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Abstract

In recent years, parallel processing has become widely available to researchers.
It can be applied in an obvious way in the context of Monte Carlo simulation, but
techniques for “parallelizing” Markov chain Monte Carlo (MCMC) algorithms are not
so obvious, apart from the natural approach of generating multiple chains in parallel.
While generation of parallel chains is generally the easiest approach, in cases where
burn-in is a serious problem, it is often desirable to use parallelization to speed up
generation of a single chain. This paper briefly discusses some existing methods for
parallelization of MCMC algorithms, and proposes a new “pre-fetching” algorithm to
parallelize generation of a single chain.

Keywords: parallel processing, Markov chain Monte Carlo, Bayesian, inference, pre-
fetching

1 Introduction

Over the last two decades, the increased availability of cheap computing power has dra-
matically altered the way statistical analyses are carried out. Many problems previously
considered intractable can now be solved by intensive numerical methods. In addition, in
recent years, networking has also become cheap. The vast majority of computers sold now
come with built-in ethernet adaptors. Partly as a result of this, parallel computing has
received new impetus, since it is possible to put together a group of networked computers
for on the order of a thousand dollars per machine. Such networks, typically consisting
of machines without keyboards or displays, are now widespread, and commonly referred
to as “Beowulf clusters”. Furthermore, well-defined standards for communication between
processors have been developed. The “Message Passing Interface” (MPI, see, e.g. Gropp
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et al., 1999) is now widely accepted, and implementations in the form of C/C++/Fortran
libraries are publically available. Thus parallel processing can be exploited by dividing a
task into a number of sub-tasks which can be executed in parallel. Each sub-task is executed
on a separate processor, and then the results are compiled, typically by a main “control-
ling” processor. Such a scheme can be implemented by writing code in C,C++, or Fortran,
making use of the MPI library to handle inter-process communication. Alternatively, for
a simpler higher-level solution, one can use the recently-developed “Snow” package for R
(see http://cran.r-project.org and the links to packages and documentation for more
details).

In statistics, perhaps the most obvious application of parallel processing is in Monte Carlo
simulation, where one estimates a function

hπ =

∫

h(x)dπ(x), (1)

for some probability distribution π. The Monte Carlo approximation is simply

ĥ =
1

t

t
∑

j=1

h(Xj), (2)

where {Xj} is a sequence of independent draws from the distribution π. Such a problem is
trivial to “parallelize”. The basic principle is to subdivide the sum into P ≥ 2 components,
and assign one processor to evaluate each component. The results for each component can
then be added and normalized, either by the user, or by a “controlling” processor, to obtain
the final result. When inter-processor communication time is negligible compared to the
time taken to execute each sub-task, and processors are roughly the same speed (i.e., they
are “balanced”), such an approach leads to an increase in speed by a factor approximately
equal to P .

Markov chain Monte Carlo (MCMC) methods (see Gilks et al., 1996) are a variant of Monte
Carlo schemes in which a Markov chain {Xj, j = 1, 2, . . .} with limiting distribution π is
generated. It can be used for estimating posterior distributions in a wide class of models,
even when the likelihood includes an unknown normalizing constant. Estimation can still be
carried out using (2), but in this case, elements of the sequence {Xj} are not independent
of each other. Furthermore, the initial value is typically not a draw from the distribution π.

However, if the chain is constructed properly, then Xt
d
→ π, and under certain conditions,

the estimator ĥ converges to hπ as t → ∞. Unfortunately, generation of a Markov chain
is not well-suited to be carried out by parallel processing. The process is fundamentally
sequential in nature; the distribution of Xj+1 depends on the value of Xj, so simulation for
one step is not seemingly possible until the results for the previous step have been obtained.
On the other hand, it is often highly desirable to speed up MCMC simulation, particularly
when convergence to the limiting distribution is slow.

