
100 Progress in Computational Fluid Dynamics, Vol. 10, No. 2, 2010

Copyright © 2010 Inderscience Enterprises Ltd.

Parallel Modified Nodal Integral Method for
three-dimensional incompressible Navier-Stokes
and energy equations

Suneet Singh*

Department of Energy Science and Engineering,

Indian Institute of Technology Bombay,

Powai, Mumbai 400076, India

E-mail: suneet.singh@iitb.ac.in

*Corresponding author

Rizwan-uddin

Department of Nuclear Plasma and Radiological Engineering,

University of Illinois at Urbana-Champaign,

216 Talbot Lab, 104 S. Wright St.,

Urbana, IL 61801, USA

E-mail: rizwan@illinois.edu

Abstract: A Modified Nodal Integral Method (MNIM) for three-dimensional, incompressible

Navier-Stokes (N-S) equations has recently been developed. MNIM requires relatively less

number of grid points for the desired accuracy. The Parallel MNIM (PMNIM) is developed in

order to further enhance its capabilities. Since template of the nodal integral method is quite

different from those that result from finite volume schemes, parallelisation of a nodal code

has unique challenges. The PMNIM is applied to a test problem to evaluate its performance.

It is observed that significant memory effects in the computations with variable problem size

result in efficiencies greater than one.

Keywords: nodal integral; parallel computation; N-S; Navier-Stokes.

Reference to this paper should be made as follows: Singh, S. and Rizwan-uddin (2010)

‘Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes

and energy equations’, Progress in Computational Fluid Dynamics, Vol. 10, No. 2, pp.100–112.

Biographical notes: Suneet Singh recently finished his PhD in Nuclear Engineering from

University of Illinois at Urbana-Champaign, USA. After completing his PhD, he joined Idaho

National Laboratory at Idaho, USA as Post Doctoral Research Associate. He is currently

Assistant Professor of Energy Science and Engineering at Indian Institute of Technology Bombay

in Mumbai (India).

Rizwan-uddin is Professor of Nuclear, Plasma and Radiological Engineering; Professor of

Computational Science and Engineering at the University of Illinois at Urbana-Champaign.

His areas of interest include thermal hydraulics, CFD, computational methods, biological systems

and general modelling and simulation. Most of his research is related to modelling and

simulation, reactor design and engineering and stability analysis of components and integral

systems.

1 Introduction

Nodal methods, developed for multi-group neutron

diffusion and neutron transport equations, now constitute

the backbone of production codes used in the nuclear

industry. An early review of nodal methods, developed and

used by the nuclear industry, is given by Lawrence (1986).

Nodal schemes are developed by approximately satisfying

the governing differential equations on finite size brick-like

elements that are obtained by discretising the space of

independent variables.

Similar approaches have been used in other branches of

science and engineering to develop efficient numerical

schemes (Elnawawy et al., 1990; Horak and Dorning, 1985;

Wescott and Rizwan-uddin, 2001). Nodal methods, as

a general class of computational schemes, are discussed by

Hennart (1986). NIMs, a subclass of nodal methods,

have been developed for the steady-state (Azmy and

Dorning, 1983) and time-dependent (Wilson et al., 1988)

N–S equations. NIM was applied to the steady-state

Boussinesq equations for natural convection, and to several

 Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes 101

steady-state incompressible flow problems (Azmy, 1985).

Esser and Witt (1993) developed a nodal scheme for the

two-dimensional, vorticity-stream function formulation

of the N–S equations. This development – that leads to

inherent upwinding in the numerical scheme – however

cannot be easily extended to three dimensions. NIM was

also developed and applied to the time-dependent heat

conduction problem (Wilson et al., 1988). Michael et al.

(2001) developed a second- and a third-order NIM for the

convection–diffusion equation.

Though highly innovative, those early applications of

nodal methods for the N–S equations did not take full

advantage of the potential that the nodal approach

offers. An improved method has recently been developed

to solve the incompressible N–S equations. This MNIM

was first developed for 2D time-dependent problems

(Wang and Rizwan-uddin, 2003), and then extended

for 3D time-dependent flows as well (Wang and

Rizwan-uddin, 2005). However, since NIMs rely

on the transverse-integration (TIP) procedure, they are

therefore restricted to physical domains with boundaries

parallel to one of the axes, i.e., to geometries that

can be filled with brick-like cells. Recently, methods have

been developed for fluid flow (Toreja and Rizwan-uddin,

2003a, 2003b) as well as for neutron diffusion equations

(Gu and Rizwan-uddin, 2005), combining NIM

with other numerical methods (for example finite element

method and finite analytic method) to overcome this

restriction. Another approach is used to transform

quadrilateral cells to square cells (Nezami et al., 2009).

Owing to several advantages discussed earlier, it is natural

to use MNIM to simulate turbulent flows. However, to do

that, it is necessary to first develop a PMNIM for simulation

of turbulent flows, which are highly computationally

intensive.

Various parallelisation strategies have been developed

for unstructured and structured grids for different numerical

methods. Pseudo-spectral methods (Peyret, 2002) because

of their high numerical accuracy are particularly suitable

for direct numerical simulations, although for limited

geometrical configurations. Several computational strategies

have been developed for parallelisation of pseudo-spectral

methods. These have been implemented on several different

machines. For example, Pelz (1991) implemented parallel

spectral methods for the N–S equations on a 1024-node

hypercube computer. Jackson et al. (1991) and Chen and

Shan (1992) implemented it on an Intel iPSC/860 hypercube

machine and CM-2 machine, respectively. Basu (1994)

implemented a pseudo-spectral scheme on a three-processor

multicomputer. Numerous parallel implementations

of other numerical schemes – finite difference, finite

element, control volume – have also been reported.

Levit and Jespersen (1988) used finite-difference-based

parallel solvers for their flow simulations. Naik et al. (1993)

also developed parallel finite difference fluid solvers.

Mixed spectral and finite difference schemes were

implemented by Prestin and Shtilman (1995) and also by

Garg et al. (1997) on parallel computers. Wu et al. (1997)

presented an adaptive parallel multigrid method for the

incompressible N–S equations. Passoni et al. (2001)

developed a parallelisation strategy for shear flow

simulations. Finite-element-based parallel solver for fluid

flow was implemented by Johan and Hughes (1992).

Wasfy et al. (1998) developed a parallel finite element

scheme for incompressible N–S equation. Compressible

flow simulations were carried out by Mittal and Tezduyar

(1995) using parallel finite element method. Recently,

Liu et al. (2003) developed a parallel Galerkin FEM for

flow simulations.

