
 Deakin Research Online

This is the published version:

Lau, K. K., Kumar, M. J. and Venkatesh, S. 1996, Parallel matrix inversion techniques, in
ICAPP 1996 : IEEE International Conference on Algorithms and Architectures for Parallel
Processing, IEEE, Piscataway, N. J., pp. 515-521.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30044550

Reproduced with the kind permissions of the copyright owner.

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Copyright : 1996, IEEE

http://hdl.handle.net/10536/DRO/DU:30044550

Parallel Matrix Inversion Techniques

K.K.Lau, M.J. Kumar, S. Venkatesh
Department of Computer Science, Curtin University of Technology

Bentley, Perth, Australia
email: (laukk,kumar,svetha)@cs.curtin.edu.au

b -
C

C

b
a ,

Abstract
In this paper, we present techniques for inverting sparse,
symmetric and positive definite matrices on parallel and
distributed computers. We propose two algorithms, one
for SIMD implementation and the other for MIMD im-
plementation. These algorithms are modified versions
of Gaussian elimination and they take into account the
sparseness of the matrix. Our algorithms perform better
than the general parallel Gaussian elimination algorithm.
In order to demonstrate the usefulness of our technique, we
implemented the snake problem using our sparse matrix
algorithm. Our studies reveal that the proposed sparse
matrix inversion algorithm significantly reduces the time
taken for obtaining the solution of the snake problem.
In this paper, we present the results of our experimental
work.

Keywords : Sparse matrices, matrix inversion, SIMD,
MIMD, PVM, computer vision and snakes.

1 Introduction
Solving systems of linear equations is a problem of im-
portance in many applications. Typically, a set of linear
equations is represented by

AX = 6

where A is a n x n matrix, x and b are n x 1 vectors. This
problem can be solved by matrix inversion. The inverse
of a matrix A, denoted by A-', has the property that a
system of equations Ax = 6 can be solved by perform-
ing the matrix vector multiplication z = A-'h However,
O(n3) operations are required to compute x on a serial
computer where b is given [Sed@]. Even with some other
factorization techniques like LU-decomposition, Choleski
factorization and normalized factorization, we need O(n2)
operations to compute 2 given b [DD91]. Besides this,
there are several iterative methods for inverting matrices
such as Jacobi iterative method and the conjugate gradi-
ent method fBT891. Iterative methods do not obtain an
exact solution of Ax = 6 in finite time, but converge to a
solution asymptotically. Unfortunately, no single iterative
method is robust enough to solve all sparse linear systems
accurately and dciently [DD91].

However, to solve sparse linear equations, a normal di-
rect matrix inversion or factorization is inefficient in terms
of computer time and memory. Normal matrix operations
do not take into account the sparseness of the matrices. A

0-7803-3529-5/96/$5.00 1996 EEE

great deal of computing power i s spent on multiplication of
zeros. Moreover, significant memory is wasted in storing
zeros. There is a need to optimize the computation time
and memory by exploiting the sparseness of the matrices.

Even though, matrix inversion demands high compu-
tational requirements, its inherent parallelism has led to
much interest in parallel implementation. The idea of ex-
ploiting parallelism in matrix inversion can be traced back
to [Pea67]. Since then, several parallel matrix inversion al-
gorithms have been developed. Gaussian elimination can
be easily implemented in parallel and its time complex-
ity is U(nZ) with n processors [BT89]. Csanky [&a761
discusses a method for inversion of a square matrix in
O(Zog2n) time, where he has shown that inverting matrices
of a certain class can be reduced to the problem of matrix
multiplication. However, Csanky's algorithm is prone to
numerical problems and it uses an excessive number O(n4)
of processors, Bojanczyk [BojM] also transforms the inver-
sion problem into matrix multiplication and achieved the
same complexity, O(Zog%) but using only O(n3) proces-
sors. However, if fewer, say n processors are available,
a very accurate approximation of the invexse algorithm of
[Boj84] is obtained in O(nZ logn) time steps. This is some-
what slower than Gaussian elimination. Furthermore, all
the parallel algorithms described in the literature above
do not take into account the sparseness of a matrix.

