
          Deakin Research Online 
 
This is the published version:  
 
Lau, K. K., Kumar, M. J. and Venkatesh, S. 1996, Parallel matrix inversion techniques, in 
ICAPP 1996 : IEEE International Conference on Algorithms and Architectures for Parallel 
Processing, IEEE, Piscataway, N. J., pp. 515-521. 
 
Available from Deakin Research Online: 
 
http://hdl.handle.net/10536/DRO/DU:30044550 
 
Reproduced with the kind permissions of the copyright owner. 
 
Personal use of this material is permitted. However, permission to reprint/republish this 
material for advertising or promotional purposes or for creating new collective works for 
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work 
in other works must be obtained from the IEEE. 
 
Copyright : 1996, IEEE 

http://hdl.handle.net/10536/DRO/DU:30044550


Parallel Matrix Inversion Techniques 

K.K.Lau, M.J. Kumar, S. Venkatesh 
Department of Computer Science, Curtin University of Technology 

Bentley, Perth, Australia 
email: (laukk,kumar,svetha)@cs.curtin.edu.au 

b -  
C 

C 

b 
a ,  

Abstract 
In this paper, we present techniques for inverting sparse, 
symmetric and positive definite matrices on parallel and 
distributed computers. We propose two algorithms, one 
for SIMD implementation and the other for MIMD im- 
plementation. These algorithms are modified versions 
of Gaussian elimination and they take into account the 
sparseness of the matrix. Our algorithms perform better 
than the general parallel Gaussian elimination algorithm. 
In order to demonstrate the usefulness of our technique, we 
implemented the snake problem using our sparse matrix 
algorithm. Our studies reveal that the proposed sparse 
matrix inversion algorithm significantly reduces the time 
taken for obtaining the solution of the snake problem. 
In this paper, we present the results of our experimental 
work. 

Keywords : Sparse matrices, matrix inversion, SIMD, 
MIMD, PVM, computer vision and snakes. 

1 Introduction 
Solving systems of linear equations is a problem of im- 
portance in many applications. Typically, a set of linear 
equations is represented by 

AX = 6 

where A is a n x n matrix, x and b are n x 1 vectors. This 
problem can be solved by matrix inversion. The inverse 
of a matrix A, denoted by A-', has the property that a 
system of equations Ax = 6 can be solved by perform- 
ing the matrix vector multiplication z = A-'h However, 
O(n3) operations are required to compute x on a serial 
computer where b is given [Sed@]. Even with some other 
factorization techniques like LU-decomposition, Choleski 
factorization and normalized factorization, we need O(n2)  
operations to compute 2 given b [DD91]. Besides this, 
there are several iterative methods for inverting matrices 
such as Jacobi iterative method and the conjugate gradi- 
ent method fBT891. Iterative methods do not obtain an 
exact solution of Ax = 6 in finite time, but converge to a 
solution asymptotically. Unfortunately, no single iterative 
method is robust enough to solve all sparse linear systems 
accurately and dciently [DD91]. 

However, to solve sparse linear equations, a normal di- 
rect matrix inversion or factorization is inefficient in terms 
of computer time and memory. Normal matrix operations 
do not take into account the sparseness of the matrices. A 
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great deal of computing power i s  spent on multiplication of 
zeros. Moreover, significant memory is wasted in storing 
zeros. There is a need to optimize the computation time 
and memory by exploiting the sparseness of the matrices. 

Even though, matrix inversion demands high compu- 
tational requirements, its inherent parallelism has led to 
much interest in parallel implementation. The idea of ex- 
ploiting parallelism in matrix inversion can be traced back 
to [Pea67]. Since then, several parallel matrix inversion al- 
gorithms have been developed. Gaussian elimination can 
be easily implemented in parallel and its time complex- 
ity is U(nZ) with n processors [BT89]. Csanky [&a761 
discusses a method for inversion of a square matrix in 
O(Zog2n) time, where he has shown that inverting matrices 
of a certain class can be reduced to the problem of matrix 
multiplication. However, Csanky's algorithm is prone to 
numerical problems and it uses an excessive number O(n4) 
of processors, Bojanczyk [BojM] also transforms the inver- 
sion problem into matrix multiplication and achieved the 
same complexity, O(Zog%) but using only O(n3) proces- 
sors. However, if fewer, say n processors are available, 
a very accurate approximation of the invexse algorithm of 
[Boj84] is obtained in O(nZ logn) time steps. This is some- 
what slower than Gaussian elimination. Furthermore, all 
the parallel algorithms described in the literature above 
do not take into account the sparseness of a matrix. 

