
Parallel Merge Sort

Richard Cole

New York University

Abstract. We give a parallel implementation of merge sort on a
CREW PRAM that uses n processors and O(logn) time; the con­
stant in the running time is small. We also give a more complex
version of the algorithm for the EREW PRAM; it also uses n
processors and O(logn) time. The constant in the running time is
still moderate, though not as small.

1. Introduction

There are a variety of models in which parallel algorithms

can be designed. For sorting, two models are usually considered:

circuits and the PRAM; the circuit model is the more restrictive.

An early result in this area was the sorting circuit due to Batcher

[B, 1968]; it uses time 1/210g2n. More recently, [AKS, 1983]

gave a sorting circuit that ran in O(logn) time; however, the con­

stant in the running time was very large (we will refer to this as

the AKS network). The huge size of the constant is due, in part,

to the use of expander graphs in the circuit. The recent result of

Lubotsky et al [LPS, 86] concerning expander graphs may well

reduce this constant considerably; however, it appears that the

constant is still large [CO, 1986].

The PRAM provides an alternative, and less restrictive,

computation model. There are three variants of this model that

are frequently used: the CRCW PRAM, the CREW PRAM, and

the EREW PRAM; the first model allows concurrent access to a

memory location both for reading and writing, the second model

allows concurrent access only for reading, while the third model

does not allow concurrent access to a memory location. A sorting

circuit can be implemented in any of these models (without loss of

efficiency) .

Preparata [P, 1978] gave a sorting algorithm for the CREW

PRAM that ran in O(logn) time on (nlogn) processors; the con­

stant in the running time was small. (In fact, there were some

implementation details left incomplete in this algorithm; this was

rectified by Borodin and Hopcroft in [BH, 1982].) Preparata's

algorithm was based on a merging procedure given by yaliant [V,

This work was supported in part by an IBM Faculty Development Award
and by NSF grant DCR·84·01633.

0272-5428/86/0000/0511 $01.00 © 1986 IEEE
SII

1975]; this procedure merges two sorted arrays, each of length at

most n, in time O(loglogn) using a linear number of processors.

When used in the obvious way, Valiant's procedure leads to an

implementation of merge sort on n processors using

O(lognloglogn) time. More recently, Kruskal [K, 1983]

improved this sorting algorithm to obtain a sorting algorithm that

ran in time O(lognloglogn/logloglogn) on n processors. (The

basic algorithm was Preparata's; however, a different choice of

parameters was made.) In part, Kruskal's algorithm depended on

using the most efficient versions of Valiant's merging algorithm;

these are also described in Kruskal's paper.

More recently, Bilardi and Nicolau [BN, 1986] gave an

implementation of bitonic sort on the EREW PRAM that used

n/logn processors and O(log2n) time. The constant in the running

time was small.

In the next Section, we describe a simple CRE W PRAM

sorting algorithm that uses n processors and runs in time O(logn).

In Section 3 we modify the algorithm to run on the EREW

PRAM. The algorithm still runs in time O(logn) on n processors;

however, the constant in the running time is somewhat less small

than for the CREW algorithm. We note that apart from the AKS

sorting network, the known deterministic EREW sorting algo­

rithms that use about n processors all run in time O(log2n) (these

algorithms are implementations of the various sorting networks

such as Batcher's sort). Our algorithms will not make use of

expander graphs or any related constructs; this avoids the huge

constants in the running time associated with the AKS construc­

tion.

The contribution of this work is twofold: first, it provides a

second O(logn) time, n processor parallel sorting algorithm (the

first such algorithm is implied by the AKS sorting circuit); second,

it considerably reduces the constant in the running time (by com­

parison with the AKS result). Of course, AKS is a sorting circuit;

this work does not provide a sorting circuit.

2. The CREW algorithm

We give an algorithm for sorting n numbers. For simplicity,

suppose that n is a power of 2, and all the items are distinct. Our

algorithm will be described in terms of an n-Ieaf complete binary

tree. The inputs are placed at the leaves of the tree. Let v be an

internal node of the tree and let T,. be the subtree rooted at v.