Given the difficulties arising with parallelization because of the sequential nature of MCMC
simulation, a natural things to do, discussed in, for instance, Glynn and Heidelberger (1992)
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and Rosenthal (2000), is simply to generate a separate Markov chain on each processor and
combine the results appropriately (see, e.g. Bradford and Thomas, 1996, for an example.)
This has the advantage of requiring very little effort beyond that required to program a
single-processor version of the MCMC generation code. However, the drawback is that
error associated with burn-in still remains in all processes. Glynn and Heidelberger (1992)
and Rosenthal (2000) consider this issue in some detail, and discuss various methods for
deciding how much of the initial portion of the chain to remove. (Note also that for low-
dimensional problems, it may be preferable to use numerical integration methods, often
referred to as “numerical quadrature” or “numerical cubature”, instead of MCMC simulation.
Such methods are typically trivially parallelizable, but they tend not to perform well in high-
dimensional problems.)

In certain problems, the time spent in the burn-in phase may be significant (for instance, if
likelihood calculations are long, or if the convergence rate of the chain is very slow). In such
cases it is often desirable to speed up generation of a single chain, rather than use multiple
chains. When the state-space of the chain is high-dimensional, one possible way to do this
is to divide the state-space into blocks, and then for each iteration of the Markov chain,
to handle each block on a separate processor. (This is discussed, for instance, in the nice
chapter-length introduction to parallel computing for Bayesian analysis given by Wilkinson
(2004), and an interesting example of this kind of approach can be found in Whiley and
Wilson (2004).) This approach does indeed speed up generation of a single chain, but
requires additional effort, in carrying out analysis of the limiting distribution, in order to
come up with appropriate blocks. This can be difficult, particularly when the conditional
dependence structure in the limiting distribution is complicated. In fact, in certain cases
(such as the case study given in this paper), it may be impossible. We therefore propose a
new algorithm for the purpose of speeding up generation of a single chain by parallelization.
The idea is to calculate multiple likelihoods ahead of time (“pre-fetching”), and only use
the ones which are needed. The approach does not require any particular analysis of the
limiting distribution of the chain (for instance, to sub-divide the state-space into blocks).
For convenience, we also include in this paper brief discussion of two other methods of doing
this, the blocking approach mentioned above, as well as an approach based on regenerative
simulation. We demonstrate the potential gains in performance by applying the pre-fetching
method in a time series problem.

2 General Considerations in Parallel Processing

Conceptually, parallel processing can be applied to almost any problem (task) by sub-dividing
it into multiple sub-tasks. The execution of sub-tasks may or may not be dependent on the
results of other sub-tasks. When a group of two or more sub-tasks needs to be executed,
and none of the sub-tasks depends on the results of any of the others, then the sub-tasks
can be executed concurrently by different processors. Assuming that no single processor is
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particularly slow relative to the others, this clearly leads to an increase in speed of execution
of the original task.

Before considering the specifics of parallel processing for Markov chain Monte Carlo simula-
tion, it is important to keep in mind (at least) the following three factors in this standard
approach to parallel processing.

The first is “granularity”, that is, the size of the sub-tasks. In particular, the ratio of time
required to complete a sub-task to the time required to carry out inter-process communication
is critically important. Typically, machines in a Beowulf cluster communicate via network
connections, meaning that even simple messages between processors take on the order of
milliseconds to send. On the other hand, the CPUs of the machines can typically execute,
for instance, a multiplication operation in on the order of picoseconds. Therefore, if the
gain in speed due to parallelization is not to be lost because of time spent communicating,
it is critical that (relative to communication times), the sub-tasks each require substantial
computational times.

Secondly, for statisticians using parallel processors to analyze Monte Carlo or Markov chain
Monte Carlo problems, it is important to ensure that random number streams on separate
processors are independent of each other. Otherwise, one can lose the benefit from paralleliz-
ing the Monte Carlo approximation - in the extreme case, if all processors generate exactly
the same random number stream, then the result in the parallel approach can be exactly
the same as that obtained using a single processor. A simple way of avoiding this problem
is to ensure that the random number seed is set differently on each processor, although
technically, it is still possible to obtain sequences on separate processors with some degree
of overlap. A more sophisticated approach is to use the “Scalable Parallel Random Number
Generator” (SPRNG, Mascagni and Srinivasan, 2000, see also http://sprng.cs.fsu.edu),
which is specifically designed to generate independent streams of (pseudo-)random numbers.

