
Parallel Mining Of Closed Sequential Patterns

Shengnan Cong Jiawei Han David Padua
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{cong, hanj, padua}@cs.uiuc.edu

ABSTRACT
Discovery of sequential patterns is an essential data mining
task with broad applications. Among several variations of
sequential patterns, closed sequential pattern is the most
useful one since it retains all the information of the com-
plete pattern set but is often much more compact than it.
Unfortunately, there is no parallel closed sequential pattern
mining method proposed yet. In this paper we develop
an algorithm, called Par-CSP (Parallel Closed Sequential
Pattern mining), to conduct parallel mining of closed se-
quential patterns on a distributed memory system. Par-CSP
partitions the work among the processors by exploiting the
divide-and-conquer property so that the overhead of inter-
processor communication is minimized. Par-CSP applies
dynamic scheduling to avoid processor idling. Moreover,
it employs a technique, called selective sampling, to address
the load imbalance problem. We implement Par-CSP using
MPI on a 64-node Linux cluster. Our experimental results
show that Par-CSP attains good parallelization efficiencies
on various input datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications–data mining; D.1 [Pro-
gramming Techniques]: Concurrent programming–parallel
programming

General Terms: Algorithms, Experimentation, Performance

Keywords: parallel algorithms, load balancing, sampling

1. INTRODUCTION
The objective of sequential pattern mining is to discover

frequent subsequences in dataset[1]. Sequential pattern min-
ing has numerous applications, including the discovery of
motifs in DNA sequences, the analysis of web log and cus-
tomer shopping sequences, the study of XML query ac-
cess patterns, and the investigation of scientific or medical
processes. Many efficient sequential pattern mining algo-
rithms have been proposed in the literature[1, 8, 2, 5, 7,
12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

Since a long sequence contains a combinatorial number of
subsequences, sequential pattern mining will generate an ex-
plosive number of frequent subsequences for long patterns,
which is prohibitively expensive in both time and space.
Therefore, instead of mining the complete set of sequen-
tial patterns, an alternative but equally powerful solution is
to mine closed sequential patterns only. A closed sequen-
tial pattern is a sequential pattern which has no super-
sequence with the same occurrence frequency. Two algo-
rithms have been proposed for mining closed sequential pat-
terns: CloSpan[10] and BIDE [9]. The former follows a can-
didate maintenance-and-test paradigm over the set of al-
ready mined closed sequential pattern candidates. It uses
this set to prune the search space and check if a newly found
sequential pattern is likely to be closed. Since a large num-
ber of closed sequential patterns (or just candidates) will oc-
cupy much memory and lead to large space where to check
for new patterns, using CloSpan for mining long sequences
or mining with very low support thresholds tends to be pro-
hibitively expensive. The second algorithm(BIDE) adopts
a closure checking scheme, called BI-Directional Extension,
which mines closed sequential patterns without candidate
maintenance. Performance studies[9] have shown that BIDE
is more efficient than CloSpan.

To make sequential pattern mining practical for large data
sets, the mining process must be efficient, scalable, and have
a short response time. Moreover, since sequential pattern
mining requires iterative scans of the sequence dataset with
numerous data comparison and analysis operations, it is
computationally intensive. Furthermore, many applications
are time-critical and involve huge volumes of data. Such
applications demand more mining power than serial algo-
rithms can provide. Thus, it is clearly important to study
parallel sequential-pattern mining algorithms that take ad-
vantage of the computation and I/O power of distributed
memory systems as well as their aggregate memory spaces.

Although a significant amount of research results have
been reported on serial implementations of sequential pat-
tern mining, there is still much room for improvement in its
parallel implementation. Previous work on parallel sequential-
pattern mining has focused on mining the complete set of
sequential patterns [11, 3] and, to the best of our knowledge,
there is no parallel algorithm that targets closed sequential-
pattern mining. Since targeting closed sequential patterns
is often more efficient, we decided to follow this approach in
the study reported here.