To the best of our knowledge, not much research has 
been reported on parallel sparse matrix inversion. In this 
paper, we propose two algorithms, one for SIMD com- 
puters and the other for MIMD computers, for inverting 
a sparse matrix A which is symmetric, positive definite. 
An example of such a matrix is shown in Figure 1. Each 
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Figure 1: an example of a sparse matrix 

row (or column) has the same number of non-zero (k) ele- 
ments and we assume that 6 << n. Such systems occur in 
many applications [BE77]. Our implementations are mod- 
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ified versions of the basic Gaussian elimination algorithm. 
We take advantage of the fact that the matrix we used is 
sparse, symmetric and positive definite. For matrix size of 
n x n, our SIMD algorithm works best when the PE array 
size is greater than ( ( k / 2 ) + k + n )  xn). For larger matrices, 
we map several matrix elements onto each PE. In section 4, 
we shall prove that our parallel SIMD sparse matrix inver- 
sion technique gives good results even when the PE array 
size does not match with the matrix size. We shall also 
prove that our parallel MIMD sparse inversion technique 
has higher computational speed and lower communication 
cost compared to the general MIMD Gaussian elimination 
algorithm. We have implemented our MIMD algorithm on 
a network of workstations (NOWs) using PVM. 

The remainder of this paper is organized as follows : 
we will examine the characteristics of sparse, symmetric 
and positive definite matrix inversion in section 2. And 
based on those characteristics, we will present our algo- 
rithms and implementation details for SIMD and MIMD 
computers in section 3. In section 4, we will discuss the 
performance of the implementation technique. 

2 Characteristics of sparse sym- 
metric matrix inversion 

A matrix is symmetric if A = AT, where AT is the trans- 
pose of A. In our experiments, we make use of two im- 
portant characteristics of sparse symmetric matrix inver- 
sion. Firstly, if A is symmetric and positive definite, then 
A-' is also symmetric and positive definite. This identity 
matches the concept of Cholesky factorization. Therefore, 
the factorization steps can be continued without pivoting 
until the inversion is obtained. 

Secondly, if A is sparse, its inverse will not be sparse 
in general. This identity supports work done by [DD91]. 
Consequently, sparsity of a matrix does not reduce the 
storage requirements of its inverse. Based on the char- 
acteristics above, we identified that Gaussian elimination 
as the most suitable method for our implementation of 
sparse symmetric matrix inversion. Since matrix A is pos- 
itive definite, it is unnecessary to do any parallel pivot- 
ing when we'are eliminating the matrix. This can save a 
lot of computation cost. Parallel pivoting strategies are 
discussed in [Ala951 and [Ala89]. Furthermore, from our 
experiments, we observed the relations shown in Figure 
4. 1) each row in matrix A-] is a rearrangement of the 
vector [d, e, f, ...I, 2) The ith row vector can be obtained 
by shifting the (i+l)th row vector one to the left with 
wrap around. Therefore, by using Gaussian elimination, 
if we reduce matrix A to the upper triangular matrix by 
row operations and simultaneously apply these operations 
to identity matrix I ,  we can have the last row vector of 
matrix A-'. Therefore, we can use the last row to gen- 
erate the whole matrix A-' in parallel instead of further 
elimination or forward/backward substitution. 

