
UCLA
UCLA Previously Published Works

Title
Parallel Markov chain Monte Carlo simulations

Permalink
https://escholarship.org/uc/item/4vh518kv

Journal
Journal of Chemical Physics, 126

ISSN
0021-9606

Authors
Ren, Ruichao
Orkoulas, G.

Publication Date
2007-06-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vh518kv
https://escholarship.org
http://www.cdlib.org/

Parallel Markov chain Monte Carlo simulations
Ruichao Rena� and G. Orkoulasb�

Department of Chemical and Biomolecular Engineering, University of California,
Los Angeles, California 90095

�Received 2 April 2007; accepted 1 May 2007; published online 5 June 2007�

With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot
be validated with conventional Markov chain theory, which describes an intrinsically serial
stochastic process. In this work, the parallel version of Markov chain theory and its role in
accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential
updating is the key to improving efficiency in parallel simulations through domain decomposition.
A parallel scheme is proposed to reduce interprocessor communication or synchronization, which
slows down parallel simulation with increasing number of processors. Parallel simulation results for
the two-dimensional lattice gas model show substantial reduction of simulation time for systems of
moderate and large size. © 2007 American Institute of Physics. �DOI: 10.1063/1.2743003�

I. INTRODUCTION

The increasing availability of computer clusters with dis-
tributed memory has made parallel computing an inevitable
trend to simulate more realistic system sizes and longer time
scales in computational science. Recently, new advance-
ments have been made in both serial and parallel molecular
dynamics simulations of biomolecules.1–3 On the other hand,
the parallelism of Monte Carlo simulations is not just a tech-
nical implementation challenge, but also an unsettled theo-
retical problem due to the serial nature of Markov chain
theory.

Any massively parallel Monte Carlo simulation based on
spatial decomposition inevitably involves simultaneous up-
dates on multiple CPUs. Several attempts have been made to
parallelize Monte Carlo algorithms through system decom-
position into a number of noninteracting domains.4,5 Updat-
ing a molecule with interaction range beyond its own domain
needs the most up-to-date information of its neighbor mol-
ecules from logically adjacent computers. In parallel simula-
tions on distributed computers/clusters, communication be-
tween processors is a much slower process due to the limit of
network speed and data traffic, compared with ultrafast local
cache or memory operation. As the number of processors
grows, the speed of simulation may drop dramatically due to
the extra communication overhead. Thus, it is crucial to syn-
chronize information between processors at a relatively low
frequency, which inevitably involves switching active re-
gions periodically.

The most straightforward parallel Metropolis algorithm
is to divide the simulation box into stripes or squares �do-
mains�. Then, each processor tries to update particles or
spins within one domain. Once an update on the border of a
domain is accepted, the processor in charge will send the
updated information to its logical neighboring processors. A
smarter variation of this method is to use the same random

number sequence on all processors to avoid conflicts when
two adjacent sites are selected at the same time by two
neighboring processors.4 However, both methods are only
practical in supercomputers with shared memory architec-
ture. In cluster computing, they both suffer from frequent
communication, which usually leads to worse-than-serial
performance.

A more efficient example of domain decomposition al-
gorithm on four processors5 is shown in Fig. 1. This case
corresponds to a two-dimensional system with short-range
intermolecular forces. Each of the four processors is in
charge of a domain which comprises four regions A,B,C and
D: see Fig. 1. At any given time, only molecules in the active
�shaded� region are updated, and the active region changes
periodically in the order of A→B→C→D→A. Since the
molecules inside the active regions are separated by dis-
tances longer than the interaction range, synchronization fre-
quency is reduced dramatically. In this example, strict de-
tailed balance6,7 is not obeyed because only moves in the
active regions are immediately reversible. The violation of
strict detailed balance causes concerns about the precision of
this type of parallel Monte Carlo simulation.5

Most Monte Carlo simulations ensure strict detailed bal-
ance via random updating. Recently, we proposed a Monte
Carlo algorithm based on sequential updating moves with
partial randomness that only satisfies the weaker balance
condition.8 The new random skipping sequential �RSS�
Monte Carlo algorithm, identifies the correct equilibrium dis-
tribution of states, and converges much faster than the con-
ventional Metropolis algorithm.8 The improved efficiency of
the sequential updating algorithm is attributed to the so-
called “neighbor effect.” In the language of lattice models,
successful moves trigger a higher probability of nearest-
neighbor moves. The cascade behavior of the neighbor effect
results in fast decorrelation and enhanced statistical quality
of the generated samples.