To the best of our knowledge, not much research has
been reported on parallel sparse matrix inversion. In this
paper, we propose two algorithms, one for SIMD com-
puters and the other for MIMD computers, for inverting
a sparse matrix A which is symmetric, positive definite.
An example of such a matrix is shown in Figure 1. Each

C

Q

6
C

c

b
a
b

Figure 1: an example of a sparse matrix

row (or column) has the same number of non-zero (k) ele-
ments and we assume that 6 << n. Such systems occur in
many applications [BE77]. Our implementations are mod-

515

ified versions of the basic Gaussian elimination algorithm.
We take advantage of the fact that the matrix we used is
sparse, symmetric and positive definite. For matrix size of
n x n, our SIMD algorithm works best when the PE array
size is greater than ((k / 2) + k + n) xn). For larger matrices,
we map several matrix elements onto each PE. In section 4,
we shall prove that our parallel SIMD sparse matrix inver-
sion technique gives good results even when the PE array
size does not match with the matrix size. We shall also
prove that our parallel MIMD sparse inversion technique
has higher computational speed and lower communication
cost compared to the general MIMD Gaussian elimination
algorithm. We have implemented our MIMD algorithm on
a network of workstations (NOWs) using PVM.

The remainder of this paper is organized as follows :
we will examine the characteristics of sparse, symmetric
and positive definite matrix inversion in section 2. And
based on those characteristics, we will present our algo-
rithms and implementation details for SIMD and MIMD
computers in section 3. In section 4, we will discuss the
performance of the implementation technique.

2 Characteristics of sparse sym-
metric matrix inversion

A matrix is symmetric if A = AT, where AT is the trans-
pose of A. In our experiments, we make use of two im-
portant characteristics of sparse symmetric matrix inver-
sion. Firstly, if A is symmetric and positive definite, then
A-' is also symmetric and positive definite. This identity
matches the concept of Cholesky factorization. Therefore,
the factorization steps can be continued without pivoting
until the inversion is obtained.

Secondly, if A is sparse, its inverse will not be sparse
in general. This identity supports work done by [DD91].
Consequently, sparsity of a matrix does not reduce the
storage requirements of its inverse. Based on the char-
acteristics above, we identified that Gaussian elimination
as the most suitable method for our implementation of
sparse symmetric matrix inversion. Since matrix A is pos-
itive definite, it is unnecessary to do any parallel pivot-
ing when we'are eliminating the matrix. This can save a
lot of computation cost. Parallel pivoting strategies are
discussed in [Ala951 and [Ala89]. Furthermore, from our
experiments, we observed the relations shown in Figure
4. 1) each row in matrix A-] is a rearrangement of the
vector [d, e, f, ...I, 2) The ith row vector can be obtained
by shifting the (i+l)th row vector one to the left with
wrap around. Therefore, by using Gaussian elimination,
if we reduce matrix A to the upper triangular matrix by
row operations and simultaneously apply these operations
to identity matrix I , we can have the last row vector of
matrix A-'. Therefore, we can use the last row to gen-
erate the whole matrix A-' in parallel instead of further
elimination or forward/backward substitution.

A =

a b c
b a b c
c b a b c

e b a b c
.

c b a
C c b
b c C

d e f g h ...
e d e f g ...
f e d e f ... i
g h g f e ...
f 9 h 9 f I . .

e f g h g ... I

c b
C

b c
a b
b a

Figure 2: The relations of matrix A and A-'

3 Modified Gaussian elimination
algorithms

3.1 Storage scheme for sparse m a t h
Our implementation is a modified version of the basic
Gaussian elimination algorithm. Following the Gaussian
elimination, we reduce A to the upper triangular matrix
by row operation and simultaneously apply these opera-
tions to I to produce A-'. Since each row has & non-zero
elements, matrix A is stored using two (&/2 + &) x n ar-
rays called VAL and X. Each row of VAL contains the
non-zero elements of the corresponding row of the sparse
matrix and the array X stores the row numbers of the cor-
responding entries in VAL. In Figure 3, we show a sparse
64 x 64 matrix with k = 5 stored in our format. The pur-
pose of the condensation is to convert the representation
of the sparse matrix to a format better suited for Gaussian
elimination. In specific, the goals are :

0 To assign mainly the non-mro elements of the matrix
to processors. Thus, the converted matrix is denser
and the utilization is enhanced.