In this paper we develop an algorithm, called Par-CSP
(Parallel Closed Sequential Pattern mining), to conduct par-

allel mining for closed sequential patterns on a distributed
memory system. Par-CSP:

1. is the first parallel algorithm to mine closed sequential
patterns;

2. is based on the most efficient serial algorithm BIDE to
mine the closed sequential patterns without candidate
maintenance;

3. is designed for execution on a distributed memory sys-
tem. Our implementation, achieves good speedups on
various datasets.

4. partitions the work into independent tasks so that the
overhead of interprocessor communication is minimized;

5. uses dynamic scheduling to reduce processor idle time.

6. uses a technique called selective sampling for load bal-
ancing. Selective sampling accurately predicts the rel-
ative times of the subtasks and in this way enables an
even distribution of work across processors;

The remainder of the paper is organized as follows. In
Section 2, we present a few basic concepts and the serial
algorithm on which Par-CSP is based. In Section 3, we
describe Par-CSP in detail. The experimental results are
presented in Section 4 and in section 5 we discuss related
work. Section 6 presents our conclusions.

2. BACKGROUND
2.1 Problem Definition

Let I = {i1, i2, ..., in} be a set of items. A sequence s
is a tuple, denoted as 〈T1, T2, ..., Tl〉, where Tj(1 ≤ j ≤ l),
called events (or itemsets). Each event is a set denoted
as (x1, x2, ..., xm) where xk(1 ≤ k ≤ m) is an item. A se-

quence dataset S is a set of sequences. The total number
of items in a sequence is called the length of the sequence
and a sequence with length l is called an l-sequence. A se-
quence α = 〈a1, a2...an〉 is called a subsequence of another
sequence β = 〈b1, b2...bm〉, denoted as α v β, if there exist
integers 1 ≤ j1 ≤ j2 ≤ ... ≤ jn ≤ m such that a1 ⊆ bj1 ,
a2 ⊆ bj2 ,...,an ⊆ bjn

. If α is a subsequence of β, we say that
β contains α. The support of a sequence α in a sequence
dataset S, denoted support(α), is the number of sequences in
the dataset containing α. Given a minimum support thresh-
old, min sup, the set of sequential pattern, SP, is the set
of all the subsequences whose support values are no less
than min sup. The set of closed sequential patterns,
CSP is defined as CSP ={α|α ∈ SP and @β ∈ SP such
that α v β and support(α) = support(β)}. The problem of
closed sequential pattern mining is to find CSP with
support value no less than a minimum support threshold.

2.2 Sequential Algorithm - BIDE
We use BIDE [9] as the base serial algorithm for our par-

allel closed sequential-pattern mining algorithm. We choose
BIDE for two reasons. First, BIDE is the most efficient
serial algorithm available today to mine closed sequential-
patterns. Second, BIDE searches the space without main-
taining a set of candidates, which facilitates its paralleliza-
tion.

The BIDE algorithm only mines sequence dataset consist-
ing of events containing a single item and our parallel algo-
rithm, derived from BIDE, targets the same type of datasets.

Extensions have been proposed [9]to make BIDE capable of
mining patterns with subsets of items. These extensions can
be directly applied to our algorithm because they do not af-
fect the parallel framework proposed in this paper. Focusing
on single-item events simplifies our presentation and enable
us to focus on the methodology.

Next, we present a brief description of the BIDE algo-
rithm. Let DB be a sequence dataset. The algorithm starts
with a scan of DB to identify the frequent 1-sequences.
Then, a second scan of DB constructs the projected datasets
for the frequent 1-sequences. Let i be a sequence, a projec-
tion i of DB, denoted as P (i, DB), is a set of subsequences,
which are made up of the sequences in DB containing i after
deleting the events appearing before the first occurrences of
i within each sequence.

For instance, Figure 1 shows a simple sequence dataset.
With the support threshold as 2, the projected dataset for
sequence (A)(B) is {(C), (C)(B), (C), (B)(C)(A)}.