A =  

a b  c 
b a  b c 
c b a  b c 

e b a b c  
. . . .  . . . .  . . .  

c b a  
C c b  
b c  C 

d e f g h ... 
e d e f g ... 
f e d e f ... i 
g h g f e ... 
f 9 h 9 f I . .  

e f g h g ... I 

c b  
C 

b c  
a b  
b a  

Figure 2: The relations of matrix A and A-' 

3 Modified Gaussian elimination 
algorithms 

3.1 Storage scheme for sparse m a t h  
Our implementation is a modified version of the basic 
Gaussian elimination algorithm. Following the Gaussian 
elimination, we reduce A to the upper triangular matrix 
by row operation and simultaneously apply these opera- 
tions to I to produce A-'. Since each row has & non-zero 
elements, matrix A is stored using two (&/2 + &) x n ar- 
rays called VAL and X. Each row of VAL contains the 
non-zero elements of the corresponding row of the sparse 
matrix and the array X stores the row numbers of the cor- 
responding entries in VAL. In Figure 3, we show a sparse 
64 x 64 matrix with k = 5 stored in our format. The pur- 
pose of the condensation is to convert the representation 
of the sparse matrix to a format better suited for Gaussian 
elimination. In specific, the goals are : 

0 To assign mainly the non-mro elements of the matrix 
to processors. Thus, the converted matrix is denser 
and the utilization is enhanced. 

0 To preserve the connectivity of the sparse matrix. As 
we shall see. in the later part of this section, in each 
column elimination, there is no conflict in the position 
of the X coordinates. 

We observe, first that any r o w  operation on A can be 
described as a sequence of : 

1. Division Step : let X = a(i, i) and we divide row i by 

2. Elimination Step : let X = a+, j) and we add -A 

In the following sections, we will present the SIMD and 
MIMD implementation of the division step and elimina- 
tion step for matrix A and matrix A - ] .  

x 

times row i to row j. 
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VAL = 

Figure 3: The structure of VAL. and X 

' a b c - - c b  
b a b c - - c  
c b a b c - -  
c b a b c - -  
. . . . . . . . . . . . . I . . , . . . . 
c b a b c - -  
e - - c b a b  
b c - , c b a  

3.2 SIMD algorithm 

1 2 - - 62 6 3 -  
0 1 2  3 - - 6 3  
0 1 2 3 4 - -  
1 2 3 4 5 - -  

x= . . . . . . . . . . . . . . . . . . . . . 
59 60 61 62 63 - - 
0 - - 60 61 62 63 
0 1 I - 61 62 6 3 _  

Given the PE  array of size m x m. we transform the n x n 
matrix A, into two ((k/2) + k )  x n matrices VAL and X 
and we map the matrices onto the first (k/2) + k columns 
of the PE array; k is the number of non-zero elements on 
each matrix row. If m 2 (k/2 + k + n) we map the iden- 
tity matrix I' on the following n columns. Therefore, any 
operations applied to VAL matrix can be simultaneously 
applied to I' in parallel. In other words, this algorithm 
works best when the PE array size is ((k/2 f k) f n) x n. 
However, in the rae  where the matrix size is bigger than 
PE array size, we map the I' onto the whole PE array 
evenly and apply those row operations to VAL and I' in 
serial time. 

In cases where the matrix size is bigger than the PE 
array, if we can ensure that we map row i and z + 1 to 
different PE  rows, then each PE will create at most one 
matrix non-zero element in each rdumn elimination. This 
results in higher computational speed than general parallel 
SIMD Gaussian elimination algorithm. 

In the rest of this section, we assume m = n. Figure 
4 shows our modified version of Gaussian elimination. To 
do the division step, we broadcast the val(i, 0) to the rest 
of the row. Then since every PE in the row z has a copy of 
d ( z ,  0), the first ( k / 2  -t k) PES can do the division step 
for matrix A by performing w u l ( i l j ) / v ~ l ( i , O )  in parallel. 
Simiiarly, every PE on the it'' row can do the division step 
€or matrix I' by performing F(z, j ) /uaZ(i ,  0) in parallel. 