0 To preserve the connectivity of the sparse matrix. As
we shall see. in the later part of this section, in each
column elimination, there is no conflict in the position
of the X coordinates.

We observe, first that any r o w operation on A can be
described as a sequence of :

1. Division Step : let X = a(i, i) and we divide row i by

2. Elimination Step : let X = a+, j) and we add -A

In the following sections, we will present the SIMD and
MIMD implementation of the division step and elimina-
tion step for matrix A and matrix A -] .

x

times row i to row j.

516

VAL =

Figure 3: The structure of VAL. and X

' a b c - - c b
b a b c - - c
c b a b c - -
c b a b c - -
. I . . ,
c b a b c - -
e - - c b a b
b c - , c b a

3.2 SIMD algorithm

1 2 - - 62 6 3 -
0 1 2 3 - - 6 3
0 1 2 3 4 - -
1 2 3 4 5 - -

x= .
59 60 61 62 63 - -
0 - - 60 61 62 63
0 1 I - 61 62 6 3 _

Given the PE array of size m x m. we transform the n x n
matrix A, into two ((k/2) + k) x n matrices VAL and X
and we map the matrices onto the first (k/2) + k columns
of the PE array; k is the number of non-zero elements on
each matrix row. If m 2 (k/2 + k + n) we map the iden-
tity matrix I' on the following n columns. Therefore, any
operations applied to VAL matrix can be simultaneously
applied to I' in parallel. In other words, this algorithm
works best when the PE array size is ((k/2 f k) f n) x n.
However, in the rae where the matrix size is bigger than
PE array size, we map the I' onto the whole PE array
evenly and apply those row operations to VAL and I' in
serial time.

In cases where the matrix size is bigger than the PE
array, if we can ensure that we map row i and z + 1 to
different PE rows, then each PE will create at most one
matrix non-zero element in each rdumn elimination. This
results in higher computational speed than general parallel
SIMD Gaussian elimination algorithm.

In the rest of this section, we assume m = n. Figure
4 shows our modified version of Gaussian elimination. To
do the division step, we broadcast the val(i, 0) to the rest
of the row. Then since every PE in the row z has a copy of
d (z , 0), the first (k / 2 -t k) PES can do the division step
for matrix A by performing w u l (i l j) / v ~ l (i , O) in parallel.
Simiiarly, every PE on the it'' row can do the division step
€or matrix I' by performing F(z, j) /uaZ(i , 0) in parallel.

1: procedureSIMD(VAL, Inv)
2: begin
3:
4: begin
5: for PE(i,O)
6:
7:
8: VAL(i,j) /= VAL(i,O)
9:
IO: I'(i,j) /= V-4L(i,O)
11:
12: for PE(ij)
13:
14:
15:
16:
17:
18:
19:
20:
21: end
22:end

for i = 0 to n-1 do

Broadcast VAL(i,O) along its row
for PE(ij), j = 0 to (k/2+k)-1 do in parallel

for PE(ij), j = 0 to n-1 do in parallel

Broadcast VAL(ij) or I'(i,j) along its column

Broadcast VAL(1.0) along its row
for PE(lli), i < 1 < i+(k/2) or 1 > n - (k/2)

for PE(IQ), j = 0 to (k/2+k)-l do in parallel

for PE(lj), j = 0 to n-1 do in parallel
VAL(1,j) -= VAL(ij) * VAL(1,O)

I'(1j) -= I'(i,j) * VAL(1,O)

Figure 4: Our SIMD Gaussian elimination algorithm

,
\ k n + k

Row i

I n l n I

I

I VAL[n-ll[il=VAL[n-lJlil- VAL[ilGl* VAL[n-l][OI The elimination step is carried out in a similar way as
illustrated in the Figure 4. A typical computation of our
SIMD Gaussian elimination procedure in the ith itera-
tion of the outer loop is shown in Figure 5. Since each I - -J W v e p a x t
column of matrix A has only k non-zero elements, only
(k x ((k / 2) + IC)) of VAL and k x n of matrix I' are com-
putationally active. t ion

Once the elimination step is completed, we shift the
entries at V A L and X €or next column elimination. This

Actve part
..---

Figure 5: Computation in our modified Gaussian elimina-

517

movement is shown in Figure 6. this results in lower communication cost than general par- -
allel MIMD Gaussian elimination algorithm.

