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s = { 1 , 2 . 3  ,..., n}, 

divide S 4 S, , S,, SI ; '21 I%> (7) b : = b  -- 

S, := {z, 5. E, ..., n - l } ,  (2) 
S, :={1,4,7 ..... n-2). 

S, := (3, 6, 9, ..., n } .  

Consequently the three sets consist of the following inner product 
equations. The mergence of S3 is denoted by merge(S3Sl) in compact notation. 

5)  = b".,; (!..2. 5 )  = b".,; (! .*&,=b,  

The number of equations within each set equals ni = f for i = 1, 2, 3. 
In order to be relieved from the absolute indices of the inner product 
equations, the symbolic notation is used. The index si, refers to thejth 
inner product equation in set Si. In this way the notation can be kept 
simple. 

The nonzero structures of the vectors of the inner product equa- 
tions of the three sets are 

s, : 

a = (  *, *. * ), 

fit, = (*,*, * 1, 

i?:", = ( *, *, *); 

aT -Ill = (*, * ), 

5:*"z = ( *, *, *); 

--5, aT = (*,*, * ), 

.;, = ( *, *, * ). 

!;", = ( *. *) 

T 
-a,* 

S, : 

= ( *,*,* ). (4) 

S,: 

Within each set the vectors of the inner product equations are or- 
thogonal. However this is not the case for vectors of different sets. So 
orthogonalization is needed between the sets. Based on symmetry 
considerations the sets S, and S3 are merged with respect to SI. 

Each vector in S, and S3 only overlaps with the two neighboring 
vectors in SI. Exceptions are the first vector in S, and the last vector 
in S3 which overlap with only one vector in SI. The following equa- 
tions show the mergings of S, and S3. The mergence of S, is repre- 
sented by merge(S2Sl) in a compact notation. 

The resulting vectors of the inner product equations of S, and S3 are 
now orthogonal to those of SI. The nonzero patterns of the vectors of 
S, and S3 are 

s,: *;, = (*, *, * ). 

-121 a' = (:, :, *, *, *, * ). 

Cl", = ( *, *, * )  

The average bandwidth of the vectors is doubled with respect to the 
original vectors. The structural properties of the vectors of both sets 
satisfy (g,g, 9, ) = 0 , for Li - kl2 2. Therefore for both sets a division 

into two sets becomes obvious. The set S, is divided into a new S2 
and a new S,. The indices sa with j even are contained in the new S2. 
The indices s ~ j  with j odd move to S,. For set S3 the division is re- 
verse. The new S3 contains the indices s3k with k odd and the new S, 
contains the indices s3t with k even. 

'2 {'ll? '221 "') sZn2}. s3 = {%I,  s32, ...( S3n1}, 
divide S, + S, , S4; divide S, -$ S3, S,; 
s2 :={S22.S24r...,Sb2}, s3 :={sjl~s33...~,s3,~,-l}, (14) 

s4 :=(S2t.S23,...rSZ,n*-l}; S5 :={S32,$4,...1Sjn,}. 

After the divisions the number of equations in S,, S3, S,, and S, is 
halved, it satisfies n, = 2 for i = 2, 3,4,  5. The nonzero patterns of 
the vectors of the new S, and S3 are identical. 

%,, := i,%, -- , for j = 2.3, .., m 2 ;  (6) 
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s,: !i, = (*** , * , * , * , *  J3 In compact notation the mergence of S5 is merge(SSIS2, S3). 

The nonzero pattems of the vectors of S4 and S, look like 

S,: = (*,*,* 

!?Tal = ( *, *, *, *, *. * 

\- . I  

I \ 

(27) 
= ( *, *, *). 

The vectors within S2 are orthogonal. This holds for S3 as well. How- 
ever corresponding vectors in S2 and S3 are not orthogonal. Therefore 

*. ** *, *, *, *). 

