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Abstract: A Modified Nodal Integral Method (MNIM) for three-dimensional, incompressible 

Navier-Stokes (N-S) equations has recently been developed. MNIM requires relatively less 

number of grid points for the desired accuracy. The Parallel MNIM (PMNIM) is developed in 

order to further enhance its capabilities. Since template of the nodal integral method is quite 

different from those that result from finite volume schemes, parallelisation of a nodal code  

has unique challenges. The PMNIM is applied to a test problem to evaluate its performance.  

It is observed that significant memory effects in the computations with variable problem size 

result in efficiencies greater than one. 
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1 Introduction 

Nodal methods, developed for multi-group neutron 

diffusion and neutron transport equations, now constitute 

the backbone of production codes used in the nuclear 

industry. An early review of nodal methods, developed and 

used by the nuclear industry, is given by Lawrence (1986). 

Nodal schemes are developed by approximately satisfying 

the governing differential equations on finite size brick-like 

elements that are obtained by discretising the space of 

independent variables. 

Similar approaches have been used in other branches of 

science and engineering to develop efficient numerical 

schemes (Elnawawy et al., 1990; Horak and Dorning, 1985; 

Wescott and Rizwan-uddin, 2001). Nodal methods, as  

a general class of computational schemes, are discussed by  

Hennart (1986). NIMs, a subclass of nodal methods,  

have been developed for the steady-state (Azmy and 

Dorning, 1983) and time-dependent (Wilson et al., 1988) 

N–S equations. NIM was applied to the steady-state 

Boussinesq equations for natural convection, and to several  
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steady-state incompressible flow problems (Azmy, 1985). 

Esser and Witt (1993) developed a nodal scheme for the  

two-dimensional, vorticity-stream function formulation  

of the N–S equations. This development – that leads to 

inherent upwinding in the numerical scheme – however 

cannot be easily extended to three dimensions. NIM was 

also developed and applied to the time-dependent heat 

conduction problem (Wilson et al., 1988). Michael et al. 

(2001) developed a second- and a third-order NIM for the 

convection–diffusion equation. 

Though highly innovative, those early applications of 

nodal methods for the N–S equations did not take full 

advantage of the potential that the nodal approach  

offers. An improved method has recently been developed  

to solve the incompressible N–S equations. This MNIM  

was first developed for 2D time-dependent problems  

(Wang and Rizwan-uddin, 2003), and then extended  

for 3D time-dependent flows as well (Wang and  

Rizwan-uddin, 2005). However, since NIMs rely  

on the transverse-integration (TIP) procedure, they are 

therefore restricted to physical domains with boundaries 

parallel to one of the axes, i.e., to geometries that  

can be filled with brick-like cells. Recently, methods have 

been developed for fluid flow (Toreja and Rizwan-uddin, 

2003a, 2003b) as well as for neutron diffusion equations 

(Gu and Rizwan-uddin, 2005), combining NIM  

with other numerical methods (for example finite element 

method and finite analytic method) to overcome this 

restriction. Another approach is used to transform 

quadrilateral cells to square cells (Nezami et al., 2009). 

Owing to several advantages discussed earlier, it is natural 

to use MNIM to simulate turbulent flows. However, to do 

that, it is necessary to first develop a PMNIM for simulation 

of turbulent flows, which are highly computationally 

intensive. 

Various parallelisation strategies have been developed 

for unstructured and structured grids for different numerical 

methods. Pseudo-spectral methods (Peyret, 2002) because  

of their high numerical accuracy are particularly suitable  

for direct numerical simulations, although for limited 

geometrical configurations. Several computational strategies 

have been developed for parallelisation of pseudo-spectral 

methods. These have been implemented on several different 

machines. For example, Pelz (1991) implemented parallel 

spectral methods for the N–S equations on a 1024-node 

hypercube computer. Jackson et al. (1991) and Chen and 

Shan (1992) implemented it on an Intel iPSC/860 hypercube 

machine and CM-2 machine, respectively. Basu (1994) 

implemented a pseudo-spectral scheme on a three-processor 

multicomputer. Numerous parallel implementations  

of other numerical schemes – finite difference, finite 

element, control volume – have also been reported.  

Levit and Jespersen (1988) used finite-difference-based 

parallel solvers for their flow simulations. Naik et al. (1993) 

also developed parallel finite difference fluid solvers.  

Mixed spectral and finite difference schemes were 

implemented by Prestin and Shtilman (1995) and also by 

Garg et al. (1997) on parallel computers. Wu et al. (1997) 

presented an adaptive parallel multigrid method for the 

incompressible N–S equations. Passoni et al. (2001) 

developed a parallelisation strategy for shear flow 

simulations. Finite-element-based parallel solver for fluid 

flow was implemented by Johan and Hughes (1992).  