NULL 1: procedure MIMDmaster(VAL, Inv)
2: begin

4: begin
5: For MASTER do
6:
7:
8: VAL(ij) /= VAL(i,O)
9:
10:
11:

Broadcast VAL(i,O) to the slaves
For j = 0 to (k/2+k)-1 do

For 1 = i < 1 < i+(k/2)
Broadcast VAL(1,O) to the slaves
For j = 0 to (k/2+k)-1 do

R o W “ 2 13: VAL(1j) -= VAL(ij) * VAL(1,O)
14:
15:
16:

For 1 = 1 > n - (k/2)
Broadcast VAL(1,O) to the slaves

Figure 6: Shifting VAL and X

3.3 MIMD algorithm

17:
18:
19: end
20: end

For j = 0 to (k/2+k)-1 do
VAL(1j) -= VAL(ij) * VAL(1,O)

Figure 8: Our MIMD Gaussian elimination algorithm (for
master)

Master PE

1: procedure MIMDslave(VAL,Inv)
2: begin
3:
4: begin
5: For SLAVE do
6:
7:

For i = 0 to n-1 do

receive VAL(i,O)
For i = 0 to n-1 do

0 A L\
Figure 7: master/slave model 8: 17(i,j) /= VAL(i,O)

9
Our algorithm is implemented in a masta/slave program. 10:
All initial matrices and the result matrix will be stored in 11:
the master workstation. The slaves are sent partitions by 12:
the master, which are then stored in local memory and op- 13:
erated on, with the results being sent back to the master 14:
to be collated. For implementation of the MIMD algo- 15:
rithm, we employ a network of workstations (NOWs) and 16:
the Parallel Virtual Machine (PVM) library. In the rest 17:
of this section we refer to each workstation as a PE. The 18:
codguration is shown in Figure 7. 19: end

Similar to the SIMD algorithm, we transform the n x n 20: end
matrix A into two ((k/2) + k) x n patrices VAL and X.
The whole of VAL and X will be stored in the master
PE. The master PE also maps the matrix I’ onto the the
slave PES evenly. For instance, if the matrix size is 256,
the number of slaves is 4 and k is equal to 5, the master
PE will have the transformed matrices VAL and X (each
7 x 256) and each slave will have a submatrix of I‘ of size
64 x 256.

Our MIMD Gaussian elimination algorithm is shown in
Figure 8 and Figure 9. In each column elimination, the
master PE needs to broadcast all the non-zero elements of
column i in matrix VAL to all the slaves (see Figure 8).
Since each column has k non-zero elements at the most,

For 1 = i < 1 < i+(k/2)
receive VAL(1,O)
For j = 0 to n-1 do

I’(ij) -= I’(i,j) * VAL(1,O)

For 1 = 1 > n - (k/2) do
receive VAL(1,O)
For j = 0 to n-1 do

I’(i,j) -= I’(i,j) * VAL(1,O)

Figure 9: Our MIMD Gaussian elimination algorithm (for
slave)

Once the communication operation is completed, the
master and slaves can perform their computation inde-
pendently. The master can compute the division step and
elimination step for matrix VAL and X (Figure 8) and
concurrently, each slave can compute the division step and
elimination step for matrix I’ (Figure 9). Since each col-
umn has only k non-zero elements, this results in lower
computational cost than general parallel Gaussian elimi-

nation algorithm.

4 Performance analysis and re-
sult k

5
7
9

In this section, we determine the number of computational
steps for our implementation of sparse matrix inversion.

