table 1. As a whole, the results remain

satisfactory.

Finally, we may also expect that instances with fairly homogeneous ratios

Wj/Pj are hard to solve as well. After all, if all ratios Wj/Pj are close to each

other, then the number of relevant columns will be large. This intuition

is confirmed by our computational results for the instances belonging to

class (iii).

Indeed, Table 3 shows that the solution to the linear programming prob-
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'easy' instances 'hard' instances

n m NB ACT MNN MCT MGAP ILP=LP

20 3 25 0.76 - - - 25

20 4 24 0.54 1 0.72 0 25

20 5 24 0.45 4 0.94 4 24

30 3 21 5.22 6 13.07 4 22

30 4 22 3.12 8 6.38 9 24

30 5 22 2.23 8 5.25 10 23

40 3 22 25.71 8 61.26 11 23

40 4 12 10.81 18 55.47 40 16

40 5 17 7.62 12 20.39 14 20

50 3 17 115.48 10 614.05 11 19

50 4 16 44.23 10 90.89 29 20

50 5 14 23.68 16 99.14 15 18

Table 2: Results for instances with large processing times.

lem is seldom integral, although it is more often tight. Apparently, many

optimal solutions are fractional. At the same time, it is more difficult to find

an integral solution: we need more search nodes than before. This is quite

plausible: since the ratios Wj/Pj are close to each other, the position of a job

in the final schedule is not so predetermined, and accordingly our branching

rule will be less effective.

Finally, we note that our algorithm is able to deal with instances with

n > 50 as well, as long as the number of machines is not too small. To give

an indication of the performance of our algorithm for such instances, we also

report on experiments for instances with 60 jobs on 6 machines, 70 jobs on 7

machines, and so on, up to 100 jobs on 10 machines. The results can be found

in Table 4. We see that branching is required for more than 90% of these

large instances. In contrast, it is required for less than 50% of the smaller

instances. Nonetheless, the lower bound value is still tight for a significant

majority of instances. Of course, we need more nodes, the maximum gap

between the optimal solution value and the linear programming bound is

larger, and we need more computing time - but still, instances of even this

size are solvable by our algorithm.

It is a subjective feeling, but the column generation approach gives us
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'easy' instances 'hard' instances

n m NB ACT MNN MCT MGAP ILP=LP

20 3 20 0.54 4 1.45 0 25

20 4 23 0.33 2 0.66 0 25

20 5 19 0.33 2 0.55 0 25

30 3 12 2.95 7 15.77 0 25

30 4 4 1.79 10 10.20 0 25

30 5 10 1.12 18 6.91 2 23

40 3 1 10.39 20 188.28 1 24

40 4 4 4.07 16 64.07 0 25

40 5 3 2.00 18 35.89 0 25

50 3 3 42.35 34 742.82 3 24

50 4 0 - 48 342.82 1 22

50 5 1 6.23 22 184.72 3 24

Table 3: Results for instances with homogeneous wi/Pi ratios.

the idea that solving the parallel machine scheduling problem comes down

to cracking the linear programming relaxation: once you have done that,

you only need a relatively small number of search nodes to find an optimal

solution. This would imply that you can really benefit from faster computers.

This is opposite to our experience with most standard branch-and-bound

algorithms, which may require an enormous number of nodes.

Finally, we report on the performance of our heuristic. We do not differ

entiate between instance classes. Table 5 reports for each combination of n

and m the average gap (AGAP) between the best solution value found by

our heuristic and the optimal solution value - this gap is expressed as a

percentage of the latter. Furthermore, it reports for each combination the

number of instances out of 75 for which an optimal solution was found. The

computing time of the heuristic is negligible.

Our conclusion is that the heuristic performs quite well - as could be

expected actually, since the problem has a lot of structure and we used this

in the design of the heuristic. The average gap AGAP is never more than

0.06% - the maximum gap that we found was no more than 0.08%. Note

that the performance of the heuristic deteriorates if the size of the instances,

measured either by the number of jobs or the number of machines, increases.
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'easy' instances 'hard' instances

n m NB ACT MNN MCT MGAP ILP=LP

60 6 1 35.90 30 128.82 1 20

70 7 1 55.35 22 164.68 2 18

80 8 0 - 38 445.76 7 19

90 9 0 - 26 397.86 3 22

100 10 0 - 30 535.91 3 21

60 6 6 52.65 24 214.62 56 11

70 7 4 110.51 32 321.16 39 9

80 8 7 166.88 32 709.89 38 14

90 9 9 277.26 38 891.25 33 14

100 10 1 490.16 62 1842.66 41 7

60 6 1 13.45 78 482.19 2 21

70 7 0 - 68 663.80 4 19

80 8 0 - 112 1036.77 2 19

90 9 0 - 132 1698.96 5 21

100 10 0 - 142 2211.98 4 14

Table 4: Results for large instances from all three instance classes. The top

section concerns instance class (i), the middle section instance class (ii), and

the bottom section class (iii).