Wasfy et al. (1998) developed a parallel finite element 

scheme for incompressible N–S equation. Compressible  

flow simulations were carried out by Mittal and Tezduyar 

(1995) using parallel finite element method. Recently,  

Liu et al. (2003) developed a parallel Galerkin FEM for 

flow simulations. 

Here, we report the development and implementation  

of a parallel MNIM for the N–S equations using the  

domain decomposition paradigm for a structured grid.  

The dependencies of the variables in the subdomains, which 

result from the decomposition of the original computational 

domain, on the variables in the neighbouring subdomains 

have been identified and communication procedure is 

accordingly implemented. Message-Passing Interface (MPI) 

(Gropp et al., 1994, 1999), which is a library specification 

for message-passing, has been used for domain 

decomposition as well as for communications between 

processors. The parallel version of the MNIM developed 

here is tested by applying it to several test problems. 

Speedup and efficiency for different numbers of processors 

are presented for one test problem. 

2 Modified Nodal Integral Method 

A brief description of the NIM as applied to a generic 3D 

convection–diffusion equation is presented here. Focus  

here is to identify the unique set of discrete equations that 

result in a nodal scheme. Details are given by Wang and  

Rizwan-uddin (2003, 2005). 

The space time domain (X, Y, Z, T) is discretised in 

parallelepiped cells (i, j, k, n) of size (2ai × 2bj × 2ck × 2τn) 

with cell-centred local coordinates (x, y, z, t, –ai ≤ x ≤ ai,  

–bj ≤ y ≤ bj, –ck ≤ z ≤ ck, –τn ≤ t ≤ τn). The convection–

diffusion equation (for a physical quantity C) in a cell is 

written as follows: 
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where u, v and w are the velocity components in x, y and z 

directions, respectively. D is the diffusion coefficient and is 

constant in space and time; s(x, y, z, t) is a source term  

for C. 

The next step in the NIM is the TIP. The TIP  

involves local averaging of the PDE over the cell in all 

independent variables except one, which results in a 
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corresponding ODE. This process is repeated for all 

independent variables yielding three transverse-integrated 

ODEs in the space variables, and one ODE in time.  

For example, averaging over y, z and t, i.e., operating  

by 
1
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and the pseudo-source term ( )yztS x is defined as 
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To average the convection term, u(∂C/∂x), average  

of the product is approximated by the product of the 

averages, which is known to be a second-order 

approximation. Two ODEs for the variables ( )xytC z  and 

( ),zxtC y  similar to ODE in Equation (2), can be obtained by 

applying TIP in the other two directions. These  

variables have similar definitions to the variable ( )yztC x  

given in Equation (3). Moreover, an ODE (in time)  

for the variable ( )xyzC t  is obtained by averaging over x, y 

and z. 

The ODEs are solved after pseudo-source terms  

are expanded and truncated at a desired order. A set of 

discrete equations for surface-averaged variables  

is obtained in terms of truncated pseudo-source terms by 

imposing continuity of C and its corresponding flux  

(for second-order ODEs) at interfaces, for example,  

at the interface between cell (i, j, k, n) and (i + 1, j, k, n). 

Similar steps when applied to the ODE in time results  

in a scheme for marching in time. 

In the final step, the truncated pseudo-source  

terms are eliminated by imposing certain constraints.  

The constraint equations are obtained by satisfying  

the PDE over a cell in an average sense and imposing  

the condition that cell-averaged variables be unique, i.e., 

independent of the order of integration. 

 

 

 

 

Development of the MNIM for the momentum 

equations is similar to that for the convection–diffusion 

equation. Explicitly, the u-momentum equation in a cell is 

written as, 

2 2 2

2 2 2

( , , , ) ( , , , ) ( , , , )

( , , , )

( , , , ) ( , , , ) ( , , , )

( , , , )

p p

p

u

u x y z t u x y z t u x y z t
u v

t x y

u x y z t
w

z

u x y z t u x y z t u x y z t

x y z

s x y z t

ν

∂ ∂ ∂
+ +

∂ ∂ ∂

∂
+

∂

 ∂ ∂ ∂
= + + 

∂ ∂ ∂ 
+

 (5) 

where 

0 0

0

1
( , , , ) ( ) ( )

( ) .

u p p

p x

p u u
s x y z t u u v v

x x y

u
w w g

z

ρ

∂ ∂ ∂
= − + − + −

∂ ∂ ∂

∂
+ − +

∂

 

(6)

 

In the above-mentioned equation, u, v and w are the velocity 

components in the x, y and z directions, respectively. 