6 4 x 6 4 128 x 128 256 ~ 2 5 6 512 x 512
0.21 0.39 0.75 1.48
0.21 0.4 0.78 1.49
0.22 1 0.41 0.86 1.61

Time complexity for the SIMD algorithm

k
5 0.144 0.304 1.121
7 0.121 0.312 1.238
9 0.113 0.316 1.444

64 x 64 1 128 x 128 256 x 256

Assuming the matrix size is n x n and PE size is m x
m and if m > ((k + 2) + IC -t- n), the total parallel time
to compute A-’ is O(n). Each column elimination takes
constant time. However, as matrix VAL and matrix I‘
are mapped in different set of PES, any operations applied
on matrix V A L will be simultaneously applied to I‘ in
parallel. Moreover, if n >> rn, we perform operations
on matrix V A L and matrix I’ in separate steps. Suppose
n = pm (p 2 l), we map (p x p) subarrays of matrix I‘
to the P E array. Ewa though the time complexity is the
same as that of the general Gaussian elimination, there is
a significant reduction in the execution time and the space
in our algorithm. This is manifested in our experimental
results.

512 x 512
4.409
4.796
4.843

T h e complexity for the MIMD algorithm
If we use m << n workstations, map 2 = p rows of
the given matrix to each of the slave PES for computa-
tion. Each FE performs computation for 2 rows in a.
serial fashion. Hence the complexity of the algorithm is

Further, as we are using the condensed form of the given
matrix, we are using less memory space. If there are k
vdid elements in the row of A, we store A in an array of
size (5 + k) x n rather than n x R. Hence, saving in space

O($)-

is nxp x 100% = * x 100% . ($+k)xn

k
5

Result
The implementation of our algorithms were tested for var-
ious matrix size and various non-zero element (IC). The
results of the SIMD implementation on the DEC MP-1
Maspar system are shown in Table 1. Our Maspar MP-1
is a general purpose SIMD machine with 2048 (32 x 64)
processing elements. Our result is compared to the general
SIMD Gaussian elimination algorithm.

64 x 64 I 128 x 128 256 x 256 I 512 x 512
0.02 I 0.13 1.17 I 7.11

7 0.03 I 0.16

Table 1: Time performance of SIMD matrix inversion (in
seconds)

1.65 1 7.38

The results of the MIMD implementation on the net-
work of workstations (NOWs) are shown in Table 2. The

64 x 64
128 x 128
256 x 256
5 1 2 x 512

number of slaves is eight. Comparing to the general MIMD
Gaussian elimination algorithm (see Table 3), it is shown
that our MIMD algorithm is faster.

5 0.1833 I 0.1833
5 0.5833 1.0166
5 1.549 5.6164
5 4.416 24.4657

Table 2: Time performance of MIMD sparse matrix inver-
sion algorithm (in seconds)

Table 3: Time performance of MIMD general matrix in-
version algorithm (in seconds)

Furthermore, the sequential sparsc matrix Gaussian
elimination algorithm and the sequential general Gmssian
elimination algorithm have also been implemented. The
algorithms were executed on a DEC/5QO workstation. The
timing for various matrix size and non-zero elements are
shown in Table 4 and Table 5.

I

9 I 0.03 I 0.24 I 1.94 I 7.65

Table 4: Time performance of sequential sparse matrix
inversion algorithm (in seconds)

5 Application - snake
Our technique has proven to be useful when the matrix
is sparse, symmetric and positive definite. We have used
this technique in mi application called snake. The problem
snake is from the doma,in of motion tracking in computer
vision. It detects the edges of an object by k i t e dement
method. A snake is an iterative energy miilimization pro-
cedure using sparse matrix method. It involves wnvolu-
tion, sparse matrix inversion and matrix-vector multipli-
cation. The coordinates of the snake points at timef are
given by

xt = (A + 71)-’($t-i - fi(zt-1, yt-I))

Y t = (A + 7 T 1 (Y t - r - far(Q-11 Yf-1))

Assuming n is the number of points in a snake, x and y
are n x 1 vectors which store the x coordinates and y mor-
dinates of the points. A is a n x n sparse, symmetric and