The task, at node v, is to compute the list, L,., comprising the

items at the leaves of Tv in sorted order. At intermediate steps in

the computation, at node v, we will have computed UP,., a sorted

subset of the items in Lv. The items in UP,. will be roughly evenly

distributed over Lv'

A few definitions will be helpful. Let e, f, g be three items,

with e sf. g is between e and f if e < g and g sf. Sorted list L is

a c-covering sampler for sorted list J if between each two adjacent

items in {-oo,L,oo} there are at most c items from J ({-oo,L,oo}

denotes the list comprising the item -00, followed by the items in

L, followed by the item 00).

At each node v we keep one list: UP,; it is stored in an

array. It comprises a sorted subset of the items at the leaves of

T,. Let x, y, w, and u denote, respectively, v's children, v's

sibling, and v's parent.

We distinguish external and inside nodes. Node v is external

if UP,.. contains all the items originally at the leaves of Tv, and if

u, v's parent, is not external. Let UP,.(s) denote the list UP,. at

the start of stage s. Initially, UP,. is empty at every node except

the leaves. Let UP' v(s + 1) be the following list: if v is an inside

node it comprises every fourth item in UP,.(s); on the first stage at

which v is an external node, it comprises every fourth item in

UP,.(s), on the second such stage it comprises every second item

in UP,,(s), and on the third such stage it comprises every item in

UP,.(s). The algorithm has 310gn stages; stage s consists of the

following step, performed at every inside node v.

Form the lists UP' xes + 1) and UP' y(s + 1). Compute the new

list UPv(s+ 1):= UP' x(s+ 1) U UP' y(s+ 1), where U denotes

a merge.

We have to show that the merge can be performed in 0(1) time.

Among other things, this requires showing that UP,,(s) is a cover­

ing sampler for UP".(s) and UPw(s). This follows from Lemma 2,

below.

It is easy to see that 3 stages after v becomes an external

node, its parent, u, becomes external. Thus,

Lemma 1: The algorithm has 310gn stages.

512

Lemma 2: Between k + 1 adjacent items in the list

{-oo,UP',,(s),oo}, there are at most ka+a' items from UP,.(s), for

all k ~ 1 and s~ 1, with a = 8 and a' = 4.

Proof: We prove the result by induction on s. The claim is true

initially, for when UP' v first becomes non-empty, at stage s, it

contains one item and UP,,(s) contains 8 items, and if UP',.(s) is

empty then UPv(s) contains at most 4 items.

Inductive step. We first suppose that v is not external at

stage s. Then, between h+l items, adjacent in {-oc,UP'x(s),oo},

there are at most ha + a' items in UPx(s), and hence at most

Hha + a')/41 items in UP' x(s+ 1). Likewise, between j + 1 items,

adjacent in {-oo,UP'y(s),oo}, there are at most rUa+a')/41 items

in UP'y(s+ 1). We call the range between two adjacent items

from {-oo,UP'x(s),oo} (resp. {-oo,UP'y(s),oo}) an interval with

respect to x (resp. y). Recall UPv(s) = UP'x(s)UUP'y(s). The

range between 4k+l items in {-oo,UP,,(s),oo} intersects some h

intervals with respect to x (between h + 1 items from

{-oo,UP'x(s),oo}) and some j intervals with respect to y (between

j+l items from {-oo,UP'y(s),oo}) with h+j=4k+1. Thus

between 4k+l items in {-oo,UPv(s),oo} (and hence between k+ 1

items in {-oo,UP'v(s+I),oo}) there are at most

Hah+a')/41 + Ha(4k-h+l)+a')/41 items in

UP'x(s+l)UUP'y(s+I) (=UP,,(s+I». Thus we require:

ka+a' ~ Hah+a')/41 + r(a(4k-h+l)+a')/41

which is easily verified. The case with v an external node at stage

s is simpler and is left to the reader (in fact, if v is an external

node at the start of stage s -1 (resp. s - 2), then rather than the

bound of 8k+ 4 we have a bound of 4k (resp. 2k». 0

Corollary 1: Between k+ 1 adjacent items in {-oo,UP',.. (s),oo},

there are at most 2k+l items from UP',.(s+I), for all k~l, if

UP' ,,(s) is non-empty.

Definition. Let L be a sorted set. The rank of item e in L is r if

there are e items in L preceding e (including e itself if e is in L).

This definition does not require e to be in L.