(C)(A)(B)(C)30
(A)(B)(B)(C)(A)40

(A)(B)(C)(B)20
(C)(A)(A)(B)(C)10

SequenceSequence_id

(C)(A)(B)(C)30
(A)(B)(B)(C)(A)40

(A)(B)(C)(B)20
(C)(A)(A)(B)(C)10

SequenceSequence_id

Figure 1: An example dataset for BIDE

After the projected datasets are built, BIDE searches each
projected dataset and enumerates the sequential-patterns
following a pattern-growth strategy [4]. Upon getting a
sequential-pattern, BIDE applies a closure checking scheme,
called BI-Directional Extension [9], to check whether the se-
quential pattern is closed.

If S is a sequence and i is a 1-sequence, i � S represents
the concatenation of i and S. Let {X1, X2, ..., Xn} be a set of
sequences, then: i�{X1, X2, ..., Xn} ≡ {i�X1, i�X2, ..., i�
Xn}.

The mining of DB with BIDE can be defined as func-
tion F() below where freq(DB) represents the frequent 1-
sequences in DB. Function Check(S) returns the sequences
in S which can pass the BI-Directional Extension closure
checking (closed patterns). We do not describe this check
here for lack of space. The reader can find this check in [9].
The closed sequential patterns are stored in set C.

function F(DB)
begin

if (DB is a set of empty sets) return NULL;
else {

S =
�

i∈freq(DB)((i � F (P (i, DB))) ∪ {i})

C = C ∪ Check(S);
return(S)
}

end

3. THE PAR-CSP ALGORITHM
In this section, we introduce an algorithm called Par-CSP

to mine the closed sequential-patterns in parallel. We ad-
dress the following questions: How to decompose BIDE into
tasks? How to schedule the resulting tasks? How to balance
the load?

3.1 Task Decomposition
BIDE follows three steps:

• Step 1: Identify the frequent 1-sequences

• Step 2: Project the dataset along each frequent 1-
sequence;

• Step 3: Mine each resulting projected dataset.

The projected datasets of the frequent 1-sequences are in-
dependent. Given a 1-sequence, say i, only the suffixes
that follow the first occurrences of i in each sequence are
the projection of the dataset along i. Therefore, the closed
sequential-patterns mined from the dataset projection along
i1 all start with i1 as the prefix while the patterns discovered
from i2’projections all start with i2.

A partition strategy like the one just described is conve-
nient for task decomposition. Since the projected datasets
are independent, they can be assigned to different proces-
sors. Then, each processor can mine the assigned projected
datasets independently by using the conventional BIDE al-
gorithm. No inter-processor communication is needed dur-
ing the local mining. Our strategy for the parallel mining of
closed sequential-patterns is as follows:

1. Each processor counts the occurrence of 1-sequences in
a different part of the dataset. A global add reduction
is executed to obtain the overall counts. The frequent
1-sequences, those that occur at least min sup (the
support threshold) times, are identified.

2. For each frequent 1-sequence a very compact represen-
tation of the dataset projections, called pseudo pro-
jections, is built. This is done in parallel by assigning
a different part of the dataset to each processor.The
pseudo projections are communicated to all processors
via an all-to-all broadcast.

3. Dynamic scheduling to distribute the processing of the
projections across processors.

To facilitate dynamic scheduling, we assume that the com-
plete dataset is accessible to all processors. In the second
step, each processor applies pseudo projection method[9] to
construct the projected datasets. A pseudo projection con-
sists of a set of pointers to the starting positions within the
dataset of each sequences conforming the projected dataset.
After constructing the pseudo projections, they are broad-
cast to all processors. In our implementation, we found that
it is more efficient to carry out the broadcast using a virtual
ring structure where processor I only receives the package
from Processor (I − 1)modN and only sends the package to
Processor (I + 1)modN . Thus, assume there are total N

processors, the all-to-all broadcast is carried out in (N − 1)
send-receive steps which collectively consume no more than
0.5% of the mining time.

