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Abstract—Spatial/spectral algorithms have been shown in pre-
vious work to be a promising approach to the problem of extract-
ing image endmembers from remotely sensed hyperspectral data.
Such algorithms map nicely on high-performance systems such as
massively parallel clusters and networks of computers. Unfortu-
nately, these systems are generally expensive and difficult to adapt
to onboard data processing scenarios, in which low-weight and
low-power integrated components are highly desirable to reduce
mission payload. An exciting new development in this context is
the emergence of graphics processing units (GPUs), which can
now satisfy extremely high computational requirements at low
cost. In this letter, we propose a GPU-based implementation of
the automated morphological endmember extraction algorithm,
which is used in this letter as a representative case study of joint
spatial/spectral techniques for hyperspectral image processing.
The proposed implementation is quantitatively assessed in terms
of both endmember extraction accuracy and parallel efficiency,
using two generations of commercial GPUs from NVidia. Com-
bined, these parts offer a thoughtful perspective on the potential
and emerging challenges of implementing hyperspectral imaging
algorithms on commodity graphics hardware.

Index Terms—Commodity graphics hardware, endmember
extraction, spatial/spectral analysis.

1. INTRODUCTION

NDMEMBER extraction is a fundamental and crucial task
in hyperspectral data exploitation. Over the last decade,
several algorithms have been developed for automatic extrac-
tion of image endmembers from hyperspectral data sets, includ-
ing the pixel purity index [1], N-FINDR [2], vertex component
analysis [3], or iterative error analysis (IEA) [4]. The previous
techniques treat the hyperspectral data not as an image but as
an unordered list of spectral measurements, where the spatial
coordinates can be randomly permuted without affecting the
endmember searching process. As an alternative to purely
spectral approaches, the automated morphological endmember
extraction (AMEE) algorithm [5] was developed with the pur-
pose of integrating both the spatial and spectral information
in the search for endmembers using mathematical morphology
concepts [6].
While integrated spatial/spectral developments hold great
promise for Earth science image analysis, they also intro-
duce new processing challenges, particularly for very high-
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dimensional data sets. From a computational standpoint, such
algorithms exhibit regular data access patterns and inherent
parallelism at multiple levels: across pixel vectors (coarse
grained pixel-level parallelism), across spectral information
(fine grained spectral-level parallelism), and even across tasks
(task-level parallelism). As a result, they map nicely to mas-
sively parallel systems made up of commodity CPUs (e.g.,
Beowulf clusters). Unfortunately, these systems are generally
expensive and difficult to adapt to onboard remote sensing data
processing scenarios.

An exciting new development in the field of commodity com-
puting is the emergence of programmable graphics processing
units (GPUs). Driven by the increasing demands of the video-
game industry, GPUs have evolved from expensive application-
specific units into highly parallel and programmable systems.
Although the GPU architecture is not necessarily suitable for all
kinds of parallel computations, the range of candidate applica-
tions is growing far beyond the domain of graphic rendering [7],
[8]. Specifically, the ever-growing computational requirements
introduced by state-of-the-art hyperspectral imaging algorithms
can fully benefit from this hardware and take advantage of the
compact size and relatively low cost of these units, which make
them appealing for onboard data processing at much lower
costs than those introduced by other hardware devices such
as field-programmable gate arrays (FPGAs).

In this letter, we describe a GPU-based implementation of
the AMEE algorithm, which is used as a representative case
study of spatial/spectral developments for hyperspectral analy-
sis. This letter is organized as follows. Section II illustrates how
GPUs can be used for nongraphics computations. Section III
describes the proposed implementation. Section IV evaluates
the proposed GPU-based implementation from the viewpoint
of both endmember extraction accuracy (compared to other
standard approaches) and parallel performance. Section V con-
cludes with some remarks.