We need the following merging procedure. Let L, J, K be

three sorted lists, stored in arrays, with L a ct-covering sampler

for J and a c2-covering sampler for K. Suppose that for each item

in L we have its rank in each of J and K, while for each item in J

and K we have its rank in L (the cross-ranks). We show how to

merge the items in J and K. We use two auxiliary arrays A and

AK' of lengths c tiL I and c21L I, respectively. To the positions c tr,

... , c1r+ Ct-1 of AJ (resp. positions c2r, ... , c2r+c:!-1 of A K) we

write the (at most) c 1 items in J (resp. c2 items in K) that are

between the rth and r+ Ith items in L, for r ~ 0 (we assume that

items :t 00 have been added to L in the (IL 1+ l)th and Oth posi­

tions, respectively). Consider item e in J. Suppose that e has

rank r l in J and r2 in L. Let e' be the item in L of rank r2 ; sup­

pose that e' has rank r 3 in K. Then the rank of e in the merge of

J and K is at least r l + r3 and at most r, + r3 + c2. To determine

the exact rank we merely have to merge corresponding portions

of the arrays AJ and Ax. But this can be done in 0(1) time on an

EREW PRAM, for c I and c2 are constants. We call this pro­

cedure merging J and K with the help of L. (Actually, there is no

need for arrays AJ and Ax; they are here simply to clarify the

exposition.)

We also need a second merging procedure. Let J and K be

sorted lists. Suppose that K is the merge of sorted lists Land M,

with L a c3-covering sampler for J. Further suppose that for each

item in M we have its rank in L and for each item in L we have its

rank in J (the cross-ranks). We show how to merge J and K.

Consider a pair, e and f, of adjacent items from i. There are at

most c3 items in J between e and f. Thus our task reduces to

merging these at most c3 items from J with those items from M

that are between e and f. Because of the presence of the cross­

ranks this can be done in 0(1) time on a CREW PRAM if we

associate one processor with each item in K (see [V, 1975) and

[BH, 1982]). We call this procedure merging J with covering K.

For each item in the UP and UP' lists, at the start of stage s,

we maintain the following cross-ranks.

(i) For each item in UP' ,,(s): its rank in UP' \~,(s).

(ii) For each item in UP' ... (s): its rank in UP,,(s) (and, implicitly,

its rank in UP' v(s+ 1».
We merge UP' v(s+ 1) and UP' w(s+ 1) as follows. We start

by merging each of UP' ... (s + 1) and UP' w(s + 1) with covering

UPu(s) = UP'v(s)UUP'w(s) in 0(1) time. (For the first merge,

set J = UP' ,,(s+ 1), L = UP'v(s), M = UP'w(s); by (i) and (ii) we

have the necessary cross-ranks, and by Corollary 1, with k = 1, L

is a 3-covering sampler for J. The second merge is performed

similarly.) Then we merge UP' v(s+ 1) and UP\,.(s+ 1) with the

help of UP u(s). (The merges of the previous sentence provide the

cross-ranks; Corollary 1 shows that the constants c t and c2 are

both equal to 3.)

The new cross-ranks are all yielded by these merges. (i) is

clear; for (ii), we note that UP'v(s+l) is a subset of UP,.(s), and

the rank in UP v(s+l) = UP'x(s+l)UUP'y(s+l) of each item

from UPv(s) (and hence of each item from UP',,(s+ 1» was impli­

citly computed' in merging UP,.(s) with each of UP'x(s+ 1) and

513

We have shown

Theorem 1: There is an CREW PRAM sorting algorithm that that

runs in 0 (logn) time on n processors.

In fact, if we count the number of comparisons performed

by this algorithm we discover that it is just 4n logn comparisons.

However, to achieve this few comparisons requires using time

2810gn for comparisons (and thus n/7 processors), and a similar

time for indexing and other computations. If we use 8/7 n proces­

sors, a time of 1210gn for comparisons can be achieved (by per­

forming 4 comparison steps per phase). By noting that c, is 1, for

i = 1,2,3, for the merges in the last two phases for each external

node, we deduce that the total number of comparisons is actually

5/2n logn.

Remark. The 'obvious' algorithm that follows the pattern

described above would have UP' ,,(s + 1) comprising every second

item in UP,.(s). But then it is impossible to obtain a result of the

form of Lemma 2, and the algorithm would be unable to achieve

O(logn) running time. Even so, our definition of UP'" is not the

only possible definition, although it does seem to be the simplest.