Variable p represents pressure and v is viscosity. Variable gx  

is the body force term in the equation. The variables 0 ,u  0v  

and 0w  are obtained by averaging velocity components at 

current time step. Similar variables at the previous time  

step are given as ,pu  ,pv  .pw  In addition to the momentum 

equation in the x-direction, the momentum equations  

in the other directions can be similarly written. Once the 

momentum equations are written in the form similar to  

the convection–diffusion equation (Eq. 2), the rest of the 

procedure to obtain the discrete equations can be similarly 

applied. The details are omitted here and can be found in the 

literature (Wang and Rizwan-uddin, 2003, 2005). 

In addition to the momentum equations, in the MNIM  

a pressure Poisson equation is solved in place of the 

continuity equation, which is given by 

2 2 2
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where sp(x, y, z, t) depends on velocities and body force 

terms. The procedure to develop the MNIM for the pressure 

Poisson equation is similar to that described for the 

convection–diffusion equation. 

The set of algebraic equations for pressure (3 equations) 

and u velocity (4 equations) is as follows (Wang and 

Rizwan-uddin, 2003, 2005) 
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where 
1, , , , , , ( )yzt yzt

i j k n i j k n ip p x a− ≡ = −  and 
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i j k n i j k n ip p x a≡ = +  

All other variables are similarly defined. The subscripts 

i, j, k and n in F coefficients and in f2 are omitted.  

The F coefficients are dependent on the dimensions  

(ai, bj and ck) of the cell. The f1 and f2 coefficients are 

obtained by averaging the source terms in a cell. The further  

details of these coefficients are not relevant for the 

parallelisation of the scheme and therefore omitted  

here. These details can be found in the previously  

published literature (Wang and Rizwan-uddin, 2003, 2005). 

The equations for v and w-velocities are similar. The 

algebraic equations for temperature equation will also be 

similar in structure to the velocity equations. It should  

be noted that, in the 3D MNIM, four algebraic equations 

need to be solved for each velocity component (or 

temperature), as there are four variables corresponding  

to each velocity component ( yztu , zxtu , xytu , xyzu ). Similarly, 

there are three discrete variables for the pressure 

( yztp , zxtp , xytp ). 

The template of a generic variable c is shown  

in Figure 1. In the figure, the yzt-averaged variable  

( yztc ) is shown on the surface (parallel to the y–z plane) 

over which c(x, y, z, t) is averaged. The location  

of the surface-averaged variables zxtc  and xytc   

may be similarly assigned. However, the variable xyzc   

(both at current and at previous time steps) is c averaged 

over the volume of the cell and therefore is shown at the cell 

centre. 

Figure 1 Location of surface-averaged variables corresponding 

to a generic variable c. The shaded cell in the figure is 

cell (i, j, k). Only x–y plane cutting through the vertical 

(z-direction) centre of the cells has been shown for the 

sake of clarity. Variables , , 1,

xyt

i j k nc −  and , , ,

xyt

i j k nc  (not 

shown here) are located at the bottom and top surfaces 

of the node (i, j, k), respectively (see online version  

for colours) 

 

3 Parallelisation of MNIM 

3.1 Domain decomposition 

Domain decomposition paradigm is a natural way of 

parallelisation for a system where computation of a variable 

in a cell depends on the variables in neighbouring cells. 

Since aforementioned system of discrete equations when 

solved with iterative schemes (e.g., Gauss-Seidel, SOR)  

(for details of iterative schemes see Young, 1971) is such a 

system, the domain decomposition is used for parallelisation 

of MNIM. 

The computational domain is divided into several 

subdomains (one for each processor). Each processor  

stores and computes variables in its subdomain, exchanging 

information with neighbouring processors when necessary. 

3.2 Message-Passing Interface 

The MPI (Gropp et al., 1994, 1999) is used for 

parallelisation of MNIM. MPI is a library specification for 

message-passing, proposed as a standard by a broadly  

based committee of vendors, implementers and users. 

Various procedures of MPI used in parallelisation of MNIM 

and their use in the implementation of the scheme are 

briefly discussed here: 

MPI_DIMS_CREATE: This procedure creates division  

of processors in a Cartesian grid depending on the  

number of dimensions given in the input. For example,  

in three-dimensional topology, if 8 processors are assigned 

this procedure allocates two processors to each of the three 

directions. In case of 12 processors, the arrangement  

is 4 × 3 × 1. 
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MPI_CART_CREATE: This procedure creates a new 

communicator with Cartesian topology based on the output 

of MPI_DIMS_CREATE. Each processor is assigned  

a coordinate according to its position in a virtual  

three-dimensional array of the processors. 

MPI_CART_SHIFT: The procedure is used to identify 

immediate neighbouring processors in all the directions.  

The procedure needs to be called once for each direction  

to assign neighbours in that direction. For periodic topology, 

the procedure identifies the neighbours suitably. The input 

argument of this procedure contains a logical array variable 

of size three to identify the directions in which the topology 

is periodic. 

MPI_BCAST: The input data is read by one of the 

processors and broadcasted to all the processors using this 

procedure. Before broadcasting, the input data is stored in 

two arrays, one for integer variables and for double 

precision variables. Only two calls of the procedure,  

one for each array, are then required to broadcast the data. 