II. GPU COMPUTING MODEL

Modern GPUs such as the latest NVidia GeForce or ATI
Radeon cards implement a generalization of the traditional
rendering pipeline for 3-D computer graphics [7]. The inputs
to this pipeline are vertices from a 3-D polygonal mesh and a
“virtual camera” viewpoint, and the output is a 2-D array of
pixels to be displayed on the screen. As shown by Fig. 1, the
pipeline consists of several stages, but the bulk of the work is
performed by three of them: vertex processing, rasterization,
and fragment processing.

The vertex processing stage transforms the 3-D coordinates
of each vertex of the input mesh into a 2-D screen position and
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Fig. 1.

Overview of the programmable graphics pipeline.

applies lighting to determine their colors. Once transformed,
vertices are grouped into rendering primitives such as triangles
and scan converted by the rasterizer into a stream of pixel
fragments. These fragments are discrete portions of the triangle
surface that correspond to the pixels of the rendered image. The
fragment processing stage is generally used to modify the color
of each fragment with texture mapping or other mathematical
operations. The output from the fragment processing stage is
finally combined with the existing data stored at the associated
2-D locations in the frame buffer to produce the ultimate colors.

It is also worth noting that parallelism is exploited at different
levels within this graphics pipeline [7]. The actual hardware of
a modern GPU has hundreds of stages to exploit functional par-
allelism and increase the throughput. Furthermore, GPUs also
incorporate replicated stages to take advantage of the inherent
data parallelism of the rendering process. For instance, the ver-
tex and fragment processing stages include several replicated
units known as vertex and fragment processors, respectively.
On the other hand, the vertex and fragment processors exploit
multithreading to hide memory latencies. The overall idea is
that for every vertex (fragment) in the incoming stream, the
GPU launches a kernel thread executing the vertex (fragment)
program. Finally, independent operations or instructions in a
vertex (fragment) program may be executed in parallel as well.
In particular, current fragment processors explicitly support
short-vector instructions that operate on four-element vectors
[red/green/blue/alpha (RGBA) channels] in single-instruction
multiple-data fashion.

Until only a few years ago, commercial GPUs implemented
a fixed rendering pipeline. However, the vertex and fragment
processing stages are now entirely programmable, a fact that
allows for implementation of nongraphics applications such as
remote sensing problems, using C-like high-level languages [8].
For nongraphics applications, the GPU is usually abstracted as
a general stream processor that performs computations through
the use of streams and kernels. A stream can be defined as an or-
dered collection of elements to be processed in similar fashion,
whereas a kernel is defined as the function used to transform
streams. The outcome of a kernel should not depend on the
order in which output elements are produced (i.e., it should be
possible to process them concurrently), which forces the pro-
grammer to explicitly expose data parallelism to the hardware.
Therefore, the mapping of a general purpose application onto
a GPU involves algorithm transformations to follow a stream-
programming model. For matrix-based computations such as
those involved in standard image processing operations, it is
usually more convenient to express these kernels as fragment
programs and abstract the textures as streams [9].
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Many processing tasks fit this model well, and although
hyperspectral image processing algorithms have not received
much attention yet, many researchers have successfully ported
a large number of scientific applications onto GPUs [8]. Nev-
ertheless, harnessing the power of a GPU is not straightfor-
ward and requires a concerted effort by experts in both the
target application (hyperspectral imaging in our case), parallel
computing, and 3-D graphics. As a result, the design and de-
velopment of cost-effective hyperspectral imaging algorithms
on GPU platforms represents both a challenge and a highly
innovative contribution.

III. GPU-BASED ENDMEMBER EXTRACTION
A. Morphological Endmember Extraction

Let us denote by f a hyperspectral data set defined on an
N-dimensional (N-D) space, where IV is the number of chan-
nels or spectral bands. The main idea of the AMEE algorithm
is to impose an ordering relation in terms of spectral purity in
the set of pixel vectors lying within a spatial search window or
structuring element around each image pixel vector [6]. To do
so, we first define a cumulative distance between one particular
pixel f(z,y), i.e., an N-D vector at discrete spatial coordinates
(z,y), and all the pixel vectors in the spatial neighborhood
given by B (B-neighborhood) as follows [5]:

Dy (f(ey)= 3. Dist(fz,y). f0.5) (D)

(i,4)€2*(B)

where (i, j) are the spatial coordinates in the B-neighborhood
discrete domain, represented by Z2(B), and Dist is a pointwise
distance measure between two N-D vectors. The choice of Dist
is a key topic in the resulting ordering relation. The AMEE
algorithm makes use of the Spectral Angle Mapper (SAM),
a standard measure in hyperspectral analysis [10]. For illus-
trative purposes, let us assume that s; = (8;1, 8i2, - -, Sin )"
and s; = (s;1, 852, - - .,st)T are two N-D signatures. Here,
the term “spectral signature” does not necessarily imply “pixel
vector,” and hence, spatial coordinates are omitted from the
two previous signatures, although the following argumentation
would be the same if pixel vectors were considered. The SAM
between s; and s; is given by

SAM(s;, sj) = cos™" (si - sj/|sill - lls;[). (@)

It should be noted that SAM is invariant in the multiplication
of input vectors by constants and, consequently, is invariant to
unknown multiplicative scalings that may arise due to differ-
ences in illumination and sensor observation angle.

With the previous definitions in mind, we provide in the
following a step-by-step description of the AMEE algorithm
which corresponds to the implementation used in [11]. The
inputs to the algorithm are hyperspectral data cube f, a struc-
turing element B with size of ¢ x ¢ pixels, a maximum num-
ber of algorithm iterations I,,x, and a maximum number of
endmembers to be extracted p. The output is a set of endmem-
bers {e; }{_,, with ¢ < p.

1) Set ¢+ =1, and initialize a morphological eccentricity
index score MEI(x, y) = 0 for each pixel.
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Fig. 2. Mapping of a hyperspectral image onto the GPU memory.

2) Move B through all the pixels of f, defining a local
spatial search area around each pixel f(x,y), and cal-
culate the maximum and minimum pixel vectors at each
B-neighborhood using morphological erosion and dila-
tion [6], respectively, as follows:

(f © B)(x,y) = argming jyez2(py {Dp [f(x + i,y + j)|}
3)
(f @ B)(v,y) = argmax(; jyez2() { DB [f(x + i,y +j)|}
“4)

3) Update the MEI at each spatial location (x,y) using
MEI(z, y) = Dist[(f © B)(z,y), (f ® B)(z,y)].

4) Sett =1+ 1. If i = I},x, then go to step 5). Otherwise,
set f = f @ B and go to step 2).

5) Select the set of p pixel vectors with higher associated
METI scores (called endmember candidates) and form a
unique spectral set of {e;}7_; pixels, with ¢ <p, by
calculating the Dist for all pixel vector pairs.

B. GPU Implementation

We have focused on mapping the first four steps of the AMEE
algorithm (i.e., finding the MEI score map) onto a GPU since
these steps account for most of the execution time involved
in the endmember extraction process and exhibit enough data
parallelism.

The first issue that needs to be addressed is how to map a hy-
perspectral image onto the memory of the GPU. Since the size
of hyperspectral images usually exceeds the capacity of such
memory, we split them into multiple spatial partitions made
up of entire pixel vectors [called spatial regions (SRs)], i.e.,
each SR incorporates all the spectral information on a localized
SR and is composed of spatially adjacent pixel vectors.! As
shown by Fig. 2, SRs are further divided into four-band tiles

IThere is partial overlapping among spatially adjacent SRs to handle bound-
ary problems. The overlapping width depends on the size of the structuring
element and the number of iterations of the morphological algorithm [11]. For
at X t structuring element and ¢ algorithm iterations, the overlapping width is

[t/2] + (i —1).
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Fig. 3. Flowchart of the proposed stream-based GPU implementation.

(called SR tiles), which are arranged in different areas of a 2-D
texture. Such partitioning allows us to map four consecutive
spectral bands onto the RGBA color channels of a texture
(memory) element. Apart from the SR tiles, we also allocate
additional memory to hold intermediate information such as
inner products, norms, pointwise distances, and cumulative
distances.