In fact, a uniform definition is not necessary (for example, on

alternate stages UP' v(s + 1) could comprise every second and

every fourth item in UPv(s), respectively).

3. The EREW algorithm

The algorithm here has the same structure as the algorithm

in Section 2. The UP and UP' lists are as before. We aim to

merge the UP' lists, as in Section 2. However, we observe that

we cannot use the same algorithm as above, for it used a CREW

merging procedure (the second merging procedure we gave) to

merge lists UPu(s) and UP' ".(s+ 1) in 0(1) time. Instead, we need

to ensure that all the merges are done using the first merging pro­

cedure from Section 2. In order to achieve this we keep a second

list, DOWN.... , at each node v. It has the following properties.

(i) Let w be the sibling of v; then DOWN,. = DOWN\\"

(ii) DOWNv is a covering sampler for the following lists:

DOWNx ' DOWN)" DOWN", and UP,., where x and yare the

children of v, and u is the parent of v.

Initially, DOWNv is empty for evelY node. DOWN',.(s+ 1)

denotes the list that comprises every fourth item in DOWN,.(s).

The algorithm has 310g1l stages; stage s comprises the following

two steps, ·performed at every inside node v; the second step is

also performed at external nodes.

1) UPv(s+ 1):= UP'x(s+ 1) U UP'y(s+ 1).

2) D OWN,. (s + 1):= DOWN' u(s+ 1) U UP' u(s+ 1).

We have to show that each of the merges can be performed in

0(1) time. This requires showing that the DOWN lists are cover­

ing samplers, as claimed above. More precisely, we will show

that the following invariants are maintained.

(A) Between k + 1 adjacent items in the list {-oo,UP',.(s),oo},

there are at most ka + a' items from UP,.(s), for all k~ 1 and

s~ 1, with a = 8, a' = 4.

(B) Between k+ 1 adjacent items in the list {-oo,DOWN,.(s),oo}

there are at most kb + b' items from UP,.(s) U lJpH·(s) , for all

k~ 1 and s~ 1, with b = 64 and b' = 40.

(C) Between k+ 1 adjacent items in the list {-oo,DOWNx(s),oo}

there are at most kc + c' items from DOWN,.(s) , for all k~ 1

and s ~ 1, with c = 8 and c' = 4.

(D) Between k+ 1 adjacent items in the list {-oo,DOWN,(s),oo}

there are at most k d + d' items from DOWNx(s), for all k ~ 1

and s~ 1, with d= 8 and d' = 12.

(A) has already been shown in Lemma 2; the remaining invariants

are shown in Lemmas 3-5, below.

(2) Compute DOWNu(s)U (DOWNv(s)UDOWNx(s» with the

help of DOWN.... (s); by invariants (C) and (D) the constants

c t and c2 are c+c' (= 12) and d+d' + 1 (= 21), respectively.

(3) Merge (or rather cross-rank) DOWN'u(s+I)UUP'u(s+l)

with DOWNu(s) UDOWNv(s) (computed in Step 1 for node

u) with the help of DOWNu(s); By invariants (B) and (D),

the constants c t and c2 are f(b+b')/41+1 (=27) and

d+d' + 1 (= 21), respectively.

(4) Cross-rank DOWN' u(s+ I)U UP' u(s+ 1) with

DOWNu(s)UDOWNv(s)UDOWNx(s) with the help of

DOWNu(s)UDOWNv(s); again c 1 and c2 are f(b+b')/41 + 1

(= 27) and d+d' + 1 (= 21), respectively.

(5) Cross-rank UP' x(.r + 1) U UP' y(s + 1) with

DOWN.... (s)l JDOWNx(s) with the help of DOWNx(s); by

invariants (B) and (C) the constants c t and c2 are

f(b+b')/41 (=26) and c+c'+1 (= 13), respectively.

(6) Cross-rank UP' xes + 1) U UP' yeS + 1) with

DOWNu(s)UDOWNv(s)UDOWNx(s) with the help of

DOWN,,(s)UDOWNx(s); again c 1 and c2 are f(b+b')/41

(= 26) and c+c' + 1 (= 13), respectively.