3.2 Task Scheduling
Next, we discuss the mechanism that we use to assign

projections to processors.
To reduce load imbalance, Par-CSP uses dynamic schedul-

ing. In our implementation, there is a master processor
which maintains a queue of pseudo projection identifiers.
Each of the other processors is initially assigned a projec-
tion. After a processor completes the mining of a projec-
tion, it sends a request to the master processor for another
projection. The master processor replies with the index of
the next projection in the queue and removes it from the
queue. This process continues until the queue of projections
is empty. The requests and replies to and from the master

processor are short messages and, therefore, the communi-
cation time is usually negligible relative to the mining time.

Dynamic scheduling is quite effective when the subtasks
are of similar size and are numerous. However, in many
cases, dynamic scheduling cannot achieve load balancing.
For example, if the largest subtasks takes 25% of the total
mining time, the best possible speedup is only 4 regardless
of the number of processors available.

For the datasets we used in our experiments, the cost of
mining the projections may vary greatly. Figure 2 shows the
average and maximum mining time of the projected datasets
along frequent 1-sequences for all the datasets we tested (de-
scribed in Section 4). The relatively large mining time of
some projected datsets may result in extremely imbalanced
workload. Our experiments prove that the scalability of the
parallelization can be greatly improved if the largest pro-
jected datasets are partitioned into smaller ones.

349.643
1.726

C200S25N9
(sup=0.01%)

11.663
0.102

Gazelle
(sup=0.2%)

4.2598.442Maximum
0.0520.387Average

C100S50N10
(sup=0.01%)

C100S100N5
(sup=0.01%)

349.643
1.726

C200S25N9
(sup=0.01%)

11.663
0.102

Gazelle
(sup=0.2%)

4.2598.442Maximum
0.0520.387Average

C100S50N10
(sup=0.01%)

C100S100N5
(sup=0.01%)

Figure 2: Mining time distributions

3.3 Relative Mining Time Estimation
Our approach to improve the effectiveness of dynamic

scheduling is to identify which projections require long min-
ing time and to further decompose them. To this end, we
need to estimate the relative mining time of the projections.

Our strategy to estimate mining time is to use run-time
sampling. By mining a small sample of the original dataset
and timing the mining time of the projected databases of
the sample, we should be able to identify the projections
whose mining time is longer. We evaluate sampling strate-
gies by the accuracy of their estimation and the overhead
they introduce.

The most natural sampling strategy is random sampling
which proceeds by collecting a, randomly selected, subset of
the sequences in the dataset, computes the projections, and
uses the mining time of this subset to estimate the mining
time of each projection. However, we found that random
sampling is not accurate if the overhead, which is determined
by the size of the subset, is kept small.

We developed an alternative sampling technique, called
selective sampling, which has proven to be quite accurate
in identifying the projections requiring longer mining times.
Instead of randomly selecting a subset of sequences from the
dataset, selective sampling potentially uses components of
every sequence in the dataset.

Selective sampling first discards all infrequent 1-sequences
and then discards the last l frequent 1-sequences of each se-
quence. The number l is computed by multiplying a given
fraction t by the average length of the sequences in the
dataset. For example, assume ((A) : 4), ((B) : 4), ((C) :
4), ((D) : 3), ((E) : 3), ((F) : 3), ((G) : 1) are the 1-sequences
and their counts in the database. Let the support thresh-
old be 4 and the average length of the sequences in the
dataset be 4. Suppose t equals to 75% so that l is 3 (4∗ .75).
Then (A), (B) and (C) are frequent because their support
values are no less than the threshold. Given a sequence
as 〈(A)(A)(B)(C)(A)(C)(D)(C)(F)(D)(B)〉, selective sam-
pling will reduce this sequence to 〈(A)(A)(B)(C)(A)〉. The
suffix 〈...(C)(D)(C)(F)(D)(B)〉 is discarded because it con-
tains the last l frequent 1-sequences of the sequence ((D) and

(F) do not count because they are infrequent 1-sequences.).
Figure 3 uses dataset C200S25N9 (described in Section 4)

to compare the mining times obtained with selective sam-
pling with the mining times of the original dataset. The
graph shows the mining time of the projections along the
frequent 1-sequences for both the complete data set and the
dataset resulting from selective sampling. The left vertical
scale represents the values for the whole dataset while the
one on the right represents the times resulting after selective
sampling. The average sequence length of C200S25N9 is 16
and we set t to 75% so that l is 12. As we can see that
the two curves match each other fairly well so that the pro-
jections requiring long mining times after selective sampling
are also the projections requiring long mining times for the
original dataset. The accuracy of selective sampling for all
other datasets we studied was similar.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