Here, we report the development and implementation

of a parallel MNIM for the N–S equations using the

domain decomposition paradigm for a structured grid.

The dependencies of the variables in the subdomains, which

result from the decomposition of the original computational

domain, on the variables in the neighbouring subdomains

have been identified and communication procedure is

accordingly implemented. Message-Passing Interface (MPI)

(Gropp et al., 1994, 1999), which is a library specification

for message-passing, has been used for domain

decomposition as well as for communications between

processors. The parallel version of the MNIM developed

here is tested by applying it to several test problems.

Speedup and efficiency for different numbers of processors

are presented for one test problem.

2 Modified Nodal Integral Method

A brief description of the NIM as applied to a generic 3D

convection–diffusion equation is presented here. Focus

here is to identify the unique set of discrete equations that

result in a nodal scheme. Details are given by Wang and

Rizwan-uddin (2003, 2005).

The space time domain (X, Y, Z, T) is discretised in

parallelepiped cells (i, j, k, n) of size (2ai × 2bj × 2ck × 2τn)

with cell-centred local coordinates (x, y, z, t, –ai ≤ x ≤ ai,

–bj ≤ y ≤ bj, –ck ≤ z ≤ ck, –τn ≤ t ≤ τn). The convection–

diffusion equation (for a physical quantity C) in a cell is

written as follows:

2 2 2

2 2 2

(, , ,) (, , ,)
(, , ,)

(, , ,)
(, , ,)

(, , ,)
(, , ,)

(, , ,) (, , ,) (, , ,)

(, , ,)

C x y z t C x y z t
u x y z t

t x

C x y z t
v x y z t

y

C x y z t
w x y z t

z

C x y z t C x y z t C x y z t
D

x y z

s x y z t

∂ ∂
+

∂ ∂

∂
+

∂

∂
+

∂

 ∂ ∂ ∂
= + +

∂ ∂ ∂
+

 (1)

where u, v and w are the velocity components in x, y and z

directions, respectively. D is the diffusion coefficient and is

constant in space and time; s(x, y, z, t) is a source term

for C.

The next step in the NIM is the TIP. The TIP

involves local averaging of the PDE over the cell in all

independent variables except one, which results in a

102 S. Singh and Rizwan-uddin

corresponding ODE. This process is repeated for all

independent variables yielding three transverse-integrated

ODEs in the space variables, and one ODE in time.

For example, averaging over y, z and t, i.e., operating

by
1

d d d ,
8

j kn

n j k

b c

b c
j k n

y z t
b c

τ

ττ

+ + +

− − −∫ ∫ ∫ one gets,

2

2

d () d ()
()

d d

yzt yzt
yztC x C x

u D S x
x x

− = (2)

where, ,u v and w are cell-averaged velocities,

1
() (, , ,) d d d

8

j kn

n j k

b c
yzt

b c
j k n

C x C x y z t y z t
b c

τ

ττ

+ + +

− − −
≡ ∫ ∫ ∫ (3)

and the pseudo-source term ()yztS x is defined as

2 2

2 2

1 (, , ,) (, , ,)
()

8

(, , ,)
(, , ,)

(, , ,)

(, , ,)
d d d .

j kn

n j k

b c
yzt

b c
j k n

C x y z t C x y z t
S x

b c y z

C x y z t
s x y z t v

y

C x y z t
w

z

C x y z t
y z t

t

τ

ττ

+ + +

− − −

 ∂ ∂
≡ +

∂ ∂
∂

+ −
∂

∂
−

∂

∂
−

∂

∫ ∫ ∫

 (4)

To average the convection term, u(∂C/∂x), average

of the product is approximated by the product of the

averages, which is known to be a second-order

approximation. Two ODEs for the variables ()xytC z and

(),zxtC y similar to ODE in Equation (2), can be obtained by

applying TIP in the other two directions. These

variables have similar definitions to the variable ()yztC x

given in Equation (3). Moreover, an ODE (in time)

for the variable ()xyzC t is obtained by averaging over x, y

and z.

The ODEs are solved after pseudo-source terms

are expanded and truncated at a desired order. A set of

discrete equations for surface-averaged variables

is obtained in terms of truncated pseudo-source terms by

imposing continuity of C and its corresponding flux

(for second-order ODEs) at interfaces, for example,

at the interface between cell (i, j, k, n) and (i + 1, j, k, n).

Similar steps when applied to the ODE in time results

in a scheme for marching in time.

In the final step, the truncated pseudo-source

terms are eliminated by imposing certain constraints.

The constraint equations are obtained by satisfying

the PDE over a cell in an average sense and imposing

the condition that cell-averaged variables be unique, i.e.,

independent of the order of integration.

Development of the MNIM for the momentum

equations is similar to that for the convection–diffusion

equation. Explicitly, the u-momentum equation in a cell is

written as,

2 2 2

2 2 2

(, , ,) (, , ,) (, , ,)

(, , ,)

(, , ,) (, , ,) (, , ,)

(, , ,)

p p

p

u

u x y z t u x y z t u x y z t
u v

t x y

u x y z t
w

z

u x y z t u x y z t u x y z t

x y z

s x y z t

ν

∂ ∂ ∂
+ +

∂ ∂ ∂

∂
+

∂

 ∂ ∂ ∂
= + +

∂ ∂ ∂
+

 (5)

where

0 0

0

1
(, , ,) () ()

() .

u p p

p x

p u u
s x y z t u u v v

x x y

u
w w g

z

ρ

∂ ∂ ∂
= − + − + −

∂ ∂ ∂

∂
+ − +

∂

(6)

In the above-mentioned equation, u, v and w are the velocity

components in the x, y and z directions, respectively.

Variable p represents pressure and v is viscosity. Variable gx

is the body force term in the equation. The variables 0 ,u 0v

and 0w are obtained by averaging velocity components at

current time step. Similar variables at the previous time

step are given as ,pu ,pv .pw In addition to the momentum

equation in the x-direction, the momentum equations

in the other directions can be similarly written. Once the

momentum equations are written in the form similar to

the convection–diffusion equation (Eq. 2), the rest of the

procedure to obtain the discrete equations can be similarly

applied. The details are omitted here and can be found in the

literature (Wang and Rizwan-uddin, 2003, 2005).

In addition to the momentum equations, in the MNIM

a pressure Poisson equation is solved in place of the

continuity equation, which is given by

2 2 2

2 2 2
(, , ,)p

p p p
s x y z t

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (7)

where sp(x, y, z, t) depends on velocities and body force

terms. The procedure to develop the MNIM for the pressure

Poisson equation is similar to that described for the

convection–diffusion equation.

