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Parallel Minimal Norm Method for
Tridiagonal Linear Systems

E. Dekker and L. Dekker

Abstract—Based on the parallel minimal norm method an algorithm
is derived to solve tridiagonal linear systems with a high degree of paral-
lelism. No conditions need to be posed with respect to the system. Ex-
periments indicate that the numerical stability of the algorithm is similar
to Gaussian elimination with partial pivoting.

Index Terms—Parallel algorithms, parallel minimal norm method,
tridi: 1l linear , row-oriented orthogonalization, structural

orthogonality.

1. INTRODUCTION

Large tridiagonal linear systems arise in many fields of numerical
computation. New algorithms for these systems have been developed
that take advantage of the architecture of parallel computers. Ortega [9]
gives an overview. Parallel algorithms include Cyclic Reduction [8],
‘Wang’s partition method [13], Recursive Doubling [10] and the meth-
ods of Sun [11] and Bondeli [2]. At this moment parallel machines are
available that consist of many thousands of processors ([6], [12]). As in
the near future the number of processors will increase even more, the
degree of parallelism becomes a dominant property of algorithms. The
algorithm presented here possesses a high degree of parallelism.

The parallel minimal norm method [3] is based on an inner prod-
uct equation representation of a linear system. Each equation is an
inner product of a known vector and the unknown solution that must
satisfy a right-hand side. By orthogonalizing the inner product equa-
tions the solution is determined. With tridiagonal linear systems
structural orthogonality is used such that significant arithmetic sav-
ings are achieved and a high degree of parallelism is available. The
algorithm is based on a divide-and-conquer strategy [1].

H. ALGORITHM

A tridiagonal linear system in inner product notation looks like

(.‘31’ 5) =b, Elr = (4, ap ),
(ez’ 5) =by, "_’: = Aay, an  ay )
(33' -’5) = by, ¢, with Q: = ( Ay, Gy, Gy )
(2, x)=b,: al= ( G Ay N
(€]

for a,...,a,, x,beR". The structural orthogonality of the vectors

satisfies (a,, a)= 0, for li — jl = 3. Therefore the system is divided

into three sets of equations. Kamath {7] applies the same approach to
introduce parallelism in block-tridiagonal linear systems. The size of
the system is assumed to be n = 3.2™ with m € N. The initial set S

consists of all n inner product equations, or § = {1, 2, 3, ..., n}. The
following division is applied.
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s ={1,2.3,..,n}

divide § - §,, 5,, S,;

S, ={2,58,..,n-1} 2
5 ={L47..n-2},

S, = {3, 6,9, ..., n}.

Consequently the three sets consist of the following inner product
equations.

5 (:a.:’i):bz' S, (31’ x)=bl‘ RN (al,x)=b3,
a5,§)=b5, (2, x) =0, (as’l =b 3)
(@, x)=b.; (3,00 8) = b, (&, %) =8,

The number of equations within each set equals n; =% fori=1,2,3.

In order to be relieved from the absolute indices of the inner product
equations, the symbolic notation is used. The index s; refers to the jth
inner product equation in set S;. In this way the notation can be kept
simple.

The nonzero structures of the vectors of the inner product equa-
tions of the three sets are

S

T

al = (eer )
11

T

;_11‘1 = ( * ok ok },
T

a = ( *, %, %)
51wy

Syt

T

a, = O )
&

g, = ( xas ) @
T

a = { ¥,k %)
=52ny

S,

T

a0 = (nx )
T

a, = ( AR !
T

a, = *, *).

Within each set the vectors of the inner product equations are or-
thogonal. However this is not the case for vectors of different sets. So
orthogonalization is needed between the sets. Based on symmetry
considerations the sets S, and S; are merged with respect to S;.

Each vector in S, and §; only overlaps with the two neighboring
vectors in S;. Exceptions are the first vector in S, and the last vector
in §; which overlap with only one vector in S;. The following equa-
tions show the mergings of S, and S;. The mergence of S; is repre-
sented by merge(S;1S;) in 2 compact notation.

)
=21 =Sy

=a, ————a S)

a
= = 2 =
a
51

(ﬂ 2 )
2., 8,
a
2,

R 2
l Iﬂ I
515

@2,

Jfor j=2,3, .., n,; ©)

a =a -
= =f
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(g’ll‘ E"ll)
oy 1 b,n ——b_m, (@)
Ig-'u ||2
= (DR b,e,) b, forj=23..n. (8

ba,, = b’;, - > b-'n,,q - b,
IIE'I.;-II ng'u |

The mergence of S5 is denoted by merge(S,iS;) in compact notation.

a ,a ’
("11 ”u) (g‘n E'Lm)

=a - _ - _1.9
g'” =1, > 8, T for j=12 .., n—1, %
l ..l
S F1iet
(8,2,
. S
1, =2, o, (10)
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The resulting vectors of the inner product equations of S; and S; are
now orthogonal to those of ;. The nonzero patterns of the vectors of
$, and S are

for j=1,2,...,n, -1 (1)

(12)

Samy S3ny

T

Sz: 5::1 = (%, * % )X
s
g, = (meees )
r
g = ( RS

13)

T

D R ),
T
R O )
T
2, = . n ).