1: procedureSIMD(VAL, Inv) 
2: begin 
3: 
4: begin 
5: for PE(i,O) 
6: 
7: 
8: VAL(i,j) /= VAL(i,O) 
9: 
IO: I'(i,j) /= V-4L(i,O) 
11: 
12: for PE(ij) 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: end 
22:end 

for i = 0 to n-1 do 

Broadcast VAL(i,O) along its row 
for PE(ij), j = 0 to (k/2+k)-1 do in parallel 

for PE(ij), j = 0 to n-1 do in parallel 

Broadcast VAL(ij) or I'(i,j) along its column 

Broadcast VAL(1.0) along its row 
for PE(lli), i < 1 < i+(k/2) or 1 > n - (k/2) 

for PE(IQ), j = 0 to (k/2+k)-l do in parallel 

for PE(lj), j = 0 to n-1 do in parallel 
VAL(1,j) -= VAL(ij) * VAL(1,O) 

I'(1j) -= I'(i,j) * VAL(1,O) 

Figure 4: Our SIMD Gaussian elimination algorithm 

, 
\ k n + k  

Row i 

I n l  n I 

I 

I VAL[n-ll[il=VAL[n-lJlil- VAL[ilGl* VAL[n-l][OI The elimination step is carried out in a similar way as 
illustrated in the Figure 4. A typical computation of our 
SIMD Gaussian elimination procedure in the ith itera- 
tion of the outer loop is shown in Figure 5. Since each I - -J W v e p a x t  
column of matrix A has only k non-zero elements, only 
(k x ( ( k / 2 )  + IC) )  of VAL and k x n of matrix I' are com- 
putationally active. t ion 

Once the elimination step is completed, we shift the 
entries at V A L  and X €or next column elimination. This 

Actve part 
..--- 

Figure 5: Computation in our modified Gaussian elimina- 
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movement is shown in Figure 6. this results in lower communication cost than general par- - 
allel MIMD Gaussian elimination algorithm. 

NULL 1: procedure MIMDmaster(VAL, Inv) 
2: begin 

4: begin 
5: For MASTER do 
6: 
7: 
8: VAL(ij) /= VAL(i,O) 
9: 
10: 
11: 

Broadcast VAL(i,O) to the slaves 
For j = 0 to (k/2+k)-1 do 

For 1 = i < 1 < i+(k/2) 
Broadcast VAL(1,O) to the slaves 
For j = 0 to (k/2+k)-1 do 

R o W “ 2  13: VAL(1j) -= VAL(ij) * VAL(1,O) 
14: 
15: 
16: 

For 1 = 1 > n - (k/2) 
Broadcast VAL(1,O) to the slaves 

Figure 6: Shifting VAL and X 

3.3 MIMD algorithm 

17: 
18: 
19: end 
20: end 

For j = 0 to (k/2+k)-1 do 
VAL(1j) -= VAL(ij) * VAL(1,O) 

Figure 8: Our MIMD Gaussian elimination algorithm (for 
master) 

Master PE 

1: procedure MIMDslave(VAL,Inv) 
2: begin 
3: 
4: begin 
5: For SLAVE do 
6: 
7: 

For i = 0 to n-1 do 

receive VAL(i,O) 
For i = 0 to n-1 do 

0 A L\ 
Figure 7: master/slave model 8: 17(i,j) /= VAL(i,O) 

9 
Our algorithm is implemented in a masta/slave program. 10: 
All initial matrices and the result matrix will be stored in 11: 
the master workstation. The slaves are sent partitions by 12: 
the master, which are then stored in local memory and op- 13: 
erated on, with the results being sent back to the master 14: 
to be collated. For implementation of the MIMD algo- 15: 
rithm, we employ a network of workstations (NOWs) and 16: 
the Parallel Virtual Machine (PVM) library. In the rest 17: 
of this section we refer to each workstation as a PE. The 18: 
codguration is shown in Figure 7. 19: end 

Similar to the SIMD algorithm, we transform the n x n 20: end 
matrix A into two ((k/2) + k) x n patrices VAL and X. 
The whole of VAL and X will be stored in the master 
PE. The master PE also maps the matrix I’ onto the the 
slave PES evenly. For instance, if the matrix size is 256, 
the number of slaves is 4 and k is equal to 5, the master 
PE will have the transformed matrices VAL and X (each 
7 x 256) and each slave will have a submatrix of I‘ of size 
64 x 256. 