The set of algebraic equations for pressure (3 equations)

and u velocity (4 equations) is as follows (Wang and

Rizwan-uddin, 2003, 2005)

27 , , , 21 1, , , 22 1, , , 23 , , , , 1, ,

24 1, , , 1, 1, , 25 , , , , , 1,

26 1, , , 1, , 1, 28 1 , , , 29 1

()

() ()

()

yzt yzt yzt zxt zxt

i j k n i j k n i j k n i j k n i j k n

zxt zxt xyt xyt

i j k n i j k n i j k n i j k n

xyt xyt

i j k n i j k n i j k n i

F p F p F p F p p

F p p F p p

F p p F f F f

− + −

+ + − −

+ + −

+ + = +

+ + + +

+ + + + 1, , ,j k n+

 (8)

 Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes 103

37 , , , 31 , 1, , 32 , 1, , 33 , , , , , 1,

34 , 1, , , 1, 1, 35 , , , 1, , ,

36 , 1, , 1, 1, , 38 1 , , , 39 1

()

() ()

()

zxt zxt zxt xyt xyt

i j k n i j k n i j k n i j k n i j k n

xyt xyt yzt yzt

i j k n i j k n i j k n i j k n

yzt yzt

i j k n i j k n i j k n i

F p F p F p F p p

F p p F p p

F p p F f F f

− + −

+ + − −

+ − +

+ + = +

+ + + +

+ + + + , 1, ,j k n+

 (9)

47 , , , 41 ,, 1, 42 , 1, 43 , , , , , 1,

44 , 1, , , 1, 1, 45 , , , 1, , ,

46 , 1, , 1, 1, , 48 1 , , , 49 1 , ,

()

() ()

()

xyt xyt xyt yzt yzt

i j k n i k n i k n i j k n i j k n

yzt yzt zxt zxt

i j k n i j k n i j k n i j k n

zxt zxt

i j k n i j k n i j k n i j

F p F p F p F p p

F p p F p p

F p p F f F f

− + −

+ + − −

+ − +

+ + = +

+ + + +

+ + + + 1,k n+

 (10)

57 , , , 51 1, , , 52 1, , , 53 , , , , , , 1

54 1, , , 1, , , 1

()

()

yzt yzt yzt xyz xyz

i j k n i j k n i j k n i j k n i j k n

xyz xyz

i j k n i j k n

F u F u F u F u u

F u u

− + −

+ + −

+ + = +

+ +

 (11)

67 , , , 61 , 1, , 62 , 1, , 63 , , , , , , 1

64 , 1, , , 1, , 1

()

()

zxt zxt zxt xyz xyz

i j k n i j k n i j k n i j k n i j k n

xyz xyz

i j k n i j k n

F u F u F u F u u

F u u

− + −

+ + −

+ + = +

+ +

 (12)

47 , , , 41 , , 1, 42 , , 1, 43 , , , , , , 1

44 , , 1, , , 1, 1

()

()

xyt xyt xyt xyz xyz

i j k n i j k n i j k n i j k n i j k n

xyz xyz

i j k n i j k n

F u F u F u F u u

F u u

− + −

+ + −

+ + = +

+ +

 (13)

77 , , , 78 , , , 1 2 71 , , , 72 , , 1, 73 , , ,

74 1, , , 75 , , , 76 , 1, ,

78 , , , 1

xyz xyz xyt xyt yzt

i j k n i j k n i j k n i j k n i j k n

yzt zxt zxt

i j k n i j k n i j k n

xyz

i j k n

F u F u f F u F u F u

F u F u F u

F u

− −

− −

−

− = + + +

+ + +

+

 (14)

where
1, , , , , , ()yzt yzt

i j k n i j k n ip p x a− ≡ = − and
, , , , , , ().yzt yzt

i j k n i j k n ip p x a≡ = +

All other variables are similarly defined. The subscripts

i, j, k and n in F coefficients and in f2 are omitted.

The F coefficients are dependent on the dimensions

(ai, bj and ck) of the cell. The f1 and f2 coefficients are

obtained by averaging the source terms in a cell. The further

details of these coefficients are not relevant for the

parallelisation of the scheme and therefore omitted

here. These details can be found in the previously

published literature (Wang and Rizwan-uddin, 2003, 2005).

The equations for v and w-velocities are similar. The

algebraic equations for temperature equation will also be

similar in structure to the velocity equations. It should

be noted that, in the 3D MNIM, four algebraic equations

need to be solved for each velocity component (or

temperature), as there are four variables corresponding

to each velocity component (yztu , zxtu , xytu , xyzu). Similarly,

there are three discrete variables for the pressure

(yztp , zxtp , xytp).

The template of a generic variable c is shown

in Figure 1. In the figure, the yzt-averaged variable

(yztc) is shown on the surface (parallel to the y–z plane)

over which c(x, y, z, t) is averaged. The location

of the surface-averaged variables zxtc and xytc

may be similarly assigned. However, the variable xyzc

(both at current and at previous time steps) is c averaged

over the volume of the cell and therefore is shown at the cell

centre.

Figure 1 Location of surface-averaged variables corresponding

to a generic variable c. The shaded cell in the figure is

cell (i, j, k). Only x–y plane cutting through the vertical

(z-direction) centre of the cells has been shown for the

sake of clarity. Variables , , 1,

xyt

i j k nc − and , , ,

xyt

i j k nc (not

shown here) are located at the bottom and top surfaces

of the node (i, j, k), respectively (see online version

for colours)

3 Parallelisation of MNIM

3.1 Domain decomposition

Domain decomposition paradigm is a natural way of

parallelisation for a system where computation of a variable

in a cell depends on the variables in neighbouring cells.

Since aforementioned system of discrete equations when

solved with iterative schemes (e.g., Gauss-Seidel, SOR)

(for details of iterative schemes see Young, 1971) is such a

system, the domain decomposition is used for parallelisation

of MNIM.

The computational domain is divided into several

subdomains (one for each processor). Each processor

stores and computes variables in its subdomain, exchanging

information with neighbouring processors when necessary.

3.2 Message-Passing Interface

The MPI (Gropp et al., 1994, 1999) is used for

parallelisation of MNIM. MPI is a library specification for

message-passing, proposed as a standard by a broadly

based committee of vendors, implementers and users.