As before, the algorithm has 310gn stages.

(i) For each item in UPv(s): its rank in DOWN.... (s).

For each item in the UP and DOWN lists we maintain the

following cross-ranks.

UP v(s+1) = UP'x(s+1)UUP'),(s+l) with

DOWN"(s + 1) = DOWN' u(s+ 1)U UP' u(s+ 1). The procedure fol­

lows.

(7) Cross-rank UP' xes + 1) U UP' yeS + 1) with

DOWN' u(S+ 1)U UP' u(S+ 1) with the help of

DOWNu(s)UDOWN\/(s)UDOWNx(s); by invariant (B) the

constants c 1 and c2 are r(b+b')/41 (=26) and

reb + b')/41 + 1 (= 27), respectively.

(1) Cross-rank DOWN' v(s + 1) U UP' ,,(s + 1) with

DOWNu(s)UDOWN\/(s) with the help of DOWN,.(s); by

invariant (B) and (C) the constants c I and c2 are

r(b+b')/41+1 (=27) and c+c' +1 (= 13), respectively.

(2) Cross-rank DOWN' u(s+ I)UUP' u(s+ 1) with

DOWN'v(s+1)UUP'\/(s+ 1) with the help of

DOWNu(s)UDOWNv(s); by invariant (B) the constants c t and

c2 are both r(b+b')/41 + 1 (= 27).

It remains to explain how to compute the cross-ranks for

DOWNv(s + 1) = DOWN' u(s + 1) U UP' u(s + 1) and

DOWNx(s+l) = DOWN',,(s+ 1)UUP' (s+ 1). We already have

the cross-ranks of DOWN' u(s+ 1)U UP'u(s+ 1) with

DOWNu(s)UDOWNv(s) (Step 3, above) and (implicitly) of

DOWN' ,,(s+ I)U UP' \/(s+ 1) with DOWNv(s), so the following two

steps suffice:

cross-ranktohowexplainfirst

We also need to explain how to maintain the cross-ranks.

We

(ii) For each item in DOWNv(s): its rank in UPv(s), and its rank

in DOWNu(s), DOWNx(s), DOWNy(s) (=DOWNx(s».

To compute UPv(s+ 1):= UP' x(s+ 1) U UP' y(s+ 1), we

merge UP':c(s+ 1) and UP' y(s+ 1) with the help of DOWNx(s)

(= DOWNy(s». The constants cl and c2 are both equal to

Hb + b')/41 (= 26) by invariant (B), above. To compute the new

DOWNv(s+ 1) = DOWN' u(s+ 1)U UP' u(s+ 1) is immediate, given

the cross-ranks.

(1) Compute DOWN\/(s)UDOWNx(s) with the help of

DOWN,,(s); by invariant (D) the constants c t and c2 are 1

and d+ d' (= 20), respectively.

The merging steps are simplified as appropriate, when they

involve external nodes.

514

We now prove that the invariants are maintained. All 3

lemmas that follow are proved by induction on the stage num ber.

Lemma 3: Between k + 1 adjacent items in the list

{-oo,DOWN,,(s),oo} there are at most kb+b' items from

UP,.(s) U UPw(s), for all k~ 1 and s~ 1, with b = 64 and b' = 40.

Proof: The claim is true initially, for when DOWN,. becomes non­

empty, at stage s, it contains one item, and UP,.(s)UUP1\'(s) con­

tains 64 items, and if DOWN1,'(s) is empty then UP,(S)UUP,~.(s)

contains at most 32 items.

Inductive step. UP u(s) contains at least 8 items. By Lemma

2, between 4k+ 1 items in {-oo,UP u(s),oo},. there are at most

(4k+ l)a + 2a' items in UPv(s)U UPw(s), and thus at most

«(4k+l)a+2a'+2)a+4a') items in the UP(s) lists at the

grandchildren of u. Hence, between k + 1 items in

{-a:,UP' u(s+ 1),00} (Le. between at least k+ 1 items in

{-oo,DOWNv(s+I),oo}) there are at most

ka2 +a(a+2a'+2)/4+4ra'/41 items in UP,.(s+I)UUP w (s+I).