(2% 
Therefore the previous procedure of the divisions and the subsequent 
mergences is generalized. In compact notation each step is given by 

divide SZi + S Z i ,  S2i+2; divide S2i+l + S,,,, SZit3 

Again there exists symmetry between the nonzero pattems of S4 and 
S5 and those of S2 and S3. Therefore a similar procedure can be fol- 
bwed as With mrge(S2Bl) and merge(S31SI). The Only difference k 
that the mergings of S4 and S5 are not with respect to one but with 
respect to two sets. In compact notation the mergence of S4 is 

"~"5 = ( 

mergWS2, W. 
merge(S2;+1la) 

(20) merge(S2i+21~2j. sZi+,); sZi+,) 
The procedure has to be applied log2($) times. The assumption 

about the size of the system n was made in order to maintain the ac- 
= 2, 3, ,,,, n4; tive sets at equal size during each stage of the computation. The total 

number of sets is ns = Zlog,($)+ 3 . The last two sets are orthogonal 

to all other sets. Both sets consist of only one equation with a full 
vector. The vectors are not yet orthogonal, therefore the last set is 
merged with respect to the last but one set (in compact notation 

To each orthogonal set belongs a minimal norm solution which is 
the sum of the minimal norm solutions of its orthogonal inner prod- 
uct equations. 

for 

(21) 

merse(S,,IS,,,-,) ). 
bs,, 3 (22) 

(30) bab , for j = 2, 3, ..., n,. 

(23) 
This is referred to as solve(S;) in compact notation. Finally the solu- 

1 
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tion of the complete system, Le., ( I ) ,  is found as the sum of the 
minimal norm solutions of all sets. 

E=$,. (31) 
i=l 

In Fig. l a  the algorithm is presented in compact notation. 

init: divide S + SI, S2, S, 

merge(S,;l&); merge(SalS,) 
loop: i = 1,z.. . . ,Iogl('j) 

divide Sa; -+ SX, Sa;+l 

divide &+I - S ~ J + ~ , S ~ M  

merse(Sx+llSd 
merge(Sx+dSx, S w )  

merge(Sx+314i, S w )  
end: marse(S..ISn.-l) 

solve(Sl);. . .;aolve(S.,) 

I := 61 + . .. + XLn. 

Fig. la. Standard algorithm 

Fig. lb. Modified algorithm. 

111. MEMORY REQUIREMENTS 

Within an orthogonal set the vectors do not overlap. The nonzero 
pattems of the consecutive vectors exactly succeed each other. One n 
element register can be used to store all vectors of a set. Conse- 
quently 210g2($)+3 registers are needed for the complete algo- 

rithm. The solution and the right-hand sides require two n element 
registers. This brings the total amount of storage to 2nlog2(%)+ 5n . 

A simple modification of the algorithm (Fig. lb) significantly re- 
duces the memory requirements. At the start of each stage consecu- 
tive vectors in S2i and Sa,, overlap with half the bandwidth. After the 
divisions there exist four sets where the consecutive vectors within 
each set do not overlap. Thus four n element registers are needed for 

the four sets. The merge(Sz,+llS2j) does not change the nonzero pat- 
tem of s,;+,, thus no additional storage is required. The 
merge(Sa+21S2i, SZ,+~) and merge(S2i+3wi,i, SZ,+~) almost double the 
nonzero elements in the vectors of S2i+2 and S,,,. Since these vectors 
were stored consecutively, no vector can he overwritten without de- 
stroying data of other vectors in the same register that have not been 
processed yet. Therefore the new vectors of both sets must be stored 
in four new n element registers. Since S2i and S2;+, are now orthogo- 
nal with respect to all other sets, the minimal norm solutions of both 
sets can be determined and the sets can he disposed of because they 
are no longer needed. The two solutions are used to update the sum 
of the minimal norm solutions of the previous orthogonal sets. The 
memory needed for S2i and Sz+l and the old SZ;+Z and &i+3 can be 
used for sets that are created at the next stage of computation. Thus 
eight n element registers are needed for all sets at each stage. The 
intermediate solution and the right-hand sides require two additional 
registers. The total amount of storage is Ion, which is of the same 
order as Gaussian elimination which requires 4n memory locations. 

IV. OPERATION COUNT 

Only floating point operations contribute to the operation count. 
In the modified algorithm only the merge and solve parts and the 
summation of the minimal norm solutions of the sets involve floating 
point operations. The divide part consists of indexed memory refer- 
ences only. Each merge part consists of orthogonalizations of one 
inner product equation with respect to another. An inner product 
orthogonalization is given by 

Suppose that g; and _ a j  consist of p respectively q nonzero elements 

and their overlap is equal to r nonzero elements. If the number of 
floating point operations of an orthogonalization is represented by 
ort(q, r), it satisfies ort(q, r)  = 3(q + r) + 1.  The solve  par^ consists of 
the computation of the minimal norm solution of an orthogonal set. The 
minimal norm solution of thejth inner product equation of the set Si is 

If g,, consists of p nonzero elements, the computation requires 3p 

floating point operations. Since there is no overlap hetween the vec- 
tors within a set, the computation of the minimal norm solution of all 
inner product equations within the set requires ni.3.($) = 3n flops. 