Various procedures of MPI used in parallelisation of MNIM

and their use in the implementation of the scheme are

briefly discussed here:

MPI_DIMS_CREATE: This procedure creates division

of processors in a Cartesian grid depending on the

number of dimensions given in the input. For example,

in three-dimensional topology, if 8 processors are assigned

this procedure allocates two processors to each of the three

directions. In case of 12 processors, the arrangement

is 4 × 3 × 1.

104 S. Singh and Rizwan-uddin

MPI_CART_CREATE: This procedure creates a new

communicator with Cartesian topology based on the output

of MPI_DIMS_CREATE. Each processor is assigned

a coordinate according to its position in a virtual

three-dimensional array of the processors.

MPI_CART_SHIFT: The procedure is used to identify

immediate neighbouring processors in all the directions.

The procedure needs to be called once for each direction

to assign neighbours in that direction. For periodic topology,

the procedure identifies the neighbours suitably. The input

argument of this procedure contains a logical array variable

of size three to identify the directions in which the topology

is periodic.

MPI_BCAST: The input data is read by one of the

processors and broadcasted to all the processors using this

procedure. Before broadcasting, the input data is stored in

two arrays, one for integer variables and for double

precision variables. Only two calls of the procedure,

one for each array, are then required to broadcast the data.

Two arrays are required, as two different datatypes cannot

be communicated simultaneously. The values of various

parameters are then assigned from those processors in

each array.

It is pointed out here that one array can also be

used to broadcast the input variables by using a derived

datatype, which consists of both datatypes. However,

the broadcast is required only once and hence it is

obviously not very useful to define a new datatype for the

purpose.

Once the total number of cells is known to a processor,

the starting and end cell numbers in each direction in that

processor is evaluated depending on its position in the

three-dimensional array assigned by MPI_CART_

CREATE. This is done so as to keep the computational load

evenly balanced among the processors.

MPI_SEND_RECV: During the iterative process, the

required communications, as discussed in the previous

section, are carried out using this procedure.

MPI_ALL_REDUCE: Each processor checks convergence

after each Gauss-Seidel iteration only locally. Global

convergence is checked by using this procedure.

3.3 Communication between processors

The discrete variables that must be communicated to

neighbouring processors depend on the ‘template’ in the set

of algebraic equations. The variables thus communicated are

stored in the ghost surfaces or cells in the receiving

processor. Figure 2 shows two neighbouring subdomains in

the x-direction. The figure is in the x–y plane showing only

one layer of cells. All layers of cells in the z-direction will

follow the same communication procedure.

From Equations (11) and (14), it can be seen that the

variable yztu for the cells at the interface of two processors

(corresponding to two subdomains) next to each other

in the x-direction needs to be exchanged between them.

In Figure 3, the surfaces shown in the red colour (solid line)

on the left processor are the ghost surfaces, which receive
yztu variable computed at the red surfaces in the right

processor. This communication is shown by the red

(solid line) arrow. The green colour surfaces and green

(dashed line) arrow represent similar communication in the

opposite direction. Similar communications are required for

the variables zxtu and xytu between the processors next to

each other in the y- and z-directions, respectively.

Figure 2 Decomposition of computational domain

into eight subdomains

Figure 3 Communications required for the velocity equations

in the x-direction (see online version for colours)

In addition, xyzu from the cells at the interface is

communicated from each processor to its neighbouring

processor in the negative x-direction. Since xyzu are

node-averaged velocities, ghost cells (shaded cells in

Fig. 3) are created to store the variable. The blue dots

and blue (dotted line) arrow in the figure represent the

above-mentioned communication. Similar communications

are required in the y- and z-directions as well. The

communications for corresponding variables in v, w and

temperature equations are similar to those for the u

equation.

Figure 4, which is similar to Figure 3, shows the

communications of pressure variables between

neighbouring processors in the x-direction. For pressure

field, from Equation (8), it can be seen that yztp needs to be

exchanged between the neighbouring processors in the

x-direction. This communication is shown by red (solid line)

and green (dashed line) colour arrows in Figure 4. Similar

communications of corresponding variables are also needed

in the y- and z-directions.

Also, ,xytp zxtp and f1 from the cells adjacent to the

interface are communicated from each processor to its

neighbouring processor in the negative x-direction.

The communications for zxtp and f1 are shown in brown

(dash-dot line) and blue (dotted line) colours, respectively.

The communication for xytp is not shown in the figure for

sake of clarity. Similar communications are also required in

the y- and z-directions. All these communications are ideally

needed at each iteration.

 Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes 105

Figure 4 Communications required for the pressure equations

in the x-direction (see online version for colours)

Special care is needed for communication of pressure

variables in the corner cells. Figure 5 shows the

communication of zxtp variable in the corner cell from

where it is communicated to its destination. The

above-mentioned variable is communicated to the neighbour

in the diagonal direction. This process is carried out in two

steps. First, the variable moves to the neighbour in the

positive y-direction. From the receiving processor,

this variable is moved to its neighbour to the left. Therefore,

it is important to note that the communication shown by

the red arrow (solid line) in the figure must precede

the communication shown by the green arrow (dashed line).

Otherwise, upper left processor in Figure 5 will not

have the correct value. Similar care in the order

of communications is also required for xytp and yztp

variables in the corner cells.

Figure 5 Order of communication for the pressure variables

in corner cell surfaces. Communication shown by solid

arrow must precede that shown by dashed arrow

(see online version for colours)

The coefficients in Equations (11)–(14) depend, in addition

to the cell dimensions, on the previous time step velocities

from that cell and the neighbouring cells. Therefore, ,pu pv

and pw are also sent to neighbouring cells in the negative

x-, y- and z-directions, respectively, but only once at each

time step.

3.4 Communication cost relative to computational

cost

The efficiency of parallel computation depends on efforts

spent on communication between the processors relative to

computations carried out in each processor. The efficiency

is higher if the cost of the communication is less.

For a Gauss-Seidel solver, the computational cost per

cell for MNIM is approximately four times that for finite

volume method because there are four surface-averaged

variables for each velocity component (The advantage of the

MNIM results from the fact that number of grid points,

or cells, required is significantly less than that required

for finite volume method for the same level of accuracy

(Wang and Rizwan-uddin, 2003)). However, there are only

two variables corresponding to each velocity component,

which need to be communicated between the processors.

Therefore, in MNIM, only half of the variables that are

computed need to be communicated as opposed to all the

variables in the case of finite volume method. Hence, it can

be a priori concluded that parallelisation of MNIM is more

likely to be more efficient than that for finite volume

method. However, pressure equations need communications

of four variables (,yztp ,zxtp xytp and f1) in each direction

leading to no advantage over finite difference or finite

volume parallelisation schemes. Since there are three

velocity components and obviously only one pressure,

overall parallelisation efficiency of PMNIM is expected to

be higher than that for finite difference or control volume

schemes.

