
942

5) = 4 , -
(!z’5) = 4,

(+.,x)= b”;,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7. JULY 1995

4: = (u,,. a12 1%
!!; = (‘Z1v ‘21, 1,

(!,,~)=b,,.,with<~:= (a,,. ay 1,

!: = (a“,n-l. 1;

ACKNOWLEDGMENTS Parallel Minimal Norm Method for
Tridiagonal Linear Systems The authors would like to thank Reviewer G for improving the ar-

ticle, and also Profs. I.F. Blake and M.Z. Wang for their useful com-
ments during the manuscript preparation. E. Dekker and L. Dekker

. . ~

This work was supported, in part, by the University of Waterloo

communications Research under the NCE program. A Preliminary
version of part of this article was presented at the 16th Biennial Sym-
posium on Communications, Kingston, Ontario, Canada. [l]

Abslrac-Based on the parallel minimal norm method an algorithm

lelism. NO conditions need to be posed with respect to the system Ex-
periments indicate that the numerical stability of the algorithm is similar
to Gaussian elimination with partial pivoting.

under a start-up grant and, in Part, by the Institute for Tele- is derived solve tfidiagonal linear with a high degree of para]-

REFERENCES
M.A. Hasan and V.K. Bhargava, “A VU1 architecture for a low com-
plexity rate-adaptive Reed-Solomon encoder,” Proc. 16th Bienniul
Symp. Communications, Kingston, Ontario, pp. 331-334, May 1992.
R. Lid1 and H. Niederreiter, Introduction to Finite Fields and Their

Applications. Cambridge: Cambridge Univ. Press, 1986.
E.R. Berlekamp, “Bit-serial Reed-Solomon encoder,” IEEE Trans.
Information Theory, vol. 28. pp, 869-874, Nov. 1982.
M.Z. Wang and I.F. Blake, “Bit serial multiplication in finite fields.”
SlAM J. Disc. Math., vol. 3, pp. 140-148, Feb. 1990.
M.A. Hasan and V.K. Bhargava, “Division and bit-serial multiplication
over GF(q”),” IEEE Proc. Part E, vol. 139, pp. 230-236, May 1992.
1.3. Hsu, LS. Reed, T.K. Truong, K. Wang, C.S. Yeh, and L.J. Deutsch,
“The VLSI implementation of a Reed-Solomon encoder using Ber-
lekamp’s bit-serial multiplier algorithm,” IEEE Trans. Computers,
vol. 33, pp. 96911, Oct. 1984.
N. Zierler and J. Brilluart, ‘*On primitive trinomials (mod 2);’ Inform.
and Contr., vol. 13, pp. 541-554, 1968.

Zndex Terms-Parallel algorithms, parallel minimal norm method,
tridiagonal linear system, row-oriented ortbogonalizntion, structural
orthogonality.

Manuscript received July 31, 1992; revised Nov. 20, 1994.
E. Dekker is with the Faculty of Applied Physics, Technical University

of Delft, Lorentzweg 1.2628 CY Delft, The Netherlands.
L. Dekker is with the Faculty of Technical Mathemtics and Compuer Sci-

ence, Technical University of Delft, Mekelweg 4, 2628 CD Delft, The Nether-
1and.S.

IEEECS Log Number C95058.

0018-9340/95$04.00 Q 1995 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995 943

s = { 1 , 2 . 3 ,..., n},

divide S 4 S, , S,, SI ; '21 I%> (7) b : = b --

S, := {z, 5. E, ..., n - l } , (2)
S, :={1,4,7 n-2).

S, := (3, 6, 9, ..., n } .

Consequently the three sets consist of the following inner product
equations. The mergence of S3 is denoted by merge(S3Sl) in compact notation.

5) = b".,; (!..2. 5) = b".,; (! .*&,=b,

The number of equations within each set equals ni = f for i = 1, 2, 3.
In order to be relieved from the absolute indices of the inner product
equations, the symbolic notation is used. The index si, refers to thejth
inner product equation in set Si. In this way the notation can be kept
simple.

The nonzero structures of the vectors of the inner product equa-
tions of the three sets are

s, :

a = (*, *. *),

fit, = (*,*, * 1,

i?:", = (*, *, *);

aT -Ill = (*, *),

5:*"z = (*, *, *);

--5, aT = (*,*, *),

.;, = (*, *, *).

!;", = (*. *)

T
-a,*

S, :

= (*,*,*). (4)

S,:

Within each set the vectors of the inner product equations are or-
thogonal. However this is not the case for vectors of different sets. So
orthogonalization is needed between the sets. Based on symmetry
considerations the sets S, and S3 are merged with respect to SI.