W
ho

le
da

tas
et

m
in

in
g

tim
e (

in
 se

co
nd

)

Sa
m

pl
in

g
m

in
in

g
tim

e (
in

 se
co

nd
)

Index of projections

Whole dataset
Selective sample

Figure 3: Selective sampling (The large subtasks in the selec-

tive sample are also the large subtasks in the whole datasets. The

estimation is accurate.)

In our implementation, we carry out the mining of the
dataset resulting from selective sampling in parallel follow-
ing the same strategy that we apply to the complete dataset.

As you may expect, there is a trade-off between the ac-
curacy and the overhead of selective sampling. The more
frequent 1-sequences we discard, the less accurate selective
sampling will be and the less overhead will be introduced by
sampling. According to our experiments, 75% is a reason-
able value for t for the datasets we considered. For example,
with t equals to 75%, the overhead of selective sampling in
Figure 3 costs only 0.53% of the serial mining time while
it still provides accurate information for the relative min-
ing time estimation. Figure 4 lists the percentage of mining
time of selective sampling with t being 75% versus the serial
mining time of the whole database.

0.53%

C200S25N9

2.12%

Gazelle

3.97%1.32%Overhead

C100S50N10C100S100N5

0.53%

C200S25N9

2.12%

Gazelle

3.97%1.32%Overhead

C100S50N10C100S100N5

Figure 4: Overhead of selective sampling

Let us now discuss why selective sampling works. When
building the projection along a frequent 1-sequence, only
the suffixes (with the 1-sequence as prefix) will be collected.
The frequent 1-sequences in the tail of a sequence will ap-
pear in every projection of their prefixes. Therefore, by
removing these frequent 1-sequences, the sequences in most
of the projections become shorter and therefore, the mining
time can be greatly reduced compared to the mining time
of the original dataset. At the same time, the suffixes of
the frequent 1-sequences in the tails are shorter so that the
mining time of their projections will not be time consuming

and, thus, we can safely remove these 1-sequences without
significantly affecting the relative times.

3.4 The Par-CSP Algorithm
In this subsection, we describe Par-CSP, the parallel al-

gorithm to mine closed sequential-patterns.
Algorithm 1 is the Par-CSP algorithm which is presented

in SPMD form. In the first important operation (line 1)
each processor counts the 1-sequences for the part of the
dataset assigned to it. We assume that the database is
partitioned into N subsets and that the subset assigned to
processor I is denoted DBI . In (line 2) an all-to-all reduc-
tion is performed to compute the global counts (stored in
variable GLOBAL COUNTS in each processor) and the
frequent 1-sequences are identified and stored into variable
F1. Next (line 3), each processor builds pseudo projections
for the frequent 1-sequences within the assigned portion of
the dataset. The pseudo projections are broadcast to all
the processors (line 4). Before scheduling the projections,
Par-CSP applies selectivesampling to estimate the relative
mining time of these projections (line 5).

Algorithm 1 Par-CSP(I, DBI , min sup, CSPI)

Input: I is the processor ID, DBI is a portion of the dataset
assigned to processor I, min sup is the minimum support
threshold
Output: CSPI is a portion of closed sequential-patterns

1: CI = number of 1 − sequences(DBI);
2: GLOBAL COUNTS = all to all sum(CI); F1 =

frequent 1 − sequences(GLOBAL COUNTS);
3: PSP = pseudo projection(F1, DBI);
4: GLOBAL PSP = all to all broadcast(PSP);
5: S RESULT = selective sampling(F1, I, DBI , min sup);
6: F2 = partition(F1, S RESULT); // Partition the most

time consuming projections and assign the new set of
projections to F2.