Two arrays are required, as two different datatypes cannot 

be communicated simultaneously. The values of various 

parameters are then assigned from those processors in  

each array. 

It is pointed out here that one array can also be  

used to broadcast the input variables by using a derived 

datatype, which consists of both datatypes. However,  

the broadcast is required only once and hence it is  

obviously not very useful to define a new datatype for the 

purpose. 

Once the total number of cells is known to a processor, 

the starting and end cell numbers in each direction in that 

processor is evaluated depending on its position in the  

three-dimensional array assigned by MPI_CART_ 

CREATE. This is done so as to keep the computational load 

evenly balanced among the processors. 

MPI_SEND_RECV: During the iterative process, the 

required communications, as discussed in the previous 

section, are carried out using this procedure. 

MPI_ALL_REDUCE: Each processor checks convergence 

after each Gauss-Seidel iteration only locally. Global 

convergence is checked by using this procedure. 

3.3 Communication between processors 

The discrete variables that must be communicated to 

neighbouring processors depend on the ‘template’ in the set 

of algebraic equations. The variables thus communicated are 

stored in the ghost surfaces or cells in the receiving 

processor. Figure 2 shows two neighbouring subdomains in 

the x-direction. The figure is in the x–y plane showing only 

one layer of cells. All layers of cells in the z-direction will 

follow the same communication procedure. 

From Equations (11) and (14), it can be seen that the 

variable yztu  for the cells at the interface of two processors 

(corresponding to two subdomains) next to each other  

in the x-direction needs to be exchanged between them.  

In Figure 3, the surfaces shown in the red colour (solid line) 

on the left processor are the ghost surfaces, which receive 
yztu  variable computed at the red surfaces in the right 

processor. This communication is shown by the red  

(solid line) arrow. The green colour surfaces and green 

(dashed line) arrow represent similar communication in the 

opposite direction. Similar communications are required for 

the variables zxtu  and xytu between the processors next to 

each other in the y- and z-directions, respectively. 

Figure 2 Decomposition of computational domain  

into eight subdomains 

 

Figure 3 Communications required for the velocity equations  

in the x-direction (see online version for colours) 

 

In addition, xyzu  from the cells at the interface is 

communicated from each processor to its neighbouring 

processor in the negative x-direction. Since xyzu  are  

node-averaged velocities, ghost cells (shaded cells in  

Fig. 3) are created to store the variable. The blue dots  

and blue (dotted line) arrow in the figure represent the 

above-mentioned communication. Similar communications 

are required in the y- and z-directions as well. The 

communications for corresponding variables in v, w and 

temperature equations are similar to those for the u 

equation. 

Figure 4, which is similar to Figure 3, shows the 

communications of pressure variables between 

neighbouring processors in the x-direction. For pressure 

field, from Equation (8), it can be seen that yztp  needs to be 

exchanged between the neighbouring processors in the  

x-direction. This communication is shown by red (solid line) 

and green (dashed line) colour arrows in Figure 4. Similar 

communications of corresponding variables are also needed 

in the y- and z-directions. 

Also, ,xytp  zxtp  and f1 from the cells adjacent to the 

interface are communicated from each processor to its 

neighbouring processor in the negative x-direction.  

The communications for zxtp and f1 are shown in brown 

(dash-dot line) and blue (dotted line) colours, respectively. 

The communication for xytp  is not shown in the figure for 

sake of clarity. Similar communications are also required in 

the y- and z-directions. All these communications are ideally 

needed at each iteration. 



 Parallel Modified Nodal Integral Method for three-dimensional incompressible Navier-Stokes 105 

Figure 4 Communications required for the pressure equations  

in the x-direction (see online version for colours) 

 

Special care is needed for communication of pressure 

variables in the corner cells. Figure 5 shows the 

communication of zxtp  variable in the corner cell from 

where it is communicated to its destination. The  

above-mentioned variable is communicated to the neighbour 

in the diagonal direction. This process is carried out in two 

steps. First, the variable moves to the neighbour in the 

positive y-direction. From the receiving processor,  

this variable is moved to its neighbour to the left. Therefore, 

it is important to note that the communication shown by  

the red arrow (solid line) in the figure must precede  

the communication shown by the green arrow (dashed line). 

Otherwise, upper left processor in Figure 5 will not  

have the correct value. Similar care in the order  

of communications is also required for xytp and yztp  

variables in the corner cells. 

Figure 5 Order of communication for the pressure variables  

in corner cell surfaces. Communication shown by solid 

arrow must precede that shown by dashed arrow  

(see online version for colours) 

 

The coefficients in Equations (11)–(14) depend, in addition 

to the cell dimensions, on the previous time step velocities 

from that cell and the neighbouring cells. Therefore, ,pu  pv   

and pw  are also sent to neighbouring cells in the negative  

x-, y- and z-directions, respectively, but only once at each 

time step. 