Each vector in S, and S3 only overlaps with the two neighboring
vectors in SI. Exceptions are the first vector in S, and the last vector
in S3 which overlap with only one vector in SI. The following equa-
tions show the mergings of S, and S3. The mergence of S, is repre-
sented by merge(S2Sl) in a compact notation.

The resulting vectors of the inner product equations of S, and S3 are
now orthogonal to those of SI. The nonzero patterns of the vectors of
S, and S3 are

s,: *;, = (*, *, *).

-121 a' = (:, :, *, *, *, *).

Cl", = (*, *, *)

The average bandwidth of the vectors is doubled with respect to the
original vectors. The structural properties of the vectors of both sets
satisfy (g,g, 9,) = 0 , for Li - kl2 2. Therefore for both sets a division

into two sets becomes obvious. The set S, is divided into a new S2
and a new S,. The indices sa with j even are contained in the new S2.
The indices s ~ j with j odd move to S,. For set S3 the division is re-
verse. The new S3 contains the indices s3k with k odd and the new S,
contains the indices s3t with k even.

'2 {'ll? '221 "') sZn2}. s3 = {%I, s32, ...(S3n1},
divide S, + S, , S4; divide S, -$ S3, S,;
s2 :={S22.S24r...,Sb2}, s3 :={sjl~s33...~,s3,~,-l}, (14)

s4 :=(S2t.S23,...rSZ,n*-l}; S5 :={S32,$4,...1Sjn,}.

After the divisions the number of equations in S,, S3, S,, and S, is
halved, it satisfies n, = 2 for i = 2, 3,4, 5. The nonzero patterns of
the vectors of the new S, and S3 are identical.

%,, := i,%, -- , for j = 2.3, .., m 2 ; (6)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995 944

s,: !i, = (*** , * , * , * , * J3 In compact notation the mergence of S5 is merge(SSIS2, S3).

The nonzero pattems of the vectors of S4 and S, look like

S,: = (*,*,*

!?Tal = (*, *, *, *, *. *

\- . I

I \

(27)
= (*, *, *).

The vectors within S2 are orthogonal. This holds for S3 as well. How-
ever corresponding vectors in S2 and S3 are not orthogonal. Therefore

*. ** *, *, *, *).

(2%
Therefore the previous procedure of the divisions and the subsequent
mergences is generalized. In compact notation each step is given by

divide SZi + S Z i , S2i+2; divide S2i+l + S,,,, SZit3

Again there exists symmetry between the nonzero pattems of S4 and
S5 and those of S2 and S3. Therefore a similar procedure can be fol-
bwed as With mrge(S2Bl) and merge(S31SI). The Only difference k
that the mergings of S4 and S5 are not with respect to one but with
respect to two sets. In compact notation the mergence of S4 is

"~"5 = (

mergWS2, W.
merge(S2;+1la)

(20) merge(S2i+21~2j. sZi+,); sZi+,)
The procedure has to be applied log2($) times. The assumption

about the size of the system n was made in order to maintain the ac-
= 2, 3, ,,,, n4; tive sets at equal size during each stage of the computation. The total

number of sets is ns = Zlog,($)+ 3 . The last two sets are orthogonal

to all other sets. Both sets consist of only one equation with a full
vector. The vectors are not yet orthogonal, therefore the last set is
merged with respect to the last but one set (in compact notation

To each orthogonal set belongs a minimal norm solution which is
the sum of the minimal norm solutions of its orthogonal inner prod-
uct equations.

for

(21)

merse(S,,IS,,,-,)).
bs,, 3 (22)

(30) bab , for j = 2, 3, ..., n,.

(23)
This is referred to as solve(S;) in compact notation. Finally the solu-

1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995 945

tion of the complete system, Le., (I) , is found as the sum of the
minimal norm solutions of all sets.

E=$,. (31)
i=l

In Fig. l a the algorithm is presented in compact notation.

init: divide S + SI, S2, S,

merge(S,;l&); merge(SalS,)
loop: i = 1,z.. . . ,Iogl('j)

divide Sa; -+ SX, Sa;+l

divide &+I - S ~ J + ~ , S ~ M

merse(Sx+llSd
merge(Sx+dSx, S w)

merge(Sx+314i, S w)
end: marse(S..ISn.-l)

solve(Sl);. . .;aolve(S.,)

I := 61 + . .. + XLn.

Fig. la. Standard algorithm

Fig. lb. Modified algorithm.