Thus we require

kb + b' ~ ka2 + a(a+2a' +2)/4+ 4fa' /41

This is easily verified. 0

Lemma 4: Between k+l adjacent items in {-oo,DOWNx(s),oo}

there are at most kc + c' items from DOWN1,'(s), for all k~ 1 and

s ~ 1, with c = 8 and c' = 4.

Proof: We actually prove the following result. Between k + 1

adjacent items in {-oo,DOWNx(s),oo} there are at most hc+c'

items in DOWNv(s) and ja+a' items in UPv(s), for some h,j,

with h+ j= k+ 1 and h,j~ 1.

The claim is initially true, for when DOWNx becomes non­

empty, at stage s, there are 0 items in DOWN,.(s) and 8 items in

UP ,.(s), and if DOWNx(s) is empty then there are 0 items in

DOWN1,'(s) and at most 4 items in UPl'(s). Further, while

IDOWN1,'(s) I s 4, the relationship between DOWNx(s) and UP,.(s)

is the same as that between UP'1,'(s) and UPv(s), as given by

Lemma 2. Thus the claim remains true while IDOWNvl s 4. For

later stages, the result will follow by induction.

Inductive step. DOWNv(s) contains at least 4 items.

Between 4h+l items in {-oo,DOWN1,'(s),oo} (and hence between

h+l items in {-oo,DOWN'v(s+I),oo}) there are at most h'c+c'

items in DOWNu(s) (and hence at most f(h' c + c')/41 items in

DOWN' u(s+I» and at most (4h+ I-h')a+a' items in UP/l(s)

(and hence at most r«4h+ I-h')a+a')/41 items in UP'/l(s+ 1»,

with Ish's4h. Between 4j+ 1 items in {-oo,UP,.(s),oo} (and

hence between j+1 items in {-00,UP'1'(s+1),oo}) there are at

most 4ja + a + 2a' items in UPx(s) U UPy(s) (and hence at most

ja+a/4+2ra'/41 items in UP'x(s+I)UUP'y(s+1) = UP,.(s+I».

Let the range between each two adjacent items in

{- 00 ,DOWN' v(s + 1),00} define an interval (with respect to vD) and

the range between each two adjacent items in {-oo,UP'l'(s+ 1),00}

define an interval (with respect to vu). Then the range between

k+1 items in {-00,DOWNx(s+1),00}

(= {- 00 ,DOWN' 1,'(s + 1) U UP' v(s + 1) ,oo}) overlaps some h intervals

with respect to vD (between h + 1 item~ in {- 00 ,DOWN',.(s + 1),00})

and j intervals with respect to Vu (between j + 1 items in

{-oo,UP'1,'(s+I),oo}), with h+j=k+l and h,j~1. So between

k+ 1 items in {-OO,DOWNx(s+ 1),00} there are at most

f(h'c+c')/41 + r«4h+l-h')a+a')/41 items in DOWN,.(s+ 1)

(=DOWN'u(s+I)UUP'u(s+I» and ja+a/4+2ra'/41 = ja+a'

items in UPv(s+I), with h+j=k+l and h,j~1. Thus, we

require

hc+c' ~ r(h'c+c')/41 + f«4h+ 1-h')a+a')/41,

where 1s h' s 4h . This is easily verified. 0

Lemma S: Between k+ 1 adjacent ,terns in {-oo,DOWN,.(s),oo}

there are at most kd' + d items from DOWNx(s), for all k '21 and

s'21, with d= 8 and d' = 12.

Proof: The claim is initially true, for when DOWN,. becomes

non-empty, at stage s, there are 4 items in DOWNx(s), and if

DOWNv(s) is empty there are at most 2 items in DOWNx(s).

Further, while IDOWNvl s 4, the relationship between DOWN,.(s)

and DOWNx(s) is the same as that between UP' u(s) and UP',,(s) (a

subset of UPu(s»; it is (implicitly) given by Lemma 2; thus the

claim holds in this case. Also, by inspection, the claim will hold

when IDOWN" I s 16 (for this leads to at most 2 more items in

DOWNx(s) in addition to those from UP' ,.(s». For later stages,

the result follows by induction.