519

n

12 43.89 3.6665
256 116.763 7.5496
512 404.78 16.2326

I k 1 64 x 64 1 128 x 128 I 256 x 256 I 512 x 512 1

4.2
10.8
35.3

I 8 I

5 I 0.28 I 1.85 I 15.59 1 121.61
7 1 0.28 I 1.22 I 13.51 I 126.42

I I 9 I 0.28 I 1.1 I 12.34 I 114.94

Table 5: Time performance of sequential general matrix
inversion algorithm (in seconds)

positive definite matrix. From the equations above, we
can observe that matrix A occurs in a problem where the
solution Az = b is incorporated into an iterative proce-
dure. Readers not familiar with the working of the snake
are advised to refer to [KW87].

We use our matrix inversion algorithm to compute A-'.
Since the matrix A-' is a dense matrix, we use the general
parallel matrix-vector multiplication algorithm to perform
all the iteration. We have constructed a snake of a square
representing its boimdary using 64 points. Figure 10 shows
the original image and the initial position of snake. We
set a = 0.3 and ,!? = 0.04 (a and p are the parameters of
snake) Figures 11 - 11 show the locations of snake in every
30 iterations.

Figure 10: The Original image and initial position

Figure 11: 30 iterations

In the figures, we can see that the snake was attracted
to the square boundary from a fairly large distance. Ta-
ble 6 shows the speedup of various implementations of
the snake. The SIMD snakes algorithm was executed on
the DEC MP-1 Maspar system, the MIMD algorithm was

Figure 12: a) 60 iterations and b) 90 iterations

executed on the network of workstations (1 master and
8 slaves) and the sequential algorithm was executed on
the DEC/SOO workstation. The timing is measured from
convolution, matrix inversion to 90 energy minimization
iterations.

No of points I Sequential I SIMD I MIMD
64 I 34.2 I 1.9999 I 2.2

Table 6: Timing difference between the SIMD snake,
MIMD snake and sequential snake for the example (in sec-
onds)

6 Conclusion
In this paper, we have presented efficient algorithms for
inverting a sparse, symmetric and positive definite matrix
problems. These algorithms are modified version of Gaus-
sian elimination and take into account the sparseness of
the matrix. The results obtained by us are very encour-
aging as they indicate a substantial improvement in exe-
cution time over the general parallel Gaussian elimination
algorithm. We have presented results for SIMD tls well as
MIMD computations.

References
[Ala891

[Ala951

[BE771

G. Alaghband. Parallel pivoting combined with
parallel reduction and fill-in control. Parallel
Computing, 11:201-221,1989.

G . Alaghband. Parallel sparse matrix solution
and performance. Parallel Computing, 21:1407--
1430,1995.

A. Benson and D. J. Evans. A normalized al-
goritbm for the solution of positive definite sym-
metric quindiagonal systems of linear equations.
ACM Tmnsactions on Mathematical Software,
3:96-103, 1977.

520

[Boj84]

[BT89]

[Csa76]

[DD91]

[KW87]

[Pea671

[Sed881

A. Bojanczyk. Complexity of solving linear sys-
tems in different models of computation. SzAM
Journal of Numeraeal Analysis, 21:792--603,1984.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel
and Distributed Computation. “Umerzcd Meth-
ods. Prentice Hall, 1989.

L. Csanky. Fast parallel matrix inversion algo-
rithm. SIAM Journal on Computing, 5(4):618-
623, 1976.

J. J. Dongarra and I. S. Duff. Solving linear sys-
t ems on vector and shared memory computers.
Philadelphia : Society for Industrial and Applied
Mathematics, 1991.

M. Kass and A. Witkin. Snakes: Active con-
tour models. In Proceedings of 1s t International
Conference on Computer Vision, pages 259-268,
London, 1987.

M. C. Pease. Matrix inversion using parallel pro-
cessing. Joamad of the A C M) 14:757--764, Octo-
ber 1967.

R. Sedgewick. Algorithms. Addison Wesley, 1988.

52 1