111. MEMORY REQUIREMENTS

Within an orthogonal set the vectors do not overlap. The nonzero
pattems of the consecutive vectors exactly succeed each other. One n
element register can be used to store all vectors of a set. Conse-
quently 210g2($)+3 registers are needed for the complete algo-

rithm. The solution and the right-hand sides require two n element
registers. This brings the total amount of storage to 2nlog2(%)+ 5n .

A simple modification of the algorithm (Fig. lb) significantly re-
duces the memory requirements. At the start of each stage consecu-
tive vectors in S2i and Sa,, overlap with half the bandwidth. After the
divisions there exist four sets where the consecutive vectors within
each set do not overlap. Thus four n element registers are needed for

the four sets. The merge(Sz,+llS2j) does not change the nonzero pat-
tem of s,;+,, thus no additional storage is required. The
merge(Sa+21S2i, SZ,+~) and merge(S2i+3wi,i, SZ,+~) almost double the
nonzero elements in the vectors of S2i+2 and S,,,. Since these vectors
were stored consecutively, no vector can he overwritten without de-
stroying data of other vectors in the same register that have not been
processed yet. Therefore the new vectors of both sets must be stored
in four new n element registers. Since S2i and S2;+, are now orthogo-
nal with respect to all other sets, the minimal norm solutions of both
sets can be determined and the sets can he disposed of because they
are no longer needed. The two solutions are used to update the sum
of the minimal norm solutions of the previous orthogonal sets. The
memory needed for S2i and Sz+l and the old SZ;+Z and &i+3 can be
used for sets that are created at the next stage of computation. Thus
eight n element registers are needed for all sets at each stage. The
intermediate solution and the right-hand sides require two additional
registers. The total amount of storage is Ion, which is of the same
order as Gaussian elimination which requires 4n memory locations.

IV. OPERATION COUNT

Only floating point operations contribute to the operation count.
In the modified algorithm only the merge and solve parts and the
summation of the minimal norm solutions of the sets involve floating
point operations. The divide part consists of indexed memory refer-
ences only. Each merge part consists of orthogonalizations of one
inner product equation with respect to another. An inner product
orthogonalization is given by

Suppose that g; and _ a j consist of p respectively q nonzero elements

and their overlap is equal to r nonzero elements. If the number of
floating point operations of an orthogonalization is represented by
ort(q, r), it satisfies ort(q, r) = 3(q + r) + 1. The solve par^ consists of
the computation of the minimal norm solution of an orthogonal set. The
minimal norm solution of thejth inner product equation of the set Si is

If g,, consists of p nonzero elements, the computation requires 3p

floating point operations. Since there is no overlap hetween the vec-
tors within a set, the computation of the minimal norm solution of all
inner product equations within the set requires ni.3.($) = 3n flops.

In Table I the operation counts are shown. Summation of all contri-
butions gives the operation count of the modified algorithm.

(56n-4)log2 - -8."+92. (;I 3
(35)

V. PARALLEL PROCESSING
The amount of parallelism within each merge(SilS;) is proportional

to the number of inner product equations that belong to both sets. As
the size of a set is halved after a division-the consecutive set sizes

946 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

TABLE I
OPERATION COUNT OF THE DIFFERENT PARTS OF THE MODIFaD ALGORITM

Part Number of h t i n g pint opuations

-
2((5-l)ori(3,l)+~ort(3.2)}

3n
-
-
-

+mt(3.P,3.2’)

(2s - l){ort(3.2‘,3.2’-’) + ort(3.2’,3.$)}
(Z& - 1){0rt(3.$,3.P-~) + ort(3.2’,3.2’)}

6n

2n

are $, $, +, ..., 1 -the degree of parallelism decreases during the

computation. However the nonzero pattems of the vectors of con-
secutive pairs of sets double in size. The consecutive vector sizes are
3,6,12, ..., f, n . Because each inner product equation orthogonali-

zation consists of dot, square norm and saxpy computations, paral-
lelization is possible as well here. The saxpy computation can be
performed in parallel without any interaction. The dot and square
norm computations require interaction when they are performed in
parallel. The influence of this interaction on performance and
speedup highly depends upon the architectural features of the parallel
computer such as interconnection network and communication la-
tency. Because the vector size increases, the degree of parallelism
increases as well. The total degree of the parallelism is the product of
both components; it roughly remains constant during computation
and it approaches O(n).