7: if (I == 0) then

8: accept requests from slave nodes and reply to each
requests with a different identifier from set F2 until
all projections have been assigned;

9: else

10: send request for a projection identifier to the master
node;

11: stop if all projections have been assigned;
12: apply BIDE algorithm to element of GLOBAL PSP

assigned by the master processor;
13: accumulate the closed sequential-patterns into CSPI

and go back to send request operation;
14: end if

The function selective sampling() implements the process
of mining the selective sample which is analog to the process
of mining the whole database. But instead of producing
the closed sequential patterns, it records the mining time
for the projections of all frequent 1-sequences. Variable
S RESULT is assigned these relative mining times.

After the sampling, the top time-consuming projections
are partitioned into smaller ones (line 6). In our experi-
ments, we selected those projections whose mining time is
more than 3% of the total mining time. For example, if
the projection along A is one of the top time consuming

projections, it will be partitioned into the projections along
(A)(B), (A)(C) and so on. Then the master node sched-
ules these projections as subtasks by maintaining a task
queue (line 8). The projections estimated to take longer
time in sampling are to be scheduled earlier. Those very
small projections can be scheduled in chunks to avoid com-
munication contention. Processor 0 is treated as the master
node and taking charge of the task scheduling while all the
other processors (slave processors) mine the assigned projec-
tions independently without communication to each other.
Whenever a slave processor finishes the assigned subtask,
it sends request to the master node for another one until
the task queue is empty (line 10-13). Each slave processor
outputs the closed sequential patterns in a file. The total
closed sequential patterns are simply the concatenation of
these files.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
Our performance study includes both synthetic and real

datasets. We used three synthetic datasets generated by
the IBM dataset generator [6] and a real dataset, Gazelle,
which comes from click-stream data provided by Blue Mar-
tini company. In Gazelle, we consider different products as
different items and the page views as events. We treat 10
consecutive Web click-stream as a sequence from one cus-
tomer1. The characteristics of these datasets are shown in
Figure 5.

1,443291,4232,937Gazelle
39165,661178,742C200S25N9
101624,162100,000C100S100N5
56316,044100,000C100S50N10
Max.seq.len.Ave.seq.len.#items#seq.Dataset

1,443291,4232,937Gazelle
39165,661178,742C200S25N9
101624,162100,000C100S100N5
56316,044100,000C100S50N10
Max.seq.len.Ave.seq.len.#items#seq.Dataset

Figure 5: Datasets for experiments

All of our experiments were performed on a Linux cluster
consisting of 64 nodes. Each node has a 1GHz Pentium III
processor and 1GB main memory. We used MPICH-GM
1.2.4..8a in the implementation of our parallel algorithm.
MPICH-GM is a portable implementation of MPI that runs
over Myrinet. The operating system is Redhat Linux 7.2
and we used the GNU g++ 2.96 compiler.

4.2 Experimental Results
We first examine the parallel performance of the Par-CSP

algorithm. Figure 6 shows the total execution time and the
speedup for each dataset. Execution time is measured in sec-
onds throughout this paper. We ran the sequential BIDE
algorithm2 (seq in the figures) and Par-CSP on 4, 8, 16, 32
and 64 processors. As the charts indicate, Par-CSP achieves
fairly good performance for all the tested datasets. Par-CSP
substantially reduces the mining time comparing to the se-
quential algorithm. Datasets C100S100N5 and C200S25N9
whose sequential mining times are larger achieve better speedups
than C100S50N10 and Gazelle.

1We made this choice because the average length of one web
click stream is only 3, which makes the serial mining time
too short to take advantage of parallelism.
2The implementation of BIDE was provided by the algo-
rithm inventor[9]

Performance of various support threshold

1574.6

6577.7
2368.8
1004.4

0 100 200 300 400 500 600 700 800 900 1000

0.08%

0.04%

0.01%

0.005%

S
u
p
p
o
rt

 t
h
re

sh
o
ld

Executiont time

64

32

16

8

4

seq

Figure 7: Influence of chang-
ing minimum support

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32 64
Processor #

E
x

e
c
u

ti
o

n
 t

im
e

without sampling

with sampling

Figure 8: Effectiveness of se-
lective sampling

Another factor that limits the speedups in Gazelle is load
imbalance. The mining time of some tasks are so large that
the subtasks derived from them are still much bigger than
the small tasks. The solution to this problem is to apply
multi-level task partition. The selective sampling technique
can be extended to accompolish this multi-level partitioning.
In addition to just recording the mining time corresponding
to the frequent 1-sequences during sampling, selective sam-
pling could also record the mining time of their subtasks to
identify those which need to be further partitioned.