3.4 Communication cost relative to computational 

cost 

The efficiency of parallel computation depends on efforts 

spent on communication between the processors relative to 

computations carried out in each processor. The efficiency 

is higher if the cost of the communication is less. 

For a Gauss-Seidel solver, the computational cost per 

cell for MNIM is approximately four times that for finite 

volume method because there are four surface-averaged 

variables for each velocity component (The advantage of the 

MNIM results from the fact that number of grid points,  

or cells, required is significantly less than that required  

for finite volume method for the same level of accuracy 

(Wang and Rizwan-uddin, 2003)). However, there are only 

two variables corresponding to each velocity component, 

which need to be communicated between the processors. 

Therefore, in MNIM, only half of the variables that are 

computed need to be communicated as opposed to all the 

variables in the case of finite volume method. Hence, it can 

be a priori concluded that parallelisation of MNIM is more 

likely to be more efficient than that for finite volume 

method. However, pressure equations need communications 

of four variables ( ,yztp  ,zxtp  xytp  and f1) in each direction 

leading to no advantage over finite difference or finite 

volume parallelisation schemes. Since there are three 

velocity components and obviously only one pressure, 

overall parallelisation efficiency of PMNIM is expected to 

be higher than that for finite difference or control volume 

schemes. 

In the above-mentioned discussion, the communication 

cost of previous time step velocities has been ignored,  

as they are sent only once for each time step. This cost  

is assumed to be negligible compared with the 

communication cost of variables that must be transmitted  

at each iteration. 

4 Numerical results 

4.1 Comparison with Benchmark solution 

The PMNIM is used to simulate natural convection in a 

three-dimensional cubic cavity of unit dimensions. The 

schematic diagram of the problem is shown in Figure 6.  

The fluid in the cavity is air (Prandtl number 0.71), and 

Rayleigh number is 104. Gravity is in the z-direction.  

All surrounding walls are rigid and impermeable. The wall 

at x = 0 and x = 1 are isothermal but at different 

temperatures of Th and Tc, respectively. The remaining  

four walls are adiabatic. The flow is assumed to be 

incompressible and laminar. The Boussinesq approximation 

has been assumed to be valid. The equations are solved in 

the primitive variables. Simulations are carried out on  

the Turing cluster, which consists of 640 Apple Xserves, 

each with two 2 GHz G5 processors. The primary network 

connecting the cluster machines is a high-bandwidth,  

low-latency Myrinet network. 

Figure 7 shows the velocity and temperature profiles at 

y = 0.5 plane for the test problem. The u and w velocity  

contours (a, b) and isotherms (c) are shown in the figure. 

The following quantities obtained using the PMNIM are 

compared in Table 1 with those reported for the benchmark 

solution given by Wakashima and Saitoh (2003). 
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umax(z): maximum centre line (x = 0.5, y = 0.5) u-velocity 

(and its location). 

wmax (x): maximum centre line (y = 0.5, z = 0.5) w-velocity 

(and its location). 

Nuwall: Average Nusselt number over the hot (or cold) wall. 

Nucentre: Average Nusselt number over the centre plane 

(x = 0.5). 

The average Nusselt number Nu over a plane parallel to the 

y–z plane is computed as follows: 

1 1

0 0
d d .

T
Nu uT y z

x

∂ 
= − 

∂ ∫ ∫  (15) 

The numerical results are reliable, i.e., results obtained 

using the parallel code with different numbers of processors 

are the same as those obtained using the serial code. 

Moreover, as can be seen from Table 1, results  

obtained with 20 × 20 × 20 uniform grid compare well  

with the benchmark solution (Wakasimha and Saitoh, 

2003). It should be noted that the benchmark solution  

is obtained on a uniformly distributed 80 × 80 × 80  

grid using a fourth-order space time finite-difference 

method. 

Figure 6 Schematic of the test problem 

 

Figure 7(a) Comparison of u-velocity contours at y = 0.5 plane obtained with PMNIM (on left) with benchmark solution by Wakashima 

and Saitoh (2003) (on right) (see online version for colours) 

 

Figure 7(b) Comparison of w-velocity contours at y = 0.5 plane obtained with PMNIM (on left) with benchmark solution by Wakashima 

and Saitoh (2003) (on right) (see online version for colours) 
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Figure 7(c) Comparison of temperature contours at y = 0.5 plane obtained with PMNIM (on left) with benchmark solution by Wakashima 

and Saitoh (2003) (on right) (see online version for colours) 

 

 
Table 1 Comparison of some of the results obtained using the 

PMNIM with the benchmark solution 

 PMNIM Benchmark 

umax (z) 0.1995 (0.826) 0.1984 (0.825) 

wmax (x) 0.2217 (0.117) 0.2216 (0.117) 

Nuwall 2.0621 2.0634 

Nucentre 2.0751 2.0636 

Source: Wakashima and Saitoh (2003) 

4.2 Efficiency with fixed problem size per processor 

It is now well established that the parallelisation efficiency 

is best measured by increasing the problem size as the 

number of processors is increased (Gustafson, 1988, 1990). 