VI. RESULTS AND CONCLUSIONS

The modified algorithm was implemented in FORTRAN. It was run
on the Convex C3820 and the CRAY Y-MP4464. Tridiagonal systems

(I , 0.01, -1.01) and n S 3.216 were tested. Note that several of them do
not belong to the symmetric, positive definite or diagonal dominant
class. ?he error was compared with the error of Gaussian elimination
with partial pivoting. No significant differences were observed. These
measurements indicate a favorable error behavior.

In Table I1 the total number of operations, the average degree of
parallelism and the parallel time complexity are shown for several
algorithms. No communication overhead is assumed. The parallel
time complexity of Recursive Doubling and Cyclic Reduction equals
O(log2n). Wang’s partition method has a higher order of the parallel
time complexity.

Bondeli’s DAC algorithm which is based on the same partioning
as Wang’s method has a smaller total operation count. Communica-
tion overheads depend on the architecture and they affect the parallel
properties of the algorithms. The limited processor version of Recur-
sive Doubling ([41) and Sun’s PPH algorithm include communication
overheads for hypercube architectures and they are only efficient
when the number of processors is not too large. The communication

with (ai*, ai, ai+d equal to (1, -2, 1). (1, -1, I), (2, 1, 2). (1, 2, -3,

TABLE I1
CHARACTERISTICS OF SEVERAL ALGORITHMS

overheads were not investigated for the parallel minimal norm
method. Although the algorithm is costly in absolute terms in com-
parison with other algorithms, the degree of interaction is limited and
the communication overheads should be small. Therefore the algo-
rithm should compete well with other methods.

All existing parallel algorithms impose restrictions on the kind of linear
systems to be solved, such as symmetry, positive definiteness andor di-
agonal dominance to guarantee numerical stability. For general tridiagonal
linear systems pivoting is required, which destroys the parallel properties
of the algorithms. The experiments indicate that no such requirements are
needed for the parallel minimal norm method. ‘ Ih is robustness will be
advantageous in a pa l le l environment. Further research has to be done,
especially implementations on local memory architectures with a large
number of processors (MF’Ps) will be of interest.

ACKNOWLEDGMENTS

The authors would like to thank the Stichting Nationale Computer
Faciliteiten for the grant that was awarded to perform experiments on
the CRAY Y-MP41464.

REFERENCES
[l]

[2]

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974, pp. 60-67.
S . Bondeli, “Divide and conquer: A parallel algorithm for the solution of
a tridiagonal linear system of equations,” Parallel Computing, vol. 17,
no. 4-5, pp. 419434, July 1991.
E. Dekker and L. Dekker, “Parallel minimal norm method for direct
solving of linear algebraic equations,” J. System Analysis and Model-
ing Simulation. vol. 6. no. 9, pp. 643-657, Sept. 1989.
0. E&&&, C.K. Koc, and A.J. hub, “A recursive doubling algo-
rithm for solution of tridiagonal systems on hypercube multiprocessors,”
J. Camp. Appl. Math., vol. 27, pp. 95-108, 1989.

[5] G.H. Golub and C.F. Van ban . Matrix Computations. Baltimore: Johns
Hopkins Univ. Press, 1983, pp. 92-98.

[6] Intel Corporation. Paragon XP/S Product Overview. Beaverton, Ore.:
Intel Corporation, 1991.

[7] C. Kamath and A. Sameh, “A projection method for solving nonsym-
metric linear systems on multipmcessors,” Parallel Computing, vol. 9,
no. 3, pp. 291-312, Feb. 1989.

[E] J.J. Lambiotte and R.G. Voigt, ‘The solution of tridiagonal linear sys-
tems on the CDC STAR-100 computer,” ACM Trans. Math. Soft,.
vol. 1. no. 4, pp, 308-329, Dec. 1975.
J.M. Ortega and R.G. Voigt, “Solution of partial differential equations
on vector and parallel computers,” SIAM Rev., vol. 27, no. 2, pp. 149-
240, June 1985.

[IO] H.S. Stone, “An efficient parallel algorithm f a the solution of a tridiagonal
linear system of equations,” J. ACM, vol. 20, no. I , pp. 87-95, Ian. 1973.

[Ill X.H. Sun, H. Zhan& and LM. Ni. 733cient hidiagonal solveas on multi-
wmpute~~,” IEEE T m . Computers, vol. 41, no. 3, pp. 286-296. Mar. 1992.

[121 Thinking Machines Corporation. The Connection Machine CM-5
Technical Summary. Cambridge, Mass.: Thinking Machines Corpora-
tion, 1992.

[13] H.H. Wang, “A parallel method for tridiagonal equations,” ACM Trans.
Math. Sofi., vol. 7, no. 2, pp. 170-183, June 1981.

[3]

[4]

[9]