The average bandwidth of the vectors is doubled with respect to the
original vectors. The structural properties of the vectors of both sets
satisfy (a, , a, ) =0, for |j — & = 2. Therefore for both sets a division
i

into two sets becomes obvious. The set S, is divided into a new S,
and a new S,. The indices s,; with j even are contained in the new $,.
The indices sy with j odd move to S,;. For set S, the division is re-
verse. The new S5 contains the indices 53 with k odd and the new Ss
contains the indices 53, with k even.

$ = {531, S325 000 53n3}>
divide S, = S,, S5;
83 = {s:n, Sa3y ey 33,.-3—1}’

S5 1= {s32,534,...,33,,3}‘

§, = {521, Sypseees 32"2},
divide S, — §,, S;;

§, = {szz, $345 w03 Sany [5

8¢ 1= {sz,, S350 000s “'2.nz—l}5

14

After the divisions the number of equations in S», 53, Sy, and Ss is
halved, it satisfies n; =% for i =2, 3, 4, 5. The nonzero patterns of

the vectors of the new S, and S are identical.
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Spoal = (e ek ek 2
=%t
2, = ( R K K % 13
=%z
: fori=2,3.
aT = ( [T
(15)
The nonzero patterns of the vectors of S4 and S5 look like
T
Syooa, = (h* )
T
= L S *‘* ,
a, _( )(16)
T = *_ ok ok koK ok
a,, = ( k),
T
Sgoal = ( ree e )
T
a = K K R K K & ),
=552 . ( X (17)
= ")

The vectors within S, are orthogonal. This holds for S; as well. How-
ever corresponding vectors in S, and S; are not orthogonal. Therefore
a mergence has to be done. The merging of S5 with respect to S, in-
volves only one orthogonalization per inner product equation. The
nonzero pattern of S; does not change. In compact notation this mer-
gence is merge(S,lS,).

o 5)
=g -y Tl P = .
2,, =2, T 2y, forj=12,...,ny (18)
s,
(g-“:o/’e-bj) )
oy T b,J]——-—zbs“,forj=1, 2,...,n 19)

d
52/

Again there exists symmetry between the nonzero patterns of S and
Ss and those of S, and ;. Therefore a similar procedure can be fol-
lowed as with merge(S;iS,) and merge(S;lS)). The only difference is
that the mergings of S; and S5 are not with respect to one but with
respect to two sets. In compact notation the mergence of S, is
merge(S,lS;, Ss).

3\ 8y,
2., :=am—2—( ) (20)
bl
Sil
3 (a8, 2,4y,
R (L "2)9 s ” a, Lforj=23,..,
= a
Sij-1
@21
3
= Z(“»‘u —m) .1“9 (22)
i=2 |§
it
a, -3, a, .8,
b, :=b,,”—i e, "’2") - s, 2")1151_1 Jfor j=2,3,...,n,.
i=2 a ug :
=Si.-t Sif
(23)
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In compact notation the mergence of Ss is merge(SslS,, S3).

2 (E's/ 2—‘&,) (—Is, —I-m)

Bt o "' I g, pfori=12..n-k
P
3 j+1

(24)

3 (2:, > By, )

- _NATs T
=T5ng _éﬂs;.s Z 2 Ql':ns’ 2%

=

|§Iin5

a, .4,
(!5' Y"‘}b Jorj=1,2,..,n—1;

2 b’q‘ * 2 ij4
|g"i “ IIE"-"“

(26)

)
Ssng ' -‘sns Z

‘"'s
i=2
’m;

S, and 53 are now orthogonal to S, and Ss. The nonzero structures of
S4 and Ss have an analogous symmetry as those of S, and Sy after
mergence with respect to S, (13).

T

27)

: = (R, kK kK K
S8, (k%% %, %, )
ET = (K, R R R K kK ok K Kk % K )
=52
al = { L
fany
@28
Sl = R EELR T )
= Kok kK Kk
i, = SRR,

(29
Therefore the previous procedure of the divisions and the subsequent
mergences is generalized. In compact notation each step is given by
divide S, — Sy, 5,5 divide 5y, — Sy,.., S5
merge (Szm !sli)
merge (szi+2|52i’ Ssirt )§ merge(SZ,.HlSZi, Szm)

The procedure has to be applied log,(%) times. The assumption

about the size of the system n was made in order to maintain the ac-
tlve sets at equal size during each stage of the computation. The total
** number of sets is n, = 2log,($)+3 . The last two sets are orthogonal

to all other sets. Both sets consist of only one equation with a full
vector. The vectors are not yet orthogonal, therefore the last set is
merged with respect to the last but one set (in compact notation
merge(S, 1S, ;).