Next, we discuss the influence of changing minimum sup-
port threshold on the performance of Par-CSP. The results
are shown in Figure 7. In the figure, we use the dataset
C100S100N5 with the minimum support threshold varying
from a high of 0.08% to a low of 0.005%. We tested Par-CSP
on 4, 8, 16, 32 and 64 processors and compared the per-
formance with sequential BIDE algorithm. Par-CSP shows
stable parallel performance with different support threshold.
Similar results can be obtained for the other datasets.

To test the effectiveness of the selective sampling tech-
nique, we compared the performance of Par-CSP when se-
lective sampling is enabled with the performance when it
is disabled (Figure 8). We used the dataset C200S25N9
with 0.01% as the support threshold. When the number of
processors is small, the sampling technique does not show
much advantage. This is because when there are only a few
processors, the number of subtasks assigned to each proces-
sor is large enough so that it tends to balance the load.
However, when the number of processors grows larger, the
sampling technique can greatly improve the performance.
On 64 processors, the performance can be improved by more
than 50%.

Previous studies [10, 9] have shown that a serial closed
sequential-pattern mining(CSP) algorithm may outperform
the serial algorithms for mining all sequential-patterns(ASP)
by over one order of magnitude. We performed experiments
to compare the parallel performance of mining CSP with
the mining of ASP. PrefixSpan[7] has been proved to be one
of the most efficient sequential algorithm to mine ASP. We
implemented an algorithm, Par-ASP, based on PrefixSpan,
to mine ASP in parallel. We compare the parallel perfor-
mance of Par-ASP to that of Par-CSP. Here we only show
the experimental results for the dataset C100S100N5 with
the support threshold as 0.01% and 0.005% due to space
limitations(Figure 9). The results for the other datasets
are similar. In Figures 9(a)(b) we use 0.01% and 0.005%
as support threshold respectively. Par-CSP demonstrates a
steadily better performance than Par-ASP. It proves that
CSPs not only represent more compact results than ASPs
but also can lead to better efficiency.

C100S100N5
(support=0.005%)

0

1000

2000

3000

4000

5000

6000

7000

seq 4 8 16 32 64

Processor #

E
xe

cu
tio

n
t
tim

e

0

10

20

30

40

50

60

S
p
e
e
d
u
p

execution time
speedup

C100S50N10
(support=0.01%)

0

50

100

150

200

250

300

350

seq 4 8 16 32 64

Processor #

E
xe

cu
tio

n
 t
im

e

0

10

20

30

40

50

60

S
p
e
e
d
u
p

execution time
speedup

C200S25N9
(support=0.01%)

0
1000

2000

3000
4000

5000
6000
7000

8000

9000
10000

seq 4 8 16 32 64

Processor #

E
xe

cu
tio

n
 t
im

e

0

10

20

30

40

50

60

S
p
e
e
d
u
p

execution time
speedup

Gazelle
(support=0.2%)

0

20

40

60

80

100

120

140

seq 4 8 16 32 64

processor #

E
xe

cu
tio

n
 t
im

e

0

10

20

30

40

50

60

S
p
e
e
d
u
p

execution time

speedup

Figure 6: Execution time and speedups of Par-CSP

0

100

200

300

400

500

600

700

800

900

4 8 16 32 64

Processor #

Ex
ec
ut
io
n
ti
me

Par-CSP

Par-ASP

(a)

0

1000

2000

3000

4000

5000

6000

4 8 16 32 64

Processor #

Ex
ec
ut
io
n
ti
me

Par-CSP

Par-ASP

(b)

Figure 9: Comparison of Par-CSP with Par-ASP

5. RELATED WORK
Although there have been numerous studies on sequential-

pattern mining, the study on parallel sequential-pattern min-
ing is still limited and is only confined to mining the com-
plete set of sequential patterns.