Finally, individual processor speeds may be important. Many Beowulf clusters consist of
machines which all run at roughly the same speed. However, in situations where some parts
of the cluster are newer than others, it is not uncommon to see a range of different-speed
processors. Furthermore, if the cluster is available to many users, then at any given time, a
machine may be effectively slowed down if one of these users is running a computationally-
intensive program. As a consequence, a single slow machine may hold up completion of the
task. The solution is to employ “load-balancing” to make sure that each processor receives
an amount of work proportional to its speed, and two common approaches to use here are

1. to ensure that slower processors receive smaller sub-tasks than faster processors, or

2. to adopt a queueing approach.

To use the queueing approach, one simply divides the task into a large number N of small sub-
tasks. “Large” here means any number significantly greater than the number of processors
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P . Then the first P sub-tasks can be allocated, one to each processor. The remaining pool
of N−P sub-tasks is placed in a queue. As soon as the first processor completes its sub-task,
it is assigned the next sub-task, which is removed from the front of the queue. Remaining
elements of the queue are subsequently assigned to new processors as the processors become
available. This approach ensures that faster processors receive more sub-tasks, and provides
a simple way to carry out automatic load-balancing. However, it is only effective when sub-
tasks can be carried out independently and communication time requirements remain small
compared to computation time required for the sub-tasks.

3 Parallel Generation of a Single Chain

The Metropolis-Hastings algorithm and its many variants give us straightforward schemes
for obtaining (non-independent) draws {θ(1), θ(2), . . .} from a target distribution π defined on
a state-space Θ (Typically Θ would be m-dimensional Euclidean space R

m, and the target
distribution would be the posterior distribution of a set of m real-valued parameters.) Our
goal is to use parallel processors to speed up simulation of a single Metropolis-Hastings chain
with limiting distribution π.

As Wilkinson (2004) points out, it may also be possible in certain cases to paral-
lelize burdensome likelihood computations directly. For instance, if they involve high-
dimensional matrix operations, then the ScaLAPACK library (Choi et al., 1992, also see
http://www.netlib.org/scalapack) may be used to speed up computations. (In fact,
this technique is used by Whiley and Wilson, 2004, .) Furthermore, in many cases, it is
possible to speed up computation of the target density without resorting to use of parallel
processors. Standard techniques for improving program efficiency include working to elim-
inate un-necessary network/disk accesses and redundant computations, avoiding the use of
transcendental functions when possible, using efficient libraries for optimization, random
number generation, etc.

When these approaches still do not provide sufficient improvement in speed, one may still
be able to resort to one of the following schemes.

3.1 Regeneration

For problems with low-dimensional state-space (i.e. few parameters and latent variables),
regeneration (see Mykland et al., 1995; Brockwell and Kadane, 2004, for details) can be
used. In the discrete state-space case, use of regeneration to parallelize generation of a
single chain is conceptually straightforward. A single point θ∗ in the state-space is chosen,
and the chain is started from this point. The resulting Markov chain can be divided into
segments, each one beginning at θ∗ and terminating immediately before the next occurrence
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of θ∗. These segments, typically referred to as “tours”, are independent and identically
distributed. Therefore each tour can be generated on a separate processor. The tours can
then be patched together in a prespecified order to obtain a single long chain. In the (more
common) continuous state-space case, this approach must be modified slightly, since the
probability of a return to the original state θ∗ is in most cases equal to zero. However, for
low-dimensional state-spaces it is not difficult to adapt the approach. Explicit algorithms are
given in Brockwell and Kadane (2004). The primary limitations with this approach, however,
are its lack of practical applicability to high-dimensional problems, and the introduction of
an additional “re-entry” distribution, which if poorly chosen, can inhibit mixing of the chain.

3.2 Blocking

In MCMC problems for which the state-space is high-dimensional, it is tempting to use an
update scheme where within each iteration, each processor is responsible for updating a part
of the state-space. However, unless done carefully, this is not a valid scheme. The counter-
example given in Appendix A illustrates that it does not necessarily yield a Markov chain with
the correct invariant distribution. In spite of the fact that this obvious approach doesn’t yield
a chain with the correct limiting distribution, under a conditional independence condition,
it is still possible in many cases to make effective use of parallel processing. Suppose that
the the following property holds.