In the above-mentioned discussion, the communication

cost of previous time step velocities has been ignored,

as they are sent only once for each time step. This cost

is assumed to be negligible compared with the

communication cost of variables that must be transmitted

at each iteration.

4 Numerical results

4.1 Comparison with Benchmark solution

The PMNIM is used to simulate natural convection in a

three-dimensional cubic cavity of unit dimensions. The

schematic diagram of the problem is shown in Figure 6.

The fluid in the cavity is air (Prandtl number 0.71), and

Rayleigh number is 104. Gravity is in the z-direction.

All surrounding walls are rigid and impermeable. The wall

at x = 0 and x = 1 are isothermal but at different

temperatures of Th and Tc, respectively. The remaining

four walls are adiabatic. The flow is assumed to be

incompressible and laminar. The Boussinesq approximation

has been assumed to be valid. The equations are solved in

the primitive variables. Simulations are carried out on

the Turing cluster, which consists of 640 Apple Xserves,

each with two 2 GHz G5 processors. The primary network

connecting the cluster machines is a high-bandwidth,

low-latency Myrinet network.

Figure 7 shows the velocity and temperature profiles at

y = 0.5 plane for the test problem. The u and w velocity

contours (a, b) and isotherms (c) are shown in the figure.

The following quantities obtained using the PMNIM are

compared in Table 1 with those reported for the benchmark

solution given by Wakashima and Saitoh (2003).

106 S. Singh and Rizwan-uddin

umax(z): maximum centre line (x = 0.5, y = 0.5) u-velocity

(and its location).

wmax (x): maximum centre line (y = 0.5, z = 0.5) w-velocity

(and its location).

Nuwall: Average Nusselt number over the hot (or cold) wall.

Nucentre: Average Nusselt number over the centre plane

(x = 0.5).

The average Nusselt number Nu over a plane parallel to the

y–z plane is computed as follows:

1 1

0 0
d d .

T
Nu uT y z

x

∂
= −

∂ ∫ ∫ (15)

The numerical results are reliable, i.e., results obtained

using the parallel code with different numbers of processors

are the same as those obtained using the serial code.

Moreover, as can be seen from Table 1, results

obtained with 20 × 20 × 20 uniform grid compare well

with the benchmark solution (Wakasimha and Saitoh,

2003). It should be noted that the benchmark solution

is obtained on a uniformly distributed 80 × 80 × 80

grid using a fourth-order space time finite-difference

method.

Figure 6 Schematic of the test problem

Figure 7(a) Comparison of u-velocity contours at y = 0.5 plane obtained with PMNIM (on left) with benchmark solution by Wakashima

and Saitoh (2003) (on right) (see online version for colours)

Figure 7(b) Comparison of w-velocity contours at y = 0.5 plane obtained with PMNIM (on left) with benchmark solution by Wakashima

and Saitoh (2003) (on right) (see online version for colours)

 Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes 107

Figure 7(c) Comparison of temperature contours at y = 0.5 plane obtained with PMNIM (on left) with benchmark solution by Wakashima

and Saitoh (2003) (on right) (see online version for colours)

Table 1 Comparison of some of the results obtained using the

PMNIM with the benchmark solution

 PMNIM Benchmark

umax (z) 0.1995 (0.826) 0.1984 (0.825)

wmax (x) 0.2217 (0.117) 0.2216 (0.117)

Nuwall 2.0621 2.0634

Nucentre 2.0751 2.0636

Source: Wakashima and Saitoh (2003)

4.2 Efficiency with fixed problem size per processor

It is now well established that the parallelisation efficiency

is best measured by increasing the problem size as the

number of processors is increased (Gustafson, 1988, 1990).

Therefore, parallelisation performance is evaluated in this

section by keeping the problem size for each processor

fixed. To achieve this goal, the number of grid points

or cells in each processor is kept constant while number of

processors is increased. However, as the total number

of grid points or cells changes in this case, number of

iterations to converge will also change. Therefore, number

of iterations is also kept fixed so as to achieve the

above-mentioned objective.

Since problem size per processor is fixed, therefore

it is expected that the running time, in the absence

of communication cost, should remain constant irrespective

of the number of processors. In view of the above-

mentioned statement, speedup S for fixed problem size

is defined as,

s

p

pT
S

T
= (16)

and efficiency E is defined as

s

p

T
E

T
= (17)

where p is the number of processors, Ts is runtime when a

single processor is used and Tp is runtime when p number of

processors are used.

The speedups and efficiency for a 10 × 10 × 10 grid in

each processor are given in Table 2. The number of

iterations performed is 5000. The computations take into

account not only the effect of the number of processors but

also the effect of processor configurations as well.

Table 2 Speedup and efficiency with 10 × 10 × 10 grid for each

processor for fixed problem size per processor

Processor

configuration Time (s) Speedup Efficiency (%)

1 × 1 × 1 72.52 1 100

2 × 1 × 1 78.22 1.85 92.70

3 × 1 × 1 80.97 2.69 89.56

4 × 1 × 1 81.84 3.54 88.61

2 × 2 × 1 86.70 3.35 83.65

3 × 2 × 1 87.61 4.97 82.77

2 × 2 × 2 93.88 6.18 77.24

3 × 3 × 1 91.90 7.20 80.01

4 × 3 × 1 93.80 9.28 77.32

3 × 2 × 2 94.80 9.18 76.50

4 × 4 × 1 95.66 12.13 75.81

4 × 2 × 2 97.79 11.86 74.16

3 × 3 × 3 102.31 19.14 70.88

4 × 3 × 3 103.06 25.33 70.37

5 × 3 × 3 104.31 31.29 69.52

4 × 4 × 3 104.54 33.29 69.37

4 × 4 × 4 105.91 43.82 68.47

It is obvious that the efficiency of a given configuration

depends on the processor with maximum number of

neighbours. Moreover, if the highest number of neighbours

108 S. Singh and Rizwan-uddin

in different configurations is the same, efficiencies are

similar even if total number of processors is significantly

different. For example, efficiency for 3 × 3 × 3

configuration is almost the same as that for 4 × 4 × 4

configuration because processor with maximum number of

neighbours has six neighbours in both cases. The small

decrease in efficiency can be attributed to the fact that the

communication cost associated with the convergence check

depends only on the total number of processors and

not on the number of grid points. Since the maximum

number of neighbours will not exceed six, therefore, the

efficiency approaches a (nearly) constant value as the

number of processors is increased. In other words,

scalability of the scheme is quite good.