In [11], Zaki presents a parallel sequential-pattern min-
ing algorithm, called pSPADE, for discovering the set of
all frequent subsequences. Different from the Par-CSP al-
gorithm proposed in this paper, pSPADE is targeting a
shared-memory system. In a shared memory system, all
the processors can access the same global memory space,
which makes the proposed recursive dynamic load balanc-
ing strategy easy to be implemented. However, applying
such a strategy in a distributed memory system, which is
typical in a computer cluster environment, is too expensive
to be practical. Recently, Guralnik and Karypis [3] pre-
sented some parallel sequential-pattern mining algorithms
toward a distributed-memory system for mining the com-
plete set of sequential-patterns. These parallel algorithms
are based on a tree-projection-based sequential algorithm,
which is intrinsically similar to the PrefixSpan algorithm
[7]. To attack the load balancing problem, the authors pro-
posed a dynamic load-balancing strategy which allows an
idle processor to join the busy ones. This strategy involves
much more inter-processor communication than our selec-
tive sampling approach and the interruption of the busy
processors may cause more overhead during mining.

Both of these two parallel formulations still retain the
computation efficiency of the underlying serial algorithm to
mine the complete set of sequential-patterns. However, min-
ing the complete set of sequential-patterns is usually less effi-
cient than mining the closed sequential-patterns, especially
in mining long patterns and with low support threshold,
when parallel processing is in greater demand.

6. CONCLUSIONS
In this paper, we propose a parallel closed sequential-

pattern mining algorithm Par-CSP. It is the first parallel

solution for the closed pattern mining problem. We ex-
ploit the divide-and-conquer property to minimize the inter-
processor communications. We apply dynamic scheduling
for task assignment. Furthermore, we devise a technique,
called selective sampling, to estimate the relative mining
time of the subtasks and to achieve load balancing. Our
experimental results show that Par-CSP attains good par-
allelization efficiencies on various input datasets.

7. ACKNOWLEDGMENT
We are grateful to Dr. Jianyong Wang for providing us

the source code of BIDE.
This material is based upon work supported by the Na-

tional Science Foundation/NGS under Grant No. 0103610.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In

Eleventh International Conference on Data Engineering,
pages 3–14, Taipei, Taiwan, 1995.

[2] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT:
Sequential pattern mining with regular expression
constraints. In The VLDB Journal, pages 223–234, 1999.

[3] V. Guralnik and G. Karypis. Parallel tree-projection-based
sequence mining algorithms. Parallel Comput.,
30(4):443–472, 2004.

[4] J. Han and J. Pei. Mining frequent patterns by
pattern-growth: methodology and implications. SIGKDD
Explor. Newsl., 2(2):14–20, 2000.

[5] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and
M.-C. Hsu. Freespan: frequent pattern-projected sequential
pattern mining. In KDD’00, pages 355–359. ACM Press.

[6] IBM datset generator forsequential patterns.
http://www.almaden.ibm.com/software/quest/Resources.

[7] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan mining sequential
patterns efficiently by prefix projected pattern growth. In
ICDE’01, pages 215–226.

[8] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In
P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, editors,
Proc. 5th Int. Conf. Extending Database Technology,
EDBT, volume 1057, pages 3–17. Springer-Verlag.

[9] J. Wang and J. Han. BIDE efficient mining of frequent
closed sequences. In ICDE’04, pages 79–91.

[10] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed
sequential patterns in large datasets. In SDM’03, 2003.

[11] M. J. Zaki. Parallel sequence mining on shared-memory
machines. Journal of Parallel and Distributed Computing,
61(3):401–426, 2001.

[12] M. J. Zaki. Spade: An efficient algorithm for mining
frequent sequences. Machine Learning, 42(1-2):31–60, 2001.