Inductive step. DOWN,,(s) contains at least 16 items and so

DOWNu(s) contains at least 4 items. Between 4h+ 1 items in

{-oo,DOWNu(s),oo} (and hence between h+l items in

{- 00 ,DOWN' u(s + 1) ,oo}) there are at most 4hd + d' items in

DOWNv(s) (and hence at most hd + rd' /41 items in

DOWN'v(s+I». Between 4j+l items in {-oo,UPu(s),oo} (and

hence between j+ 1 items in {-oo,UP' u(s+ 1),00}) there are at

most 4ja + a' items in UPv(s) (and hence at-most ja + fa' /41 items

in UP' 1,'(s+ 1». Let the range between each two adjacent items in

{-oo,UP'u(s+I),oo} define an interval (with respect to uc) and the

range between each two adjacent items in {-oo,DOWN'u(s+ l),oo}

an interval (with respect to uD). Then k+ 1 adjacent items in

515

{-oo,DOWN\.(s+ 1),00} (= {-oo,DOWN' u(s+ l)U UP'u(s+ 1),00})

overlap some h intervals with respect to uD (enclosed by h + 1

adjacent items in {- 00 ,DOWN' u(s + 1),00}) and j intervals with

respect to Uu (enclosed by j + 1 adjacent items in

{-oo,UP'u(s+l),oo}), with h+j=k+1. Thus between k+1 items

in {- 00 ,DOWN,,(sr+-1),00} there are at most

hd + rd' /41 + ja + ra' /41 items in DOWNx(s + 1)

(=DOWN' v(s+ l)U UP' v(s+ 1». So we require

kd+d' c:!:: hd+(k-h+1)a+ rd'/41 + ra'/41.

This is easily verified. 0

We have shown

Theorem 2: There is an EREW PRAM sorting algorithm that

takes time o(logn) to sort n numbers using n processors.

Remark. The work in this section is intended to demonstrate the

existence of an EREW algorithm of the type described. The

author suspects that it should be possible to improve the constants

by changing the definition of the DOWN lis ts.

Acknowledgements. Thanks to Richard Anderson and Allen Van

Gelder for commenting on an earlier version of this result. In

particular, Allen Van Gelder suggested the term cross-rank.

Many thanks to Jeanette Schmidt for questions and comments on

various versions of the result.

References

[AKS, 1983] M. Ajtai, J. Komlos, E. Szemeredi, "An O(nlogn)
sorting network", Combinatorica, 3(1983), 1-19.

[B, 1968] K. E. Batcher, "Sorting Networks and their applica­
tions", Proc. AFIPS Spring Joint Summer Computer Conf., Vo1.32,
307-314.

[BH, 1982] A. Borodin and J. Hopcroft, "Routing, merging and
sorting on parallel models of computation", Proc. Fourteenth
Annual ACM Symp. on Theory of Computing, 338-344.

[BN,1986] G. Bilardi and A. Nicolau, "Bitonic sorting with
O(nlogn) comparisons", Proc. Twentieth Annual Conf. on Informa­
tion Sciences and Systems.

[CO, 1986] R. Cole and C. O'Dunlaing, "Notes on the AKS sort­
ing network, as improved by Paterson", in preparation.

[IS, 1983] J. Incerpi and R. Sedgewick, "Improved upper bounds
on shellsort", Twenty Fourth Annual Symposium on Foundations of
Computer Science, 48-55.

[L, 1984] T. Leighton, "Tight bounds on the complexity of paral­
lel sorting" ,Proc. Sixteenth Annual ACM Symp. on Theory of Com­
puting, 71-80.

[LPS, 1986] A. Lubotzky, R. Phillips, and P. Sarnak, "Ramanu­
jan conjecture and explicit constructions of expanders and super­
concentrators", Eighteenth Annual Symposium on Theory of Com­
puting.

[K, 1983] C. Kruskal, "Searching, merging, and sorting in parallel
computation", IEEE Trans. Comp., Vol.C-32, No.10, 942-946.

[M, 1983] N. Megiddo, "Applying parallel computation algo­
rithms in the design of serial algorithms", JACM, 30, 4(1983),
852-865.

516

[P, 1978] F. P. Preparata, "New Parallel-Sorting Schemes", IEEE
Transactions on Comp uters, Vol. c-27, No.7, 669-673.

[V, 1975] L. Valiant, "Parallelism in comparison problems", SIAM
J. Comput, Vol. 4, 348-355.