Property 3.1 For some B ≥ 2, there exists a decomposition of the state-space

Θ =
B
∏

i=0

Θi

such that, for all θ = (θ0, . . . , θB) ∈ Θ, the following equivalent conditions hold.

1. π(θ1, . . . , θB|θ0) = π(θ1|θ0)π(θ2|θ0) . . . π(θB|θ0).

2. For j = 1, 2, . . . , B, π(θj|θ−j) = π(θj|θ0).

This is a form of the Markov property, in which the conditional independence structure is
not necessarily determined by time or spatial location. An example of a model for which
such blocks can be found is the so-called generalized state-space model, discussed, along with
an example of a possible block decomposition are in Appendix B. When Property 3.1 holds
for some state-space Θ and target distribution π, the following parallel Markov chain Monte
Carlo algorithm can be used.
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Algorithm 3.1: Parallel Block-Metropolis-Hastings

Step 1. Choose an initial state θ(1) = (θ
(1)
0 , . . . , θ

(1)
B ). Set k = 1.

Step 2. Create a copy θ(k+1) of θ(k). Set k ← k + 1.

Step 3. Carry out a Metropolis-Hastings update of θ
(k)
0 (given θ

(k)
1 , . . . , θ

(k)
B ).

Step 4. On B separate processors, carry out concurrent Metropolis-Hastings up-
dates of θ

(k)
j , j = 1, 2, . . . , B. The proposal distribution for updating θ

(k)
j may

depend on θ
(k)
0 as well as the current value of θ

(k)
j but not on {θ

(k)
m , m 6= 0, m 6=

j}.

Step 5. Go back to Step 2.

Note that Wilkinson (2004) discusses a more general form of this blocking algorithm, which
in a number of cases enables more efficient parallel block-update schemes to be implemented
(in the sense that one obtains an increase in speed closer to the number of processors P ).
The scheme here can be regarded as a special case of that described in Wilkinson (2004),
where there are two blocks, T1 = θ0, and T2 = (θ1, . . . , θB).

Note also that in many cases, it is convenient to further subdivide the update for θ
(k)
j into a

number of Metropolis-Hastings updates of sub-components of θ
(k)
j . (These, however, would

all have to carried out sequentially on the same processor.)

Remark: A typical update for θ
(k)
j in Step 4 would involve drawing a proposal θ∗j from a

distribution gj(·; θ
(k)
j , θ

(k)
0 ), and accepting it with probability

α = min

(

1,
π(θ

(k)
0 , θ

(k)
1 , . . . , θ∗j , . . . , θ

(k)
B )g(θ

(k)
j ; θ∗j , θ

(k)
0 )

π(θ
(k)
0 , θ

(k)
1 , . . . , θ

(k)
j , . . . , θ

(k)
B )g(θ∗j ; θ

(k)
j , θ

(k)
0 )

)

.

Since Property 3.1 is required to hold, this acceptance probability simplifies to

α = min

(

1,
π(θ∗j |θ

(k)
0 )g(θ

(k)
j ; θ∗j , θ

(k)
0 )

π(θ
(k)
j |θ

(k)
0 )g(θ∗j ; θ

(k)
j , θ

(k)
0 )

)

.

3.3 Pre-fetching

We propose a new method, which we call “pre-fetching”, for parallel generation of a Markov
chains when burn-in time is significant, and the methods discussed above are not practical.
(For certain problems, it may be difficult to establish Property 3.1 or the more general
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property discussed in Wilkinson (2004), and even when it can be established, the particular
block structure may not lead to substantial improvement in speed. In some cases, it may
even be impossible to find any conditional independence structure at all. This occurs, for
instance, in long-memory time series models like the ones considered in Brockwell and Chan
(2004). Such an example is given in the next section.)

Suppose that a Metropolis-Hastings chain has already been developed, and that proposal
generation is virtually instantaneous, as well as evaluation of prior densities, but that the
main computational burden is in computing likelihoods. (This is most often the case, since
proposal distributions are usually chosen to have simple density functions and be easy to
sample from.)

Figure 1: The possible outcomes in two iterations of a Metropolis-Hastings sampler. In two
steps, there are only four unique values, those in the shaded leaf nodes, for which likelihoods
must be computed. Parents have the same value as their left(“reject”)-children.