Therefore, parallelisation performance is evaluated in this 

section by keeping the problem size for each processor 

fixed. To achieve this goal, the number of grid points  

or cells in each processor is kept constant while number of 

processors is increased. However, as the total number  

of grid points or cells changes in this case, number of 

iterations to converge will also change. Therefore, number 

of iterations is also kept fixed so as to achieve the  

above-mentioned objective. 

Since problem size per processor is fixed, therefore  

it is expected that the running time, in the absence  

of communication cost, should remain constant irrespective 

of the number of processors. In view of the above-

mentioned statement, speedup S for fixed problem size  

is defined as, 

s

p

pT
S

T
=  (16) 

and efficiency E is defined as 

s

p

T
E

T
=  (17) 

where p is the number of processors, Ts is runtime when a 

single processor is used and Tp is runtime when p number of 

processors are used. 

The speedups and efficiency for a 10 × 10 × 10 grid in 

each processor are given in Table 2. The number of 

iterations performed is 5000. The computations take into 

account not only the effect of the number of processors but 

also the effect of processor configurations as well. 

Table 2 Speedup and efficiency with 10 × 10 × 10 grid for each 

processor for fixed problem size per processor 

Processor 

configuration Time (s) Speedup Efficiency (%) 

1 × 1 × 1 72.52 1 100 

2 × 1 × 1 78.22 1.85 92.70 

3 × 1 × 1 80.97 2.69 89.56 

4 × 1 × 1 81.84 3.54 88.61 

2 × 2 × 1 86.70 3.35 83.65 

3 × 2 × 1 87.61 4.97 82.77 

2 × 2 × 2 93.88 6.18 77.24 

3 × 3 × 1 91.90 7.20 80.01 

4 × 3 × 1 93.80 9.28 77.32 

3 × 2 × 2 94.80 9.18 76.50 

4 × 4 × 1 95.66 12.13 75.81 

4 × 2 × 2 97.79 11.86 74.16 

3 × 3 × 3 102.31 19.14 70.88 

4 × 3 × 3 103.06 25.33 70.37 

5 × 3 × 3 104.31 31.29 69.52 

4 × 4 × 3 104.54 33.29 69.37 

4 × 4 × 4 105.91 43.82 68.47 

It is obvious that the efficiency of a given configuration 

depends on the processor with maximum number of 

neighbours. Moreover, if the highest number of neighbours  
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in different configurations is the same, efficiencies are 

similar even if total number of processors is significantly 

different. For example, efficiency for 3 × 3 × 3 

configuration is almost the same as that for 4 × 4 × 4 

configuration because processor with maximum number of 

neighbours has six neighbours in both cases. The small 

decrease in efficiency can be attributed to the fact that the 

communication cost associated with the convergence check 

depends only on the total number of processors and  

not on the number of grid points. Since the maximum 

number of neighbours will not exceed six, therefore, the 

efficiency approaches a (nearly) constant value as the 

number of processors is increased. In other words, 

scalability of the scheme is quite good. 

It can be seen that efficiency not only depends  

on the number of processors but also on the configuration  

of the processors, i.e., the efficiency for the same number  

of processors is different for different processor 

configurations. Such a trend is expected since blocking 

communication MPI_SEND_RECV is used in the 

implementation of the scheme. The blocking 

communication makes all the processors to wait for the 

exchange of one set of variables (initiated by the first 

MPI_SEND_RECV) before initiating the communication 

for the subsequent MPI_SEND_RECV. This can be further 

explained by considering the case of 2 × 2 × 1 configuration 

and comparing it with the case of 4 × 1 × 1.  

In 2 × 2 × 1 configuration, each processor has to 

communicate with two neighbouring processors in different 

directions. Although some processors in 4 × 1 × 1 

configuration do have to communicate with two processors, 

the communication is only in the x-direction. Since 

MPI_SEND_RECV simultaneously communicates all 

information in one direction (say, x) and only then  

starts communicating in the other directions, the result is 

that the efficiency of 4 × 1 × 1 configuration is higher 

among the two cases considered here. Moreover, 4 × 1 × 1 

and 3 × 1 × 1 configuration efficiencies are not significantly 

different. Figure 8 shows the speedup for the cases  

in which at least one processor has six neighbours. 

The efficiencies with different numbers of processors  

for the 20 × 20 × 20 grid (for 5000 iterations) are  

given in Table 3. The trends observed for the 20 × 20 × 20 

grid case are similar to those for the 10 × 10 × 10 grid.  