Our MIMD Gaussian elimination algorithm is shown in 
Figure 8 and Figure 9. In each column elimination, the 
master PE needs to broadcast all the non-zero elements of 
column i in matrix VAL to all the slaves (see Figure 8). 
Since each column has k non-zero elements at the most, 

For 1 = i < 1 < i+(k/2) 
receive VAL(1,O) 
For j = 0 to n-1 do 

I’(ij) -= I’(i,j) * VAL(1,O) 

For 1 = 1 > n - (k/2) do 
receive VAL(1,O) 
For j = 0 to n-1 do 

I’(i,j) -= I’(i,j) * VAL(1,O) 

Figure 9: Our MIMD Gaussian elimination algorithm (for 
slave) 

Once the communication operation is completed, the 
master and slaves can perform their computation inde- 
pendently. The master can compute the division step and 
elimination step for matrix VAL and X (Figure 8) and 
concurrently, each slave can compute the division step and 
elimination step for matrix I’ (Figure 9). Since each col- 
umn has only k non-zero elements, this results in lower 
computational cost than general parallel Gaussian elimi- 



nation algorithm. 

4 Performance analysis and re- 
sult k 

5 
7 
9 

In this section, we determine the number of computational 
steps for our implementation of sparse matrix inversion. 

6 4 x 6 4  128 x 128 256 ~ 2 5 6  512 x 512 
0.21 0.39 0.75 1.48 
0.21 0.4 0.78 1.49 
0.22 1 0.41 0.86 1.61 

Time complexity for the SIMD algorithm 

k 
5 0.144 0.304 1.121 
7 0.121 0.312 1.238 
9 0.113 0.316 1.444 

64 x 64 1 128 x 128 256 x 256 

Assuming the matrix size is n x n and PE size is m x 
m and if m > ((k + 2) + IC -t- n), the total parallel time 
to compute A-’ is O(n). Each column elimination takes 
constant time. However, as matrix VAL and matrix I‘ 
are mapped in different set of PES, any operations applied 
on matrix V A L  will be simultaneously applied to I‘ in 
parallel. Moreover, if n >> rn, we perform operations 
on matrix V A L  and matrix I’ in separate steps. Suppose 
n = pm ( p  2 l), we map ( p  x p )  subarrays of matrix I‘ 
to the P E  array. Ewa though the time complexity is the 
same as that of the general Gaussian elimination, there is 
a significant reduction in the execution time and the space 
in our algorithm. This is manifested in our experimental 
results. 

512 x 512 
4.409 
4.796 
4.843 

T h e  complexity for the MIMD algorithm 
If we use m << n workstations, map 2 = p rows of 
the given matrix to each of the slave PES for computa- 
tion. Each FE performs computation for 2 rows in a. 
serial fashion. Hence the complexity of the algorithm is 

Further, as we are using the condensed form of the given 
matrix, we are using less memory space. If there are k 
vdid elements in the row of A,  we store A in an array of 
size ( 5  + k) x n rather than n x R. Hence, saving in space 

O($)- 

is nxp x 100% = * x 100% . ($+k)xn 

k 
5 

Result 
The implementation of our algorithms were tested for var- 
ious matrix size and various non-zero element (IC). The 
results of the SIMD implementation on the DEC MP-1 
Maspar system are shown in Table 1. Our Maspar MP-1 
is a general purpose SIMD machine with 2048 (32 x 64) 
processing elements. Our result is compared to the general 
SIMD Gaussian elimination algorithm. 

64 x 64 I 128 x 128 256 x 256 I 512 x 512 
0.02 I 0.13 1.17 I 7.11 

7 0.03 I 0.16 

Table 1: Time performance of SIMD matrix inversion (in 
seconds) 

1.65 1 7.38 

The results of the MIMD implementation on the net- 
work of workstations (NOWs) are shown in Table 2. The 

64 x 64 
128 x 128 
256 x 256 
5 1 2 x  512 

number of slaves is eight. Comparing to the general MIMD 
Gaussian elimination algorithm (see Table 3), it is shown 
that our MIMD algorithm is faster. 