5 Extensions

In this section, we briefly discuss two other types of problems in the class

(A) to which the column generation approach applies:

• problems with additive objective functions for which only a part of the

schedule is relevant, like the weighted number of tardy jobs and total

weighted late work;

• parallel machine problems with non-identical machines.

We indicate the major differences with the approach for the PII 2:/;=1 WjCj

problem only.
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n m AGAP #opt

20 3 0.018 36

20 4 0.037 25

20 5 0.042 20

30 3 0.013 17

30 4 0.038 4

30 5 0.045 11

40 3 0.017 1

40 4 0.029 4

40 5 0.044 3

50 3 0.016 5

50 4 0.028 0

50 5 0.040 1

60 6 0.044 1

70 7 0.051 0

80 8 0.053 0

90 9 0.058 0

100 10 0.059 0

Table 5: Performance of the heuristic.

5.1 Complementary objectives

The weighted number of late jobs and total weighted late work are two im

portant objective functions in which jobs are not penalized as long as they

are completed at or before their due dates. These objective functions are

defined as follows. A job is called late if Cj > dj , where dj is the due date of

J j . The weighted number of late jobs is denoted by 'LJ=l WjUj, where U j = 1

if J j is late, and Uj = 0 otherwise. Total weighted late work is denoted by

'LJ=l Wj Vi where Vi, the late work of J j , is defined as the portion of work

of J j that is performed after its due date dj • Accordingly, we have that

Vi = min{pj, max{O, Cj - dj n. In both cases, the objective functions are to

be minimized.

For either problem, there is an optimal schedule in which each machine

first performs the on-time jobs in order of non-decreasing due dates and

then the late jobs in any sequence (Potts and Van Wassenhove, 1992). The

late jobs appear thus in the irrelevant part of the schedule, and in fact it

22



m

5.2 Non-identical machines

(8)

(7)

L X s = 1, for each i = 1, ... , m,
sES(i)

23

L ajsxs ::; 1, for each j = 1, ... ,n,

sES

subject to

L L CsX s

i=l sES(i)

and conditions (3) and (5). Note the sense of condition (7): machine sched

ules contain on-time jobs only. The pricing algorithm maximizes the re

duced cost, which means that the initialization of the recursion is different;

apart from that, the recursion is essentially the same as the one described

in Section 2.3, but a job will be included in a machine schedule only if it is

(partially) on-time.

subject to

does not matter if, when, and by what machine the late jobs are executed.

These problems are therefore equivalent to maximizing E'j=l wj(l- Uj ), the

weighted number of on-time jobs, and E'j=l Wj(Pj - Vi), total weighted on

time work. These problems lend themselves much better for the column

generation approach, since the pricing algorithm needs to focus then only on

the on-time jobs. These complementary problems can then be formulated as

maxlmlzmg

If the machines are not identical, then the processing time of Jj on Mi is Pij,

not Pj, for each i and j. Hence, the cost of a machine schedule then depends

on the choice of the machine as well, and we may even have that the priority

rule is not equal for all machines. This can be easily overcome by associating

a different set of machine schedules to each machine. Let S( i) denote the

set of feasible machine schedules for machine M i (i = 1, ... , n). We need

to adjust the formulation given in Section 2.2 only slightly to accommodate

non-identical machine problems. The problem is formulated as minimizing
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6 Conclusion and future research

For the pricing algorithm, we need to perform the recursion m times, one

time for each machine separately. Accordingly, the pricing algorithm runs in

O(n 2:~1 2:5=1 Pij) time.
In addition, the partitioning strategy that we proposed in Section 3 does

not apply in case of non-identical machines. An effective alternative is avail

able though: simply use a forward partitioning strategy where jobs are as

signed to machines; this partitioning strategy can easily be combined with

column generation.

(9)

(10)X s E {0,1}, for each s E S(i),i = 1, ... ,m.

m

L L ajsX s = 1, for each j = 1, ... ,n,
i=1 sES(i)

Column generation algorithms have been shown to be useful for many in

tractable combinatorial optimization problems; see for an overview Barnhart,

Johnson, Nemhauser, Savelsbergh, and Vance (1994). This paper shows that

a column generation algorithm is computationally attractive for a certain

class of NP-hard parallel machine scheduling problems as well, including

such an important problem as minimizing total weighted completion time.