For the sake of clarity, consider the possible outcomes in only two sequential iterations of the
sampler, illustrated in Figure 1. Starting at time t, the chain has state Xt. At time t+1, the
state Xt+1 is either the same as Xt (if the proposal is rejected), or is equal to the proposal
generated at time t. At time t + 2, there are four possible outcomes, depending on both
the acceptance/rejection in going from time t to t + 1 and that in going from time t + 1 to
time t + 2. In this context, the pre-fetching algorithm assigns one processor to evaluate the
likelihood at each one of the four leaf nodes. These likelihoods determine the likelihoods in
the parent nodes (a parent node has the same likelihood as its left “rejection” child). Then
a single processor gathers the results, and takes two steps down the tree, drawing a uniform
random variable each time and comparing it with the appropriate acceptance probability.

Formally, and in the more general case, let

X
(I1,I2,...,Ih)
t+h
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denote the value of the state Xt+h, in the case where the proposals in going from time
(t + j − 1) to (t + j) are

rejected, if Ij = 1,
accepted, if Ij = 2.

(Figure 1 shows such values for h = 1 and h = 2.) Also, for j = 0, 1, 2, . . . , h− 1, let

Z
(I1,...,Ij)
t+j

denote the proposal generated at time t + j (for the value of the state at time t + j + 1),
contingent upon obtaining the corresponding sequence of acceptances/rejections starting at
time t. Thus

X
(I1,...,Ij)
t+j =

{

X
(I1,...,Ij−1)
t+j−1 , Ij = 1

Z
(I1,...,Ij−1)
t+j−1 , Ij = 2.

(3)

Suppose also that the possibly time-varying proposal densities are specified by

gt(xt, zt) = P (Zt ∈ dzt|Xt = xt).

The pre-fetching algorithm for carring out h iterations of MCMC simulation, starting with
Xt and ending with Xt+h, requires 2h processors. (For good performance, these processors
should be balanced, that is, they should be approximately the same speed.)
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Algorithm 3.2: Pre-Fetching

Step 1. Compute all possible proposals and states for the h steps into the future,
as follows.

1. Draw the proposal Zt from the density g(xt, zt). Determine X
(1)
t+1 and

X
(2)
t+1 using (3).

2. Draw proposals Z
(1)
t+1 ∼ gt+1(x

(1)
t+1, zt+1) and Z

(2)
t+1 ∼ gt+1(x

(2)
t+1, zt+1) and

then determine XI1,I2
t+2 for all four possible outcomes (I1, I2) ∈ {1, 2}

2.

3. Repeat this procedure to determine all possible proposals Z
(I1,...,Ij)
t+j ,

(I1, . . . , Ij) ∈ {1, 2}
j, j = 1, 2, . . . , h.

Step 2. Identify the 2h unique possible values that the states xt, . . . , xt+h can take.

These are simply the values {xt ∪ {x
(I1,...,Ij)
t+j : Ij = 2}, j = 1, . . . , h}. Label

these x∗

i , i = 1, 2, . . . , 2h.

Step 3. Concurrently, on 2h separate processors, compute the target density
π(x∗

i ), i = 1, 2, 3, . . . , 2h.

Step 4. For j = 1, 2, . . . , h, compute the realizations ij of Ij using the standard
Metropolis-Hastings rule

ij =

{

2, with probability αj,
1, otherwise,

where

αj =
π(z

(i1 ,...,ij−1)
t+j )gt(z

(i1,...,ij−1)
t+j , x

(i1,...,ij−1)
t+j )

π(x
(i1 ,...,ij−1)
t+j )gt(x

(i1 ,...,ij−1)
t+j , z

(i1 ,...,ij−1)
t+j )

Step 5. Set Xt+j = x
(i1,...,ij)
t+j , for j = 1, 2, . . . , h.

Since all computations apart from evaluation of π(·) are assumed to be negligible, the speed-
limiting component of this algorithm is Step 3. Since likelihoods are computed on separate
processors, this algorithm generates h iterations of the Markov chain in the time taken to
evaluate the density π only once.