In Table I the operation counts are shown. Summation of all contri- 
butions gives the operation count of the modified algorithm. 

(56n-4)log2 - -8."+92. (;I 3 
(35) 

V. PARALLEL PROCESSING 
The amount of parallelism within each merge(SilS;) is proportional 

to the number of inner product equations that belong to both sets. As 
the size of a set is halved after a division-the consecutive set sizes 
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TABLE I 
OPERATION COUNT OF THE DIFFERENT PARTS OF THE MODIFaD ALGORITM 

Part Number of h t i n g  pint opuations 

- 
2((5-l)ori(3,l)+~ort(3.2)} 

3n 
- 
- 
- 

+mt(3.P,3.2’) 

(2s - l){ort(3.2‘,3.2’-’) + ort(3.2’,3.$)} 
(Z& - 1){0rt(3.$,3.P-~) + ort(3.2’,3.2’)} 

6n 

2n 

are $, $, +, ..., 1 -the degree of parallelism decreases during the 

computation. However the nonzero pattems of the vectors of con- 
secutive pairs of sets double in size. The consecutive vector sizes are 
3,6,12, ..., f, n . Because each inner product equation orthogonali- 

zation consists of dot, square norm and saxpy computations, paral- 
lelization is possible as well here. The saxpy computation can be 
performed in parallel without any interaction. The dot and square 
norm computations require interaction when they are performed in 
parallel. The influence of this interaction on performance and 
speedup highly depends upon the architectural features of the parallel 
computer such as interconnection network and communication la- 
tency. Because the vector size increases, the degree of parallelism 
increases as well. The total degree of the parallelism is the product of 
both components; it roughly remains constant during computation 
and it approaches O(n). 

VI. RESULTS AND CONCLUSIONS 

The modified algorithm was implemented in FORTRAN. It was run 
on the Convex C3820 and the CRAY Y-MP4464. Tridiagonal systems 

(I ,  0.01, -1.01) and n S 3.216 were tested. Note that several of them do 
not belong to the symmetric, positive definite or diagonal dominant 
class. ?he error was compared with the error of Gaussian elimination 
with partial pivoting. No significant differences were observed. These 
measurements indicate a favorable error behavior. 

In Table I1 the total number of operations, the average degree of 
parallelism and the parallel time complexity are shown for several 
algorithms. No communication overhead is assumed. The parallel 
time complexity of Recursive Doubling and Cyclic Reduction equals 
O(log2n). Wang’s partition method has a higher order of the parallel 
time complexity. 

Bondeli’s DAC algorithm which is based on the same partioning 
as Wang’s method has a smaller total operation count. Communica- 
tion overheads depend on the architecture and they affect the parallel 
properties of the algorithms. The limited processor version of Recur- 
sive Doubling ([41) and Sun’s PPH algorithm include communication 
overheads for hypercube architectures and they are only efficient 
when the number of processors is not too large. The communication 

with (ai*, ai, ai+d equal to (1, -2, 1). (1, -1, I), (2, 1, 2). (1, 2, -3, 

TABLE I1 
CHARACTERISTICS OF SEVERAL ALGORITHMS 

overheads were not investigated for the parallel minimal norm 
method. Although the algorithm is costly in absolute terms in com- 
parison with other algorithms, the degree of interaction is limited and 
the communication overheads should be small. Therefore the algo- 
rithm should compete well with other methods. 

All existing parallel algorithms impose restrictions on the kind of linear 
systems to be solved, such as symmetry, positive definiteness andor di- 
agonal dominance to guarantee numerical stability. For general tridiagonal 
linear systems pivoting is required, which destroys the parallel properties 
of the algorithms. The experiments indicate that no such requirements are 
needed for the parallel minimal norm method. ‘ Ih is robustness will be 
advantageous in a pa l le l  environment. Further research has to be done, 
especially implementations on local memory architectures with a large 
number of processors (MF’Ps) will be of interest. 
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