To each orthogonal set belongs a minimal norm solution which is
the sum of the minimal norm solutions of its orthogonal inner prod-
uct equations.

fori=12,. (30)

_;7

This is referred to as solve(S;) in compact notation. Finally the solu-
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tion of the complete system, i.e., (1), is found as the sum of the
minimal norm solutions of all sets.

ny

_)g=2x4.

@n

i=l

In Fig. 1a the algorithm is presented in compact notation.

init: divide § — 81,5:,5
merge(S53|51); merge(S5}S;)

foop: i =1,2,..., fogs(3)
divide Sy — Sai, Saisa
divide 341 — Saig1, Snigs
merge(Szi41}52)
merge(Ss4a|Sir Sais1)
merge(Syis3|Sai, Saiv1)

end: merge(S,,|5n,-1)
solve(S));...;80lve(Ss,)

Xi=Ki+ ot

Fig. 1a. Standard algorithm.

init: divide S — 51,87, 53
merge(S3|51); merge(Ss|S1)}
solve(S;)

X=X
loop:i=1,2,...,l0g:(3)
divideSy — Sy, Sai4a
divide S3:41 — Sait1, Szisa
merge(S3i41/52)
merge(S3i43/ 52, Saigr)
merge(Ssi43) 52, Sais1)
solve(Ss;); solve(Say1)

X=X+ Xy H X

&

end: merge(Sy,|5x,-1)

solve(S,,-1); solve(S,,)

X=X+ Xn,-1 T Xa,

Fig. 1b. Modified algorithm.

III. MEMORY REQUIREMENTS

Within an orthogonal set the vectors do not overlap. The nonzero
patterns of the consecutive vectors exactly succeed each other. One n
element register can be used to store all vectors of a set. Conse-
quently 2log,(§)+3 registers are needed for the complete algo-

rithm. The solution and the right-hand sides require two n element
registers. This brings the total amount of storage to 2nlog,(5)+5n .

A simple modification of the algorithm (Fig. 1b) significantly re-
duces the memory requirements. At the start of each stage consecu-
tive vectors in Sy; and Sy;,; overlap with half the bandwidth. After the
divisions there exist four sets where the consecutive vectors within
each set do not overlap. Thus four » element registers are needed for
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the four sets. The merge(S,;,152:) does not change the nonzero pat-
tern of S,,;, thus no additional storage is required. The
merge(Sy.alSy, Sy.) and merge(S;,slSy, 5.} almost double the
nonzero elements in the vectors of S5 and Sa;,3. Since these vectors
were stored consecutively, no vector can be overwritten without de-
stroying data of other vectors in the same register that have not been
processed yet. Therefore the new vectors of both sets must be stored
in four new n element registers. Since Sy; and Sy;, are now orthogo-
nal with respect to all other sets, the minimal norm solutions of both
sets can be determined and the sets can be disposed of because they
are no longer needed. The two solutions are used to update the sum
of the minimal norm solutions of the previous orthogonal sets. The
memory needed for Sy and Sy, and the old Sy,; and Sy,3 can be
used for sets that are created at the next stage of computation. Thus
eight.n element registers are needed for all sets at each stage. The
intermediate solution and the right-hand sides require two additional
registers. The total amount of storage is 10n, which is of the same
order as Gaussian elimination which requires 4n memory locations.

IV. OPERATION COUNT

Only floating point operations contribute to the operation count.
In the modified algorithm only the merge and solve parts and the
summation of the minimal norm solutions of the sets involve floating
point operations. The divide part consists of indexed memory refer-
ences only. Each merge part consists of orthogonalizations of one
inner product equation with respect to another. An inner product
orthogonalization is given by

(2-3)

8=, -

2 =i’
e

(2 ‘-‘21)
3

Suppose that a, and a; consist of p respectively 4 nonzero elements

(32)

b i=b,—

i

b;. (33)

and their overlap is equal to r nonzero elements. If the number of
floating point operations of an orthogonalization is represented by
ori(g, r), it satisfies ori(g, r) = 3(g + r) + 1. The solve part consists of
the computation of the minimal norm solution of an orthogonal set. The
minimal norm solution of the jth inner product equation of the set S; is

b

5;

.
73,
|§I"f |

If a, consists of p nonzero elements, the computation requires 3p
i

(34)

X =
Ry

floating point operations. Since there is no overlap between the vec-

tors within a set, the computation of the minimal norm solution of all

inner product equations within the set requires ,.3.(%)=3n flops.
;

In Table I the operation counts are shown. Summation of all contri-
butions gives the operation count of the modified algorithm.