In this work, we explore the parallel version of the Mar-
kov process for the nearest-neighbor lattice gas on the square
lattice. We show that sequential updating is the key to reduc-

a�Electronic mail: ruichao@ucla.edu
b�Electronic mail: makis@seas.ucla.edu

THE JOURNAL OF CHEMICAL PHYSICS 126, 211102 �2007�

0021-9606/2007/126�21�/211102/4/$23.00 © 2007 American Institute of Physics126, 211102-1

Downloaded 27 Jul 2007 to 169.232.46.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2743003
http://dx.doi.org/10.1063/1.2743003

ing communication among processors and is ideally suitable
for parallel implementation through domain decomposition
without compromising precision.

II. PARALLEL MARKOV CHAIN

We assume that it is possible to classify all elementary
moves by independency: Moves of the same type are inde-
pendent of each other, but moves of different type might be
dependent. For example, in Fig. 2 we consider eight possible
moves that can be categorized into two types �type1: A-D
and type2: E-H�. In serial Monte Carlo simulations, moves
are usually randomly selected and thus mixed up. In parallel
Monte Carlo simulations, however, different types of moves
must be isolated so that moves of the same type can be
updated concurrently. To render an ergodic transition matrix,
different types of moves/updates are executed periodically.
Referring to Fig. 2, at time t1 only type1 moves are executed,
while at time t2 only type2 moves are executed, and so on.

Following this assumption, we must identify the form of
transition matrix for parallel Markov chains in order to un-
derstand its convergence behavior. If Sm is the transition
matrix8 associated with updating site/cell m, the transition
matrices at time t1 and t2 are defined as

T1 = �
m

Sm, ∀ m � type1, �1�

T2 = �
m

Sm, ∀ m � type2. �2�

The parallel transition kernel, R, can be related8 with the
type transition matrices Tn as

R = �
n=1

k

Tn = T1T2T3 ¯ , �3�

where k is the number of types of independent moves. Note
that a different sequence of Tn will generate a different par-
allel kernel because of the dependency between different
types of moves.

Since each elementary move is accepted with Metropolis
acceptance probabilities,6,7,9 detailed balance is satisfied
while updating on a single component

�i�Sm�ij = �j�Sm�ji, �4�

which implies that the balance condition8

�{ · Sm = �{, �5�

is also satisfied for updating an individual component, where
�{= ��1 ,�2 , . . .� �row vector� is the equilibrium distribution
of states. Following the analysis of Ref. 8, one can see that

�{ · Tn = �{, �6�

and consequently that

�{ · R = �{�
n=1

k

Tn = �{ · T2 ¯ Tk = ¯ = �{. �7�

Equation �7� indicates that the balance condition for the par-
allel transition kernel is satisfied. Since immediate reversal
of a move is not possible within a sweep, detailed balance is
not satisfied for the sweep transition kernel R, i.e.,

�iRij � �jRji. �8�

Despite the absence of strict detailed balance, it has been
shown8 that sequential algorithms converge to the correct
equilibrium distribution with the less strong balance condi-
tion, Eq. �7�. Ergodicity is ensured by adding occasional ran-
dom skipping.

The parallel version of the random skipping sequential
�RSS� Monte Carlo algorithm is shown in Fig. 3 for a two-
dimensional system. The simulation box is divided into
stripes and all sites in each row are updated sequentially
before moving on to the next row; see Fig. 3. Parallelization
does not affect the serial efficiency of the RSS algorithm, so
that the parallel computing efficiency improvement is always
on top of the statistical efficiency8 improvement by sequen-
tial updating.

III. OPTIMAL NUMBER OF PROCESSORS

In parallel Monte Carlo simulations, increasing the num-
ber of processors does not necessarily reduce the simulation
time due to the extra communication overhead introduced by
additional processors. The competition between computation
and communication results in an optimal number of proces-
sors for a given system size. Above the optimal number of
processors, the parallel efficiency decreases with additional

FIG. 1. An example of domain decomposition that combines random updat-
ing and periodic switching of active regions �shaded area�. Active regions
are separated by distances that are longer than the interaction range of par-
ticles or spins.

FIG. 2. In serial Monte Carlo simulations �top�, all types of moves �A-H�
are usually randomly selected and mixed up. But, in parallel Monte Carlo
simulations �bottom�, different types of moves �A-D and E-H� are isolated
so that moves of the same type can be updated concurrently.

211102-2 R. Ren and G. Orkoulas J. Chem. Phys. 126, 211102 �2007�

Downloaded 27 Jul 2007 to 169.232.46.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

processors. An example of a parallel RSS Monte Carlo simu-
lation is shown in Fig. 4. This case corresponds to the
nearest-neighbor lattice gas on the square lattice.10 As the
number of processors increases, the simulation time de-
creases first; then, beyond a point �six CPUs in this case� it
starts to increase.