It can be seen that efficiency not only depends

on the number of processors but also on the configuration

of the processors, i.e., the efficiency for the same number

of processors is different for different processor

configurations. Such a trend is expected since blocking

communication MPI_SEND_RECV is used in the

implementation of the scheme. The blocking

communication makes all the processors to wait for the

exchange of one set of variables (initiated by the first

MPI_SEND_RECV) before initiating the communication

for the subsequent MPI_SEND_RECV. This can be further

explained by considering the case of 2 × 2 × 1 configuration

and comparing it with the case of 4 × 1 × 1.

In 2 × 2 × 1 configuration, each processor has to

communicate with two neighbouring processors in different

directions. Although some processors in 4 × 1 × 1

configuration do have to communicate with two processors,

the communication is only in the x-direction. Since

MPI_SEND_RECV simultaneously communicates all

information in one direction (say, x) and only then

starts communicating in the other directions, the result is

that the efficiency of 4 × 1 × 1 configuration is higher

among the two cases considered here. Moreover, 4 × 1 × 1

and 3 × 1 × 1 configuration efficiencies are not significantly

different. Figure 8 shows the speedup for the cases

in which at least one processor has six neighbours.

The efficiencies with different numbers of processors

for the 20 × 20 × 20 grid (for 5000 iterations) are

given in Table 3. The trends observed for the 20 × 20 × 20

grid case are similar to those for the 10 × 10 × 10 grid.

The ratio of cells at the interface to total number

of cells decreases as total number of grid points is

increased. Therefore, in general, efficiency of 20 × 20 × 20

case should be higher than 10 × 10 × 10 grid. However,

this is true only if communication cost of sending

data is independent of the size of the data. This assumption

is usually not valid because of limitations of the

bus size used for data exchange. For the 3D thermal cavity

problem solved using the PMNIM, however, the efficiency

of the 20 × 20 × 20 case for some configurations

is lower than the 10 × 10 × 10 grid case while it is higher

for other configurations. The result may be explained

by the fact that contiguity of data to be sent in different

directions is not the same. This result in higher

communication cost in the direction in which communicated

data is non-contiguous. Figure 9 shows the speedup

for the cases in which at least one processor has six

neighbours.

Figure 8 Speedup of PMNIM with 10 × 10 × 10 grid for fixed

problem size per processor. All cases shown here have

at least one processor with six neighbours. Efficiency

ranges from 68.47% to 70.88%

Figure 9 Speedup of PMNIM with 20 × 20 × 20 grid for fixed

problem size per processor. All cases shown here have

at least one processor with six neighbours. Efficiency

ranges from 75.58% to 78.02%

Table 3 Speedup and efficiency with 20 × 20 × 20 grid

for each processor for fixed problem size per

processor (continues on next page)

Processor

configuration Time (s) Speedup Efficiency (%)

1 × 1 × 1 2542.66 1 100

2 × 1 × 1 2846.66 1.79 89.32

3 × 1 × 1 2877.33 2.65 88.36

4 × 1 × 1 2899.66 3.50 87.68

2 × 2 × 1 2900.33 3.47 87.66

3 × 2 × 1 2900.66 5.26 87.65

2 × 2 × 2 3050.33 6.67 83.35

3 × 3 × 1 2967.01 7.71 85.69

4 × 3 × 1 2985.33 10.22 85.17

 Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes 109

Table 3 Speedup and efficiency with 20 × 20 × 20 grid

for each processor for fixed problem size per

processor (continued)

Processor

configuration Time (s) Speedup Efficiency (%)

3 × 2 × 2 3000.66 10.09 84.05

4 × 4 × 1 3025.00 13.55 84.73

4 × 2 × 2 3038.66 13.39 83.67

3 × 3 × 3 3291.05 20.86 77.26

4 × 3 × 3 3258.66 28.09 78.02

5 × 3 × 3 3364.03 34.01 75.58

4 × 4 × 3 3346.02 36.47 75.99

4 × 4 × 4 3300.05 49.31 76.05

4.3 Efficiency with variable problem size

per processor

In this subsection, whereas the problem size per processor

is varied, the overall problem size is kept fixed, i.e., the

total number of cells is kept constant. The problem

size per processor, therefore, decreases as number of

processors increases. The number of iterations remains

almost same irrespective of the number of processors

used. The definition of speedup, S, relevant for this

subsection, for a given number of processors, is as

follows:

.s

p

T
S

T
= (18)

The efficiency E is defined as:

.s

p

T
E

pT
= (19)

The performance is evaluated for two cases with

12 × 12 × 12 and 20 × 20 × 20 grid. Speedup and efficiency

for PMNIM with 12 × 12 × 12 grid are presented

in Table 4. Figure 10 shows the plot for the speedup for

12 × 12 × 12 grid case. It can be seen that as the number

of processors is increased the speedup and efficiency

decrease. This expected behaviour is observed because,

for a given grid, the communication cost goes up

with the number of processors while computation cost

remains unchanged. It can be seen from Table 4

that the drop in efficiency is rapid for relatively higher

number of processors. This rapid drop is because

that a small number of cells are being distributed over a

large number of processors resulting in large number of

cells at interfaces, which need communication of

variables, thereby increasing the communication cost

relative to the computation cost. For example, with

24 processors number of cells in each processor is 72 while

number of cells at interfaces is 96, leading to reduced

efficiency.

Figure 10 Speedup of PMNIM with 12 × 12 × 12 grid for variable

problem size per processor

Table 4 Speedup and efficiency with 12 × 12 × 12 grid,

for variable problem size per processor

Processors Time (m) Speedup Efficiency (%)

24 2.77 6.42 26.8

16 2.90 6.13 38.3

12 2.92 6.09 50.7

8 3.43 5.17 64.6

6 3.65 4.87 81.2

4 4.78 3.71 92.8

2 9.03 1.97 98.6

1 17.78 1 100.0

Table 5 presents the speedup and efficiency of PMNIM with

20 × 20 × 20 grid. Figure 11 shows plot for the speedup for

20 × 20 × 20 grid case. The efficiency and speedup trends

for this case are very different from the 12 × 12 × 12 grid

case. The efficiency increases with increasing number

of processors initially and only then starts to decrease.

Moreover, efficiency is greater than 100%. Superlinear

efficiencies have been encountered in the past and

they are associated with memory/cache effects (Gustafson,

1990; Helmbold and McDowell, 1989; Parkinson, 1986).