(56n - 4)10g2[%J - 8% +92. 35)

V. PARALLEL PROCESSING

The amount of parallelism within each merge(S,lS;) is proportional
to the number of inner product equations that belong to both sets. As
the size of a set is halved after a division—the consecutive set sizes
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TABLE1
OPERATION COUNT OF THE DIFFERENT PARTS OF THE MODIFIED ALGORITM

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

Part Number of floating point operations
divide S — 5,53,53 -
merge(5,|5:); merge(S,/S1) 2{(3 — ort(3, 1) + Jort(3,2)}

solve(5;) 3n

X=X -

divide Sy; ~+ Sai, Saiqz -
divide Sys1 ~ Ssiaa, Saiva -

merge(Szi41|Sai) SHrort(3.2,3.2%)

merge(Saiva| Suiy Sai1) (2% — D){ort(3.2,3.27) + ort(3.2, 3.2}
merge(Ssi+alSai, Saina) (2% — D{ort(3.2,3.271) + ort(3.2/,3.2)}
solve(Sy); solve(Syis1) 6n

X = X+ Xqi + Xaipn 2n

merge(Sa,|5n,-1) ort(n,n)

solve(Sx,-1); solve(S,,) 6n
X:=X+Xu,-1+Xn, n

are 4,%,%, ..., | —the degree of parallelism decreases during the

computation. However the nonzero patterns of the vectors of con-
secutive pairs of sets double in size. The consecutive vector sizes are
3,6,12,..., %, n. Because each inner product equation orthogonali-

zation consists of dot, square norm and saxpy computations, paral-
lelization is possible as well here. The saxpy computation can be
performed in parallel without any interaction. The dot and square
norm computations require interaction when they are performed in
parallel. The influence of this interaction on performance and
speedup highly depends upon the architectural features of the parallel
computer such as interconnection network and communication la-
tency. Because the vector size increases, the degree of parallelism
increases as well. The total degree of the parallelism is the product of
both components; it roughly remains constant during computation
and it approaches O(n).

VI. RESULTS AND CONCLUSIONS

The modified algorithm was implemented in FORTRAN. It was run
on the Convex C3820 and the CRAY Y-MP4/464. Tridiagonal systems
with (ai;, a;, a;y) equal to (1, -2, 1), (1, -1, 1), (2, 1, 2), (1, 2, -2),
(1,0.01,-1.01) and 7 < 3.2' were tested. Note that several of them do
not belong to the symmetric, positive definite or diagonal dominant
class. The error was compared with the error of Gaussian elimination
with partial pivoting. No significant differences were observed. These
measurements indicate a favorable error behavior.

In Table II the total number of operations, the average degree of
parallelism and the parallel time complexity are shown for several
algorithms. No communication overhead is assumed. The parallel
time complexity of Recursive Doubling and Cyclic Reduction equals
O(log,n). Wang’s partition method has a higher order of the parallel
time complexity.

Bondeli’s DAC algorithm which is based on the same partioning
as Wang’s method has a smaller total operation count. Communica-
tion overheads depend on the architecture and they affect the parallel
properties of the algorithms. The limited processor version of Recur-
sive Doubling ([4]) and Sun’s PPH algorithm include communication
overheads for hypercube architectures and they are only efficient
when the number of processors is not too large. The communication

TABLEII

CHARACTERISTICS OF SEVERAL ALGORITHMS
Algorithm Operation count {| Av. DOP | Parallel time complexity
Gaussian Elimination 8n o(1) O(n)
Cyeclic Reduction 1 O(n/log; n) O(log, n)
Recursive Doubling 1Tnlogyn O(n) O(log, n)
Parallel Minimal Norm S6nlog, n % O(n) 25 O(logy n)
Wang's method (p = \/3n) | 2n~12p-82 [ O(vR) O(v/m)

overheads were not investigated for the parallel minimal norm
method. Although the algorithm is costly in absolute terms in com-
parison with other algorithms, the degree of interaction is limited and
the communication overheads should be small. Therefore the algo-
rithm should compete well with other methods.

All existing parallel algorithms impose restrictions on the kind of linear
systems to be solved, such as symmetry, positive definiteness and/or di-
agonal dominance to guarantee numerical stability. For general tridiagonal
linear systems pivoting is required, which destroys the parallel properties
of the algorithms. The experiments indicate that no such requirements are
needed for the paralle]l minimal norm method. This robustness will be
advantageous in a paralle] environment. Further research has to be done,
especially implementations on local memory architectures with a large
number of processors (MPPs) will be of interest.
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