This algorithm is not particularly efficient, since it achieves a speed-increase of only log2(P ),
where P is the number of processors. Essentially, this is because much of the computation
is wasted - only one out of 2h possible paths is actually chosen. However, in cases where
none of the previously-mentioned methods are practical to implement, it provides a useful
alternative. Furthermore, the algorithm is relatively straightforward to implement.
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4 Simulation Study

Fractionally integrated autoregressive moving average models have received attention re-
cently as potential improvements over standard autoregressive moving average models in a
number of fields, including finance, meteorology, and finance, where time series appear to
exhibit long-range dependence structure.

A zero-mean ARFIMA(p, d, q) process {Yt} satisfies

φ(B)(1− B)dYt = ϑ(B)Zt, (4)

where B denotes the backshift operator, φ(B) = 1−
∑p

i=1 φiB
i, ϑ(B) = 1 +

∑q
i=1 ϑiB

i, the
“fractional differencing parameter” d is a constant in the range (−0.5, 0.5), {Zt} is an iid
Gaussian noise sequence with mean zero and variance σ2, and the roots of the polynomials
φ(·) and ϑ(·) lie strictly outside the unit circle. The fractional differencing operator (1−B)d

is interpreted in the usual manner (see, e.g. Beran, 1994) as

(1− B)d =

∞
∑

k=0

Γ(d + 1)

Γ(k + 1)Γ(d− k + 1)
(−1)kBk.

To facilitate likelihood computations, the process is usually assumed to be Gaussian. When
observations Y1 = y1, Y2 = y2, . . . , YN = yn are made, the likelihood function is simply that
of a multivariate normal,

l(y1, . . . , yN ; θ) = (2π)−N/2 det(Γ)−1 exp(−yTΓ−1y/2),

where y = (y1, . . . , yN), and Γ = [γij]i,j=1,...,N denotes the covariance matrix defined by
γij = Cov(Xi, Xj). The components of Γ are computationally tedious to obtain, although
the formula given by Sowell (1992) is very helpful. Furthermore, due to the long-memory
property of {Yt}, the standard (efficient) approach to likelihood evaluation for ARMA models
(see, e.g. Brockwell and Davis, 1991) cannot be used. Instead, the best existing method is to
carry out a Cholesky decomposition of Γ, or to use the Durbin-Levinson algorithm to evaluate
l(y1, . . . , yN ; θ). For large values of N (and indeed, one is often interested in the case where
N is large when carrying out analysis of long-memory time series), this is time-consuming
to compute.

To investigate the performance of the pre-fetching algorithm, we carried out a Bayesian
analysis of a simulated ARFIMA(1,d,0) process with parameters φ1 = 0.5, d = 0.3, σ2 = 1.
The simulated process is shown in Figure 2. We imposed uninformative (very high variance)
priors on parameter φ1, d and log(σ). Each step in the Metropolis-Hastings algorithm picked
one of the three parameters at random, and generated a normally-distributed random-walk
proposal. Variances of the random-walk step sizes were, respectively, 0.001, 0.0005, and
0.001.
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Simulated ARFIMA(1,0.3,0) Process
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Figure 2: A simulated long-memory (ARFIMA(1,0.3,0)) process of length 1000.

The pre-fetching algorithm was implemented on a Beowulf cluster of 32 dual-CPU 1.6 GHz
AMD Athlon Linux systems, connected to eachother by 1 gigabit per second ethernet con-
nections. At the time of running these tests, no other users were making use of the cluster.
Programs were developed in C++, making use of the GNU scientific library, as well as the
MPICH implementation (version 1.2.0) of the MPI library. In each run of the pre-fetching
version of the MCMC algorithm, 10000 iterations of a Markov chain were generated, and in
all cases, posterior means were indeed close to parameter values used in the simulation. Total
execution time was recorded, and used to compute (Markov chain) iterations per second for
the scheme. For each chosen number of processors, three runs were carried out.

On this particular cluster, average time to evaluate the likelihood was around 8 milliseconds.
Observed iterations per second, for the Markov chains of length 10000, are shown in Figure 3.
The solid line in the figure indicates the maximum speed we would expect to obtain, based on
the assumption that processors are all running at the same speed, there are no “interruptions”
on any processors, and that communication between processors is instantaneous, as well as
the assumption that actual speed on each processor is the same as the average result obtained
in the 1-processor runs.