To determine the optimal number of processors, we for-
mulate the simulation time as an empirical function of the
number of processors nc and system size L,

t =
�cL

d

nc
+ ��oLd−1 + �1�nc. �9�

In Eq. �9� d is the dimensionality of the system, �c is the unit
computing time per cell, �o is the data transfer overhead, and
�1 is communication initialization/finalization overhead.

In systems of moderate size L, the initialization and fi-
nalization overhead �1 is significantly larger than the data
transfer overhead �o. The simulation time can then be sim-
plified as

t �
�cL

d

nc
+ �1nc. �10�

From Eq. �10� it follows that there is an optimal number of
CPUs which renders the shortest simulation time. By taking
the first derivative of the simulation time with respect to the
number of CPUs,

�t

�nc
= −

�cL
d

nc
2 + �1, �11�

one can see that the optimal number of processors for system
size L is

nopt =	�cL
d

�1
. �12�

As the system size increases, the data transfer overhead,
�o, becomes larger and more significant than the
initialization/finalization overhead �1. The simulation time is

t �
�cL

d

nc
+ �oLd−1nc. �13�

In this case, the optimal number of processors,

nopt =	�cL

�o
, �14�

is independent of the dimensionality d.
For very large systems, the communication overhead be-

comes negligible compared to the lengthy computing time.
In this case, the simulation time is

FIG. 5. Simulation time vs number of CPUs for a 480�480 lattice gas
system. In this case, the simulation time decreases monotonically with the
number of processors.

FIG. 3. Illustration of the parallel version of the random skipping sequential
�RSS� Monte Carlo algorithm of Ref. 8. The simulation box is divided into
four stripes, and each stripe is updated by one processor via sequential
updating. There is no communication necessary until all CPUs finish updat-
ing the top and bottom line of their domains.

FIG. 4. Simulation time vs number of CPUs for a 120�120 lattice gas
model on the square lattice. The simulation time corresponds to 105 lattice
sweeps. The reduced temperature is T �=kBT /�=0.6 and the value of the
chemical potential corresponds to the symmetry �zero-field� axis for this
model. The simulation time decreases first and eventually increases with the
number of processors.

211102-3 Parallel Markov chain simulations J. Chem. Phys. 126, 211102 �2007�

Downloaded 27 Jul 2007 to 169.232.46.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

t �
�cL

d

nc
. �15�

Thus, there is no optimal number of CPUs for very large
systems, and the computation time decreases monotonically
with the number of CPUs as shown in Fig. 5.

IV. CONCLUSIONS

Due to the absence of strict detailed balance, the sequen-
tial algorithm is ideal for parallel computing through domain
decomposition. We introduce a parallel scheme that reduces
the interprocessor communication which slows down parallel
simulation with increasing number of processors. Parallel
simulation results show substantial reduction of simulation
time for systems of moderate and large size. The efficiency
improvement is always on top of the statistical efficiency
improvement by sequential updating. Future work in this di-
rection is associated with devising sequential type of algo-
rithms, both serial and parallel, for continuum fluid models.

ACKNOWLEDGMENTS

The authors are grateful to the Intel Higher Education
Program, which provided the Linux cluster used in the simu-
lations. The authors are also grateful to the developers of
MPICH at Argonne National Laboratory, which made paral-
lel programming of this work convenient and possible.
Financial support from NSF, CBET-0652131, is gratefully
acknowledged.

1 X. Zhao, A. Striolo, and P. T. Cummings, Biophys. J. 89, 3856 �2005�.
2 D. E. Shaw, J. Comput. Chem. 26, 1318 �2005�.
3 K. J. Bowers, R. O. Dror, and D. E. Shaw, J. Chem. Phys. 124, 184109
�2006�.

4 G. Barkema and T. Macfarland, Phys. Rev. E 50, 1623 �1994�.
5 G. S. Heffelfinger, Comput. Phys. Commun. 128, 219 �2000�.
6 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids �Clar-
endon, Oxford, 1987�.

7 D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed.
�Academic, New York, 2002�.

8 R. Ren and G. Orkoulas, J. Chem. Phys. 124, 064109 �2006�.
9 D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in
Statistical Physics �Cambridge University Press, Cambridge, 2000�.

10 R. Ren, C. J. O’Keeffe, and G. Orkoulas, Mol. Phys. 105, 231 �2007�.

211102-4 R. Ren and G. Orkoulas J. Chem. Phys. 126, 211102 �2007�

Downloaded 27 Jul 2007 to 169.232.46.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