The ratio of cells at the interface to total number  

of cells decreases as total number of grid points is  

increased. Therefore, in general, efficiency of 20 × 20 × 20 

case should be higher than 10 × 10 × 10 grid. However,  

this is true only if communication cost of sending  

data is independent of the size of the data. This assumption 

is usually not valid because of limitations of the  

bus size used for data exchange. For the 3D thermal cavity 

problem solved using the PMNIM, however, the efficiency 

of the 20 × 20 × 20 case for some configurations  

is lower than the 10 × 10 × 10 grid case while it is higher  

for other configurations. The result may be explained  

by the fact that contiguity of data to be sent in different 

directions is not the same. This result in higher 

communication cost in the direction in which communicated 

data is non-contiguous. Figure 9 shows the speedup  

for the cases in which at least one processor has six 

neighbours. 

Figure 8 Speedup of PMNIM with 10 × 10 × 10 grid for fixed 

problem size per processor. All cases shown here have 

at least one processor with six neighbours. Efficiency 

ranges from 68.47% to 70.88% 

 

Figure 9 Speedup of PMNIM with 20 × 20 × 20 grid for fixed 

problem size per processor. All cases shown here have 

at least one processor with six neighbours. Efficiency 

ranges from 75.58% to 78.02% 

 

Table 3 Speedup and efficiency with 20 × 20 × 20 grid  

for each processor for fixed problem size per 

processor (continues on next page) 

Processor 

configuration Time (s) Speedup Efficiency (%)

1 × 1 × 1 2542.66 1 100 

2 × 1 × 1 2846.66 1.79 89.32 

3 × 1 × 1 2877.33 2.65 88.36 

4 × 1 × 1 2899.66 3.50 87.68 

2 × 2 × 1 2900.33 3.47 87.66 

3 × 2 × 1 2900.66 5.26 87.65 

2 × 2 × 2 3050.33 6.67 83.35 

3 × 3 × 1 2967.01 7.71 85.69 

4 × 3 × 1 2985.33 10.22 85.17 
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Table 3 Speedup and efficiency with 20 × 20 × 20 grid  

for each processor for fixed problem size per 

processor (continued) 

Processor 

configuration Time (s) Speedup Efficiency (%)

3 × 2 × 2 3000.66 10.09 84.05 

4 × 4 × 1 3025.00 13.55 84.73 

4 × 2 × 2 3038.66 13.39 83.67 

3 × 3 × 3 3291.05 20.86 77.26 

4 × 3 × 3 3258.66 28.09 78.02 

5 × 3 × 3 3364.03 34.01 75.58 

4 × 4 × 3 3346.02 36.47 75.99 

4 × 4 × 4 3300.05 49.31 76.05 

4.3 Efficiency with variable problem size  

per processor 

In this subsection, whereas the problem size per processor  

is varied, the overall problem size is kept fixed, i.e., the  

total number of cells is kept constant. The problem  

size per processor, therefore, decreases as number of 

processors increases. The number of iterations remains 

almost same irrespective of the number of processors  

used. The definition of speedup, S, relevant for this 

subsection, for a given number of processors, is as  

follows: 

.s

p

T
S

T
=  (18) 

The efficiency E is defined as: 

.s

p

T
E

pT
=  (19) 

The performance is evaluated for two cases with 

12 × 12 × 12 and 20 × 20 × 20 grid. Speedup and efficiency 

for PMNIM with 12 × 12 × 12 grid are presented  

in Table 4. Figure 10 shows the plot for the speedup for 

12 × 12 × 12 grid case. It can be seen that as the number  

of processors is increased the speedup and efficiency 

decrease. This expected behaviour is observed because,  

for a given grid, the communication cost goes up  

with the number of processors while computation cost 

remains unchanged. It can be seen from Table 4  

that the drop in efficiency is rapid for relatively higher 

number of processors. This rapid drop is because  

that a small number of cells are being distributed over a 

large number of processors resulting in large number of 

cells at interfaces, which need communication of  

variables, thereby increasing the communication cost 

relative to the computation cost. For example, with  

24 processors number of cells in each processor is 72 while 

number of cells at interfaces is 96, leading to reduced 

efficiency. 

 

Figure 10 Speedup of PMNIM with 12 × 12 × 12 grid for variable 

problem size per processor 

 

Table 4 Speedup and efficiency with 12 × 12 × 12 grid,  

for variable problem size per processor 

Processors Time (m) Speedup Efficiency (%) 

24 2.77 6.42 26.8 

16 2.90 6.13 38.3 

12 2.92 6.09 50.7 

8 3.43 5.17 64.6 

6 3.65 4.87 81.2 

4 4.78 3.71 92.8 

2 9.03 1.97 98.6 

1 17.78 1 100.0 

Table 5 presents the speedup and efficiency of PMNIM with 

20 × 20 × 20 grid. Figure 11 shows plot for the speedup for 

20 × 20 × 20 grid case. The efficiency and speedup trends 

for this case are very different from the 12 × 12 × 12 grid 

case. The efficiency increases with increasing number  

of processors initially and only then starts to decrease. 