Therefore, it is possible that for a relatively large problem,

the memory required exceeds the size of the faster memory

type (cache) if small number of processors is used. This

results in increase in efficiency with number of processors

because a larger fraction of the memory need is satisfied by

the faster memory type as the number of processors is

increased (Gustafson, 1990; Helmbold and McDowell,

1989; Parkinson, 1986). The efficiency starts decreasing

only when the communication cost starts dominating over

the memory effect. CPU times for different numbers of

processors in Table 5 suggest that a qualitatively different

kind of change takes place as the number of processors is

changed from 6 to 8, suggesting that for given capabilities

of the processors used and the problem size (20 × 20 × 20),

minimum of 8 processors are needed to satisfy the memory

requirement entirely by the faster memory.

110 S. Singh and Rizwan-uddin

Figure 11 Speedup of PMNIM with 20 × 20 × 20 grid for variable

problem size per processor

Table 5 Speedup and efficiency with 20 × 20 × 20 grid,

for variable problem size per processor

Processors Time (m) Speedup Efficiency (%)

32 14.6 59.7 186

27 16.3 53.4 197

24 16.8 51.9 216

16 21.5 40.5 253

8 34.5 25.3 316

6 52.4 16.6 276

4 80.4 10.8 270

2 304.2 2.86 143

1 871.3 1 100

In such cases, an alternate definition of speedup and

efficiency may be based on the CPU time corresponding

to the minimum number of processors, m, that allow the

problem to fit in cache as the normalising factor. Hence,

speedup, S, and efficiency, E, may be defined as

; form

p

T
S p m

T
= ≥ (20)

; form

p

mT
E p m

pT
= ≥ (21)

where Tm is time corresponding to m processors. For data

given in Table 5 (for 20 × 20 × 20 grid case), this re-

normalised speedup is plotted in Figure 12. Extracting the

cache effect from the definition of speedup clearly leads to

speedups that are sublinear. [Here, it should be noted

that for same number of grid points or cells, memory

requirements for MNIM are much higher than many other

numerical schemes. Memory requirements for MNIM even

for smaller number of cells needed to achieve accuracy

comparable with that obtained with much finer grids with

other conventional schemes is more likely to be relatively

higher. This is because four variables (which are generated

during TIP described in Section 2) are computed for each

velocity component per cell instead of one in most other

schemes. Similarly, number of variables for pressure and

temperature is also higher. Moreover, coefficients that

appear in the discrete equations are stored to avoid repeated

evaluation. Therefore, the memory effects on the efficiency

are significant for PMNIM even for comparatively small

number of cells in the problem.

Figure 12 Speedup of PMNIM with 20 × 20 × 20 grid for variable

problem size per processor. Here all CPU times

are normalised using the CPU time for eight processor

case

5 Conclusions

Parallel version of MNIM (PMNIM) has been developed

and tested. The domain decomposition paradigm used for

implementation of PMNIM, though commonly used for

grid-based (e.g., finite volume) methods, requires a unique

approach because of different and more complex template in

the MNIM when compared with most other commonly used

schemes. The speedup and efficiency of PMNIM has been

studied with its application to the problem of natural

convection in a cubic cavity.

For a fixed problem size, the efficiency primarily

depends on the communication cost of the processor with

largest number of processors and to a much smaller extent

on the total number of processors. The efficiency is nearly

the same for the cases where at least one processor has

six neighbours, irrespective of the total number of

processors used, showing that the PMNIM is scalable.

Moreover, considering that relatively small number of grid

points have been used for performance evaluation, the

scheme shows the potential to be quite efficient as well.

For a variable size problem, the efficiency of PMNIM

decreases with increasing number of processors for small

number of grid points. This behaviour is expected and

commonly observed in parallel applications because

communication cost relative to computation cost increases

with increasing number of processors. However, for

relatively large number of grid points superlinear speedups

are possible for PMNIM. Superlinear speedups result

because of the large memory requirements of the MNIM

that result in significant memory effects even for relatively

small number of cells.

 Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes 111

Acknowledgements

This research was supported in part by an INIE grant

from the US Department of Energy. The authors also

acknowledge use of the Turing cluster, which is operated by

the Computational Science and Engineering Programme at

the University of Illinois.

References

Azmy, Y.Y. (1985) Nodal Method for Problems in Fluid

Mechanics and Neutron Transport, PhD Thesis, University of

Illinois, Urbana, Illinois.

Azmy, Y.Y. and Dorning, J.J. (1983) ‘A nodal integral approach

to the numerical solution of partial differential equations’,

Proceedings of Advances in Reactor Computations,

Salt Lake City, UT, 28–30 March, Vol. II, pp.893–909.

Basu, A.J. (1994) ‘A parallel algorithm for spectral solution

of the three-dimensional Navier-Stokes equations’, Parallel

Comput., Vol. 20, No. 8, pp.1191–1204.

Chen, S. and Shan, X. (1992) ‘High-resolution turbulent

simulations using the connection machine-2’, Comput. Phys.,

Vol. 6, No. 6, pp.643–646.

Elnawawy, O.A., Valocchi, A.J. and Ougouag, A.M. (1990)

‘The cell analytical-numerical method for solution of the

advection-dispersion equation: two-dimensional problems’,

Water. Resour. Res., Vol. 26, No. 11, pp.2705–2716.

Esser, P.D. and Witt, R.J. (1993) ‘An upwind nodal integral

method for incompressible fluid flow’, Nucl. Sci. Engrg.,

Vol. 114, No. 1, pp.20–35.

Garg, R.P., Ferziger, J.H. and Monismith, S.G. (1997) ‘Hybrid

spectral finite difference simulations of stratified turbulent

flows on distributed memory architectures’, Int. J. Numer.

Meth. Fluids, Vol. 24, No. 11, pp.1129–1158.

Gropp, W., Skjellum, A. and Lusk, E. (1994) Using MPI: Portable

Parallel Programming with the Message-Passing Interface,

MIT Press, Cambridge, MA.

Gropp, W., Skjellum, A. and Thakur, R. (1999) Using MPI-2:

Advanced Features of the Message-Passing Interface,

MIT Press, Cambridge, MA.

Gu, Y. and Rizwan-uddin (2005) ‘A hybrid method for

multi-group neutron diffusion equations in arbitrary

geometry’, Proceedings of International Topical Meeting on

Mathematics and Computations, Supercomputing, Reactor

Physics and Nuclear and Biological Applications (M&C),

Avignon, France, 12–15 September, Available on CD-ROM.