Clearly, actual performance increases roughly as expected when using four processors, but
starts to drop away from optimal theoretical performance as one goes to 8,16, and more
processors. This is explained in part by the inherent sensitivity of the algorithm to variation
in individual processing times. In particular, the time taken to carry out one h − step
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update is the maximum of the times taken to evaluate the likelihoods over all 2h processors.
Thus a small increase in variance of processing times can have a dramatic effect on overall
performance, particularly as h grows.

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700
Iterations per Second

Number of CPUs

IP
S

Figure 3: Iterations per second for the simulation study, as a function of number of processors.
Observed rates are shown as circles for three runs within each choice of number of processors.
The solid line indicates the theoretical optimal rate.

5 Discussion

This paper has introduced a new method for parallelizing generation of a single Markov
chain in the context of MCMC simulation. As Wilkinson (2004) emphasizes, it is usually
worth taking the time to improve mixing of a working single-processor MCMC algorithm,
as well as optimizing program speed, before resorting to use of parallel processors. These
approaches are typically easier than parallelizing generation of a chain. Furthermore, Rosen-
thal (2000),Glynn and Heidelberger (1992) and others have also considered the relatively
simple approach of generating multiple chains in parallel, which is generally the most effi-
cient solution when burn-in is not a serious problem. The pre-fetching method introduced
here is best-suited for problems where burn-in time is significant, and other methods are not
easy to implement.

The lack of robustness to processing-time variance highlighted in the simulation study sug-
gests that, at least when going beyond the simplest 4-processor (2-times speedup) version
of this algorithm, further refinements of the algorithm may be useful. By allocating spare
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processors to the task, there is a range of possible ways to improve this robustness. One
approach would be to allocate multiple processors to each likelihood evaluation, and simply
take the first value returned. Another more complex approach would be carry out on-line
evaluation of the variance of response times from processors, and allocate likelihood evalua-
tions preferentially to the “reliable” (i.e. low-variance) machines. Furthermore, even more
complicated versions of the algorithm could be developed that “travel down” the tree as
soon as relevant results become available, and then cancel pending likelihood requests which
as a consequence become redundant.

Another intriguing possibility, suggested to the author by an anonymous referee, arises in the
case where one can guess whether or not acceptance probabilities will be “high” or “low”.
In this case, the tree could be made deeper down “high” probability paths and shallower in
the “low” probability paths. Theoretically, in such a case, one could exceed the log-base-two
of number of processors speedup factor, since there would be a “high” probability of taking
a deeper (than log2(P )) path.

It is also worth noting the potential future benefits of an efficient perfect sampling algorithm,
that is, an algorithm which yields a draw from exactly the distribution π. Since the seminal
work of Propp and Wilson (1996) appeared, a lot of effort has gone into this area, but
so far, no practical general-purpose scheme for typical applied Bayesian analysis problems
has been developed. If it were possible to obtain these perfect samples, then the parallel
chains approach would clearly be ideal. Each chain would be initialized with an independent
perfect sample, this would eliminate the convergence issue, and the chains would then yield
independent unbiased parameter estimates.
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A An Example of Careless Blocking

The following example illustrates how asynchronous updates of separate parts of the state-
space may lead to an incorrect invariant distribution for a Metropolis-Hastings chain.
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Example 1.1: Suppose that the target distribution π is bivariate normal with mean
(0, 0)T and covariance matrix

[

1 ρ
ρ 1

]

,

and suppose that X1 = (X11, X12)
T ∼ π.

1. The standard Gibbs sampler would generate X2 = (X21, X22) by drawing X21 from a
N(ρX12, 1−ρ2) distribution, and then drawing X22 from a N(ρX21, 1−ρ2) distribution.
This update can be written in the form

X2 =

[

0 ρ
0 ρ2

]

X1 +

[

1 0
ρ 1

] [

ε1

ε2

]

,

where ε1, ε2 are iid normal random variables with mean zero and variance (1− ρ2). It
is easily verified that this gives X2 ∼ π, and thus π is indeed the invariant distribution
of the chain.