Our column generation algorithm for this problem proceeds by formulat

ing the parallel machine scheduling problem as an integer linear programming

problem with n + 1 constraints but an exponential number of variables. We

solve the linear programming relaxation by column generation, where we

use a fast pseudopolynomial algorithm to compute columns with negative

reduced cost, if there are any. Our computational results show that the solu

tion value is at least a singularly strong lower bound on the optimal solution

value. Furthermore, the solution is often integral, or fractional but trans

formable into an equivalent integral solution - in both cases, we have solved

the scheduling problem to optimality. If it is not integral, then we need a

branch-and-bound algorithm to find an optimal solution. In this case, we

have a powerful partitioning strategy to close the gap between lower bound

and optimal solution value.

Our computational results show that our algorithm is superior to exist

ing algorithms, which run already into trouble solving randomly generated



instances with 20 jobs and 5 machines or 30 jobs and 4 machines. Our algo

rithm solves instances of this size in no more than 15 seconds on a 55 mips

computer. In fact, we have that the smaller the ratio n/m, the easier the

instance is for our algorithm. For instance, we can solve instances up to no

more than 50 jobs if m = 3 - but we can solve instances with up to 100 jobs

if m = 10.

In conclusion, the column generation approach is an effective and power

ful solution methodology for parallel machine scheduling problems. We are

now investigating if there are any other classes of NP-hard machine schedul

ing problems for which this statement holds. Another issue, connected to the

problem of minimizing total weighted completion time, concerns the design

of a good algorithm for detecting whether a node in the branch-and-bound

tree corresponds to a feasible schedule.
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A Implementation of the pricing algorithm

In the previous, we took advantage of the property that there is an optimal

schedule in which no machine schedule finishes its last job before time Hmin .

Accordingly, we solved the pricing problem by choosing the machine schedule

s with smallest Fn(t) value, where Hmin ~ t ~ Hmax• To satisfy this lower

bound on t, we may need to add a job Jj to s, although WjCj(s) - Aj > 0

and we are minimizing.

If we ignore the above property, then we know that there is a machine

schedule s with minimum cost in which all jobs Jj have WjCj(s) < Aj. We

exploit this observation to reduce the empirical running time of the pricing

algorithm. Define!:lj = f)..j/Wjl for each j U = 1, ... ,n); we have that

!:lj ~ 1, since we can discard all jobs Jj with Aj = O. Accordingly, if !:lj ~

m i n { m i n l : : : ; k ~ j dk , PU)}, then equation (6) can be replaced by

Fj(t) = {min{Fj_1 (t), Fj_1(t - Pj) +Wjt - Aj}, if rj + ~j ~ t < !:lj - 1,
Fj - 1(t), otherWIse.

Moreover, the optimal solution value is now found as

F* = min Fn(t).
09~Hmax
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We like to avoid the explicit computation and storage of all values Fj(t)

for t :::: 6.j, since they are all the same. On the other hand, the recurrence

relation needs the value Fj(t) when computing Fj+1(t) and Fj+1(t +pj+d, so

we need a procedure to retrieve the proper value of Fj(t) when it is needed.

Note now that for any t :::: 6.j we have that Fj(t) = Fj-a(j,t)(t), where

j - aU, t) is the index of the last job before Jj that cannot be discarded

from the machine schedule with maximum value beforehand, that is, aU, t)

is equal to the smallest value such that t ::::; 6.j-a(j,t) -1. Hence, we know that

we did not exclude Fj-a(j,t)(t) from the computation. In the same fashion,

we have for any t :::: 6.j +Pj that Fj(t - Pj) = Fj_b(j,t)(t - Pj), where j - bU, t)
is the index of the last job before Jj that may be included in the machine

schedule with maximum value. Therefore, bU, t) is the smallest value such

that t - Pj ::::; 6.j-b(j,t) - 1. Accordingly, the recurrence relation is then for

j = 1, ... , n, t = 0, ... , min{6.j - 1, PU), Hmax }

(11)

In order to make it work and to gain from this adjustment, we need to

establish an efficient procedure to find the aU, t) and bU, t) values for all

j and the appropriate times t. Note we must have aU,O) = 1 for any j

(j = 1, ... , n) and aU, t) :::: aU, t - 1). Hence, when computing Fj(t) we

check first if aU, t) = a(j, t -1); if it is not, then we increase the value aU, t)

in steps of size one until t ::::; 6.j-a(j,t). Accordingly, the computation of

aU, t) requires one check each time we perform computation (11) plus O(n2
)

operations altogether to find the values aU, t) if aU, t) f:. aU, t - 1). We can

design a similar procedure to compute the values bU, t). Hence, the worst

case running time of the pricing algorithm remains the same. The average

running time has been reduced, however, since we have restricted the range

of the state variable t for which the recursion needs to be performed.
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