Gustafson, J.L. (1988) ‘Reevaluating Amdahl’s law’, CACM,

Vol. 31, No. 5, pp.532–533.

Gustafson, J.L. (1990) ‘Fixed time, tiered memory, and superlinear

speedup’, Proceedings of Fifth Conference on Distributed

Memory Computing (DMCC5), Charleston, SC, USA,

9–12 April, pp.1255–1260.

Helmbold, D.P. and McDowell, C.E. (1989) ‘Modeling

Speedup(n) greater than n’, Proceedings of International

Conference on Parallel Processing, University Park, PA,

USA, 8–12 August, pp.219–225.

Hennart, J.P. (1986) ‘A general family of nodal schemes’,

SIAM J. Sci. Stat. Comp., Vol. 7, No. 1, pp.264–287.

Horak, W.C. and Dorning, J.J. (1985) ‘A nodal coarse-mesh

method for the efficient numerical solution of laminar flow

problems’, J. Comp. Physics, Vol. 59, No. 3, pp.405–440.

Jackson, E., She, Z.S. and Orszag, S.A. (1991) ‘A case study in

parallel computing: inhomogeneous turbulence on a

hypercube’, J. Sci. Comput., Vol. 6, No. 1, pp.27–45.

Johan, Z. and Hughes, T.J.R. (1992) ‘A data parallel finite element

method for computational fluid dynamics on the connection

machine system’, Comput. Meth. Appl. Mech. Eng., Vol. 99,

No. 1, pp.113–134.

Lawrence, R.D. (1986) ‘Progress in nodal methods for the

solutions of the neutron diffusion and transport equations’,

Progress in Nuclear Energy, Vol. 17, No. 3, pp.271–301.

Levit, C. and Jespersen, D. (1988) ‘Explicit and implicit

solution of the Navier–Stokes equations on a massively

parallel computer’, Comput. Struct., Vol. 30, Nos. 1–2,

pp.385–393.

Liu, C.H., Leung, D.Y.C. and Woo, C.M. (2003) ‘Development

of a scalable finite element solution to the Navier-Stokes

equations’, Computational Mechanics, Vol. 32, No. 3,

pp.185–198.

Michael, E.P.E., Dorning, J.J. and Rizwan-uddin (2001) ‘Studies

on nodal integral methods for the convection–diffusion heat

equation’, Nucl. Sci. Eng., Vol. 137, No. 3, pp.380–399.

Mittal, S. and Tezduyar, T.E. (1995) ‘Parallel finite element

simulation of 3D incompressible flows: Fluid-structure

interactions’, Int. J. Numer. Meth. Fluids, Vol. 21, No. 10,

pp.933–953.

Naik, H., Naik, V.K. and Nicoules, M. (1993) ‘Parallelization of a

class of implicit finite difference schemes in computational

fluid dynamics’, Int. J. High Speed Comp., Vol. 5, No. 1,

pp.1–50.

Nezami, E., Singh, S., Sobh, N. and Rizwan-uddin (2009)

‘A nodal integral method for quadrilateral elements’,

Int. J. Numer. Meth. Fluids, Vol. 61, No. 2, pp.144–164.

Parkinson, D. (1986) ‘Parallel efficiency can be greater than

unity’, Parallel Comput., Vol. 3, No. 3, pp.261–262.

Passoni, G., Cremonesi, P. and Alfonsi, G. (2001) ‘Analysis

and implementation of a parallelization strategy on a

Navier-Stokes solver for shear flow simulations’, Parallel

Comput., Vol. 27, No. 13, pp.1665–1685.

Pelz, R.B. (1991) ‘The parallel Fourier pseudo-spectral method’,

J. Comput. Phys., Vol. 92, No. 2, pp.296–312.

Peyret, R. (2002) Spectral Methods for Incompressible Viscous

Flows, Springer, New York.

Prestin, M. and Shtilman, L. (1995) ‘A parallel Navier–Stokes

solver: the Meiko implementation’ J. Supercomput., Vol. 9,

No. 4, pp.347–364.

Toreja, A.J. and Rizwan-uddin (2003a) ‘A hybrid nodal method

for time-dependent incompressible flow in two-dimensional

arbitrary geometries’, Proceedings of Nuclear Mathematical

and Computational Sciences: A Century in Review, A Century

Anew (M&C), 6–10 April, Gatlinburg, TN, USA, Available

on CD-ROM.

Toreja, A.J. and Rizwan-uddin (2003b) ‘Hybrid numerical

methods for convection–diffusion problems in arbitrary

geometries’, Computers and Fluids, Vol. 32, No. 6,

pp.835–872.

Wakashima, S. and Saitoh, T.S. (2003) ‘Benchmark solutions

for natural convection in a cubic cavity using the high order

time-space method’, Int. J. Heat Mass Transfer, Vol. 47,

No. 4, pp.853–864.

Wang, F. and Rizwan-uddin (2003) ‘A modified nodal scheme for

the time-dependent, incompressible Navier-Stokes equations’,

J. Comp. Physics, Vol. 187, No. 1, pp.168–196.

112 S. Singh and Rizwan-uddin

Wang, F. and Rizwan-uddin (2005) ‘Modified nodal

integral method for the three-dimensional time-dependent

incompressible Navier-Stokes equations’, Nucl. Sci. Engrg.,

Vol. 149, No. 1, pp.107–114.

Wasfy, T., West, A.C. and Modi, V. (1998) ‘Parallel finite

element computation of unsteady incompressible flows’,

Int. J. Numer. Meth. Fluids, Vol. 26, No. 1, pp.17–37.

Wescott, B. and Rizwan-uddin (2001) ‘An efficient formulation

of the modified nodal integral method and application

to the two dimensional Burgers equation’, Nucl. Sci. Engrg.,

Vol. 139, No. 1, pp.293–305.

Wilson, G.L., Rydin, R.A. and Azmy, Y.Y. (1988)

‘Time-dependent nodal integral method for the investigation

of bifurcation and nonlinear phenomena in fluid flow and

natural convection’, Nucl. Sci. Engrg., Vol. 100, No. 4,

pp.414–425.

Wu, J., Ritzdorf, H., Oosterlee, K., Steckel, B. and Schüller, A.

(1997) ‘Adaptive parallel multigrid solution of 2D

incompressible Navier–Stokes equations’, Int. J. Numer.

Meth. Fluids, Vol. 24, No. 9, pp.875–892.

Young, D. (1971) Iterative Solutions of Large Linear Systems,

Academic Press, New York.