2. The asynchronous update sampler would carry out updates of the two components by
drawing from their respective full-conditional distributions concurrently. This means
X21 would be drawn from a N(ρX12, 1 − ρ2) distribution, and X22 would be drawn
from an independent N(ρX11, 1− ρ2) distribution. The update can be written in the
form

X2 =

[

0 ρ
ρ 0

]

X1 +

[

ε1

ε2

]

,

where ε1 and ε2 are as defined in the previous case. It is easily checked that this yields

X2 ∼ N

([

0
0

]

,

[

1 ρ3

ρ3 1

])

.

Since the distribution of X2 is not the same as that of X1 ∼ π, pi cannot be the limiting
distribution for the chain.

�

A simple representation of the state-updates for a bivariate distribution π is given in Figure 4,
with the arrows indicating dependencies in updates.

B Blocking for the Generalized State-Space Model

Consider the model

Xt+1 ∼ f(·; Xt, ϑ), t ≥ 1

Yt ∼ g(·; Xt, ϑ),
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Figure 4: Left: Standard Gibbs sampling updates for a bivariate target distribution, where
one component is updated according to its full-conditional distribution given the other, and
then the process is repeated for the other component. Right: Asynchronous sampling up-
dates, where one processor updates each component based on its full-conditional distribution,
but updates are carried out concurrently.

where f(·; Xt, ϑ) and g(·; Xt, ϑ) are some probability density functions which depend on Xt,
as well as a parameter vector ϑ. {Xt} is a latent Markov chain, and {Yt} is a sequence of
observations whose distributions are determined by {Xt}. Some assumption is made about
the marginal distribution f(X1; ϑ) - in many cases one can use the stationary distribution of
{Xt} (assuming it exists) here. In Markov chain Monte Carlo analyses of such models (see,
e.g. Carlin et al., 1992), one observes {y1, . . . , yn}, and typically defines the state-space Θ to
include all latent variables {X1, . . . , Xn} as well as the parameter ϑ. For convenience, define
X = {x1, . . . , xn} and Y = {y1, . . . , yn}. The posterior distribution is then

π(ϑ, X) = kp(ϑ)p(X|ϑ)p(Y |X, ϑ),

where k is a normalizing constant which depends on y1, . . . , yn, p(X|ϑ) =
f(x1; ϑ)

∏n
t=2 f(xt; xt−1, ϑ), and p(Y |X, ϑ) =

∏n
t=1 g(yt; xt, ϑ). Now suppose (for the sake

of giving an example) that n = 300. One could then decompose the state-space into

Θ0 = (ϑ, X100, X200), Θ1 = (X1, . . . , X99), Θ2 = (X101, . . . , X199), Θ3 = (X201, . . . , X300).

Then under the distribution π, Property 3.1 holds. To see this, note that

π(θ0, θ1, θ2, θ3) = kp(ϑ)p(θ0, θ1, θ2, θ3|ϑ)p(Y |X, ϑ)

= kp(ϑ)p(θ1, θ2, θ3|ϑ, θ0)p(θ0|ϑ)p(Y |X, ϑ)

= kp(ϑ)p(θ1|ϑ, θ0)p(θ2|ϑ, θ0)p(θ3|ϑ, θ0)p(θ0|ϑ)p(Y |X, ϑ). (5)

(The factorization in the last line here is valid because of the Markov property of
{X1, . . . , Xn}.) Next, let Y0 = {y100, y200}, Y1 = {y1, . . . , y99}, Y2 = {y101, . . . , y199}, and
Y3 = {y201, . . . , y299}, and observe that

p(Y |X, ϑ) = p(Y0|θ0)p(Y1|θ1, ϑ)p(Y2|θ2, ϑ)p(Y3|θ3, ϑ). (6)

16



It follows from equations (5) and (6) that

π(θ1|θ−1) =
π(θ0, θ1, θ2, θ3)

∫

π(θ0, θ1, θ2, θ3)dθ1

=
p(θ1|θ0, ϑ)p(Y1|θ1, ϑ)

∫

p(θ1|θ0, ϑ)p(Y1|θ1, ϑ)dθ1

.

Thus π(θ1|θ−1) does not depend on θ2 or θ3, so π(θ1|θ−1) = π(θ1|θ0). Analagous results
also hold for π(θ2|θ−2) and π(θ3|θ−3). Thus Property 3.1 holds for this particular target
distribution and decomposition of the state-space.
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