Moreover, efficiency is greater than 100%. Superlinear 

efficiencies have been encountered in the past and  

they are associated with memory/cache effects (Gustafson, 

1990; Helmbold and McDowell, 1989; Parkinson, 1986). 

Therefore, it is possible that for a relatively large problem, 

the memory required exceeds the size of the faster memory 

type (cache) if small number of processors is used. This 

results in increase in efficiency with number of processors 

because a larger fraction of the memory need is satisfied by 

the faster memory type as the number of processors is 

increased (Gustafson, 1990; Helmbold and McDowell, 

1989; Parkinson, 1986). The efficiency starts decreasing 

only when the communication cost starts dominating over 

the memory effect. CPU times for different numbers of 

processors in Table 5 suggest that a qualitatively different 

kind of change takes place as the number of processors is 

changed from 6 to 8, suggesting that for given capabilities 

of the processors used and the problem size (20 × 20 × 20), 

minimum of 8 processors are needed to satisfy the memory 

requirement entirely by the faster memory. 
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Figure 11 Speedup of PMNIM with 20 × 20 × 20 grid for variable 

problem size per processor 

 

Table 5 Speedup and efficiency with 20 × 20 × 20 grid,  

for variable problem size per processor 

Processors Time (m) Speedup Efficiency (%) 

32 14.6 59.7 186 

27 16.3 53.4 197 

24 16.8 51.9 216 

16 21.5 40.5 253 

8 34.5 25.3 316 

6 52.4 16.6 276 

4 80.4 10.8 270 

2 304.2 2.86 143 

1 871.3 1 100 

In such cases, an alternate definition of speedup and 

efficiency may be based on the CPU time corresponding  

to the minimum number of processors, m, that allow the 

problem to fit in cache as the normalising factor. Hence, 

speedup, S, and efficiency, E, may be defined as 

; form

p

T
S p m

T
= ≥  (20) 

; form

p

mT
E p m

pT
= ≥  (21) 

where Tm is time corresponding to m processors. For data 

given in Table 5 (for 20 × 20 × 20 grid case), this re-

normalised speedup is plotted in Figure 12. Extracting the 

cache effect from the definition of speedup clearly leads to 

speedups that are sublinear. [Here, it should be noted  

that for same number of grid points or cells, memory 

requirements for MNIM are much higher than many other 

numerical schemes. Memory requirements for MNIM even 

for smaller number of cells needed to achieve accuracy 

comparable with that obtained with much finer grids with 

other conventional schemes is more likely to be relatively 

higher. This is because four variables (which are generated 

during TIP described in Section 2) are computed for each 

velocity component per cell instead of one in most other 

schemes. Similarly, number of variables for pressure and 

temperature is also higher. Moreover, coefficients that 

appear in the discrete equations are stored to avoid repeated 

evaluation. Therefore, the memory effects on the efficiency 

are significant for PMNIM even for comparatively small 

number of cells in the problem. 

Figure 12 Speedup of PMNIM with 20 × 20 × 20 grid for variable 

problem size per processor. Here all CPU times  

are normalised using the CPU time for eight processor 

case 

 

5 Conclusions 

Parallel version of MNIM (PMNIM) has been developed 

and tested. The domain decomposition paradigm used for 

implementation of PMNIM, though commonly used for 

grid-based (e.g., finite volume) methods, requires a unique 

approach because of different and more complex template in 

the MNIM when compared with most other commonly used 

schemes. The speedup and efficiency of PMNIM has been 

studied with its application to the problem of natural 

convection in a cubic cavity. 

For a fixed problem size, the efficiency primarily 

depends on the communication cost of the processor with 

largest number of processors and to a much smaller extent 

on the total number of processors. The efficiency is nearly 

the same for the cases where at least one processor has  

six neighbours, irrespective of the total number of 

processors used, showing that the PMNIM is scalable. 

Moreover, considering that relatively small number of grid 

points have been used for performance evaluation, the 

scheme shows the potential to be quite efficient as well.  

For a variable size problem, the efficiency of PMNIM 

decreases with increasing number of processors for small 

number of grid points. This behaviour is expected and 

commonly observed in parallel applications because 

communication cost relative to computation cost increases 

with increasing number of processors. However, for 

relatively large number of grid points superlinear speedups 

are possible for PMNIM. Superlinear speedups result 

because of the large memory requirements of the MNIM 

that result in significant memory effects even for relatively 

small number of cells. 
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