5 0.1833 I 0.1833 
5 0.5833 1.0166 
5 1.549 5.6164 
5 4.416 24.4657 

Table 2: Time performance of MIMD sparse matrix inver- 
sion algorithm (in seconds) 

Table 3: Time performance of MIMD general matrix in- 
version algorithm (in seconds) 

Furthermore, the sequential sparsc matrix Gaussian 
elimination algorithm and the sequential general Gmssian 
elimination algorithm have also been implemented. The 
algorithms were executed on a DEC/5QO workstation. The 
timing for various matrix size and non-zero elements are 
shown in Table 4 and Table 5. 

I 

9 I 0.03 I 0.24 I 1.94 I 7.65 

Table 4: Time performance of sequential sparse matrix 
inversion algorithm (in seconds) 

5 Application - snake 
Our technique has proven to be useful when the matrix 
is sparse, symmetric and positive definite. We have used 
this technique in mi application called snake. The problem 
snake is from the doma,in of motion tracking in computer 
vision. It detects the edges of an object by k i t e  dement 
method. A snake is an iterative energy miilimization pro- 
cedure using sparse matrix method. It involves wnvolu- 
tion, sparse matrix inversion and matrix-vector multipli- 
cation. The coordinates of the snake points at timef are 
given by 

xt  = ( A  + 71)-’($t-i - fi(zt-1, yt-I)) 

Y t  = ( A  + 7 T 1 ( Y t - r  - far(Q-11 Yf-1)) 

Assuming n is the number of points in a snake, x and y 
are n x 1 vectors which store the x coordinates and y mor- 
dinates of the points. A is a n x n sparse, symmetric and 
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n 

12 43.89 3.6665 
256 116.763 7.5496 
512 404.78 16.2326 

I k 1 64 x 64 1 128 x 128 I 256 x 256 I 512 x 512 1 

4.2 
10.8 
35.3 

I 8 I 

5 I 0.28 I 1.85 I 15.59 1 121.61 
7 1 0.28 I 1.22 I 13.51 I 126.42 

I I 9 I 0.28 I 1.1 I 12.34 I 114.94 

Table 5: Time performance of sequential general matrix 
inversion algorithm (in seconds) 

positive definite matrix. From the equations above, we 
can observe that matrix A occurs in a problem where the 
solution Az = b is incorporated into an iterative proce- 
dure. Readers not familiar with the working of the snake 
are advised to refer to [KW87]. 

We use our matrix inversion algorithm to compute A-'. 
Since the matrix A-' is a dense matrix, we use the general 
parallel matrix-vector multiplication algorithm to perform 
all the iteration. We have constructed a snake of a square 
representing its boimdary using 64 points. Figure 10 shows 
the original image and the initial position of snake. We 
set a = 0.3 and ,!? = 0.04 (a and p are the parameters of 
snake) Figures 11 - 11 show the locations of snake in every 
30 iterations. 

Figure 10: The Original image and initial position 

Figure 11: 30 iterations 

In the figures, we can see that the snake was attracted 
to the square boundary from a fairly large distance. Ta- 
ble 6 shows the speedup of various implementations of 
the snake. The SIMD snakes algorithm was executed on 
the DEC MP-1 Maspar system, the MIMD algorithm was 

Figure 12: a) 60 iterations and b) 90 iterations 

executed on the network of workstations (1 master and 
8 slaves) and the sequential algorithm was executed on 
the DEC/SOO workstation. The timing is measured from 
convolution, matrix inversion to 90 energy minimization 
iterations. 

No of points I Sequential I SIMD I MIMD 
64 I 34.2 I 1.9999 I 2.2 

Table 6: Timing difference between the SIMD snake, 
MIMD snake and sequential snake for the example (in sec- 
onds) 

6 Conclusion 
In this paper, we have presented efficient algorithms for 
inverting a sparse, symmetric and positive definite matrix 
problems. These algorithms are modified version of Gaus- 
sian elimination and take into account the sparseness of 
the matrix. The results obtained by us are very encour- 
aging as they indicate a substantial improvement in exe- 
cution time over the general parallel Gaussian elimination 
algorithm. We have presented results for SIMD tls well as 
MIMD computations. 
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