Fig. 3 shows a flowchart describing our GPU-based im-
plementation. The stream uploading stage performs the data
partitioning and mapping operations described previously, i.e.,
dividing the image into SRs and uploading them as a set of SR
tiles onto the GPU memory. The remaining stages perform the
actual computation and comprise the following kernels.

1) Inner products and norms. The SR tiles are input streams
to this stage, which obtains all the inner products and
norms necessary to compute the required pointwise dis-
tances. Keeping in mind that the size of the structuring
element is ¢ X ¢ pixels; it will be necessary to compute
t2(t2 + 1) /2 per pixel. However, taking advantage of the
redundancy between adjacent structuring elements, it is
possible to reduce this figure to [(2¢ — 1)?/2]. As shown
by Fig. 4, fort = 3, we only need to compute 12 4 1 inner
products per pixel: one product of the vector with itself (to
find the norm) and twelve with the pixel vectors within
its region of influence (RI).2 Since streams are actually
SR tiles, the implementation of this stage is based on two
kernels, denoted as multiply and add (MAD) and 4-to-1 in

2The RI of a pixel includes four-connected neighbors to the pixel—the
southwest (SW), south (S), southeast (SE), and east (E) neighbors—as well as
their respective W, SW, S, SE, and E neighbors within the structuring element.
It is worth noting that other alternative definitions for the RI are possible by
adopting different connectivity criteria in the selection of neighbors, as far as
the chosen RI contains a minimum set of neighbors that cover all the instances.



444

x12+1
SR = —~
(stream 1:bands/d)
M imL:bands/4 t
[ streami \ 12
L (—-%—»dct products
\, SSR /
/>\streaml /
Shifted SR —
(SSR)
11(10{9'(8'| 7' >norm
6 [543
1' (0’ Fl
24 6 |
778’ 9'[fo]11

Influence Region

Fig. 4. Kernels involved in the computation of the inner products/norms and
definition of an RI for a given pixel defined by a structuring element with ¢ = 3.

Fig. 4. The former is a multipass kernel that implements
an elementwise MAD operation, thus producing four
partial inner products stored in the RGBA channels of
a texture element. The latter is a single-pass kernel that
computes the final inner products performing the sum
reduction of this four-element vector. A third single-pass
kernel produces the norm of every pixel vector.

2) Pointwise distance. For each pixel vector, this stage com-
putes the SAM with all the neighbor pixels within its RI.
It is based on a single-pass kernel that computes the SAM
between two pixel vectors using the inner products and
norms produced by the previous stage.

3) Cumulative distance. For each pixel vector, this stage
produces t? cumulative distance streams for each of the
t2 neighbors defined by the structuring element. It is
based on a single-pass kernel that accumulates up to eight
pointwise distances.’

4) Maximum/minimum finding. Erosion and dilation are
finalized at this stage through a kernel that applies mini-
mum and maximum reductions. This kernel uses as inputs
the cumulative SAMs generated in the previous stage
and produces a stream containing (for each pixel vector)
the relative coordinates of the neighboring pixels with
maximum and minimum cumulative distance.

5) Dilation. If ¢ < Inax, this stage propagates the purest
pixels in the current iteration to produce the SR tiles for
the next iteration.

6) MEI score update. Finally, this stage updates the MEI
scores using the maximum/minimum and pointwise dis-
tance streams.

IV. EXPERIMENTAL RESULTS
A. Computing Platforms

The proposed endmember extraction algorithm has been
implemented on a state-of-the-art GPU, as well as on an older
(three-year old) system in order to account for potential im-
provements that might be achievable on future generations of
GPUs. The generations considered correspond to the NV30 and

3The number of texture indirections that can be performed in a fragment
program by hardware is limited to eight in our target GPUs.
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TABLE 1
EXPERIMENTAL GPU FEATURES

FX5950 Ultra 7800 GTX
Year 2003 2005
Architecture NV38 G70
Bus AGPx8 PCI Express
Video Memory 256MB 256MB
Core Clock 475 MHz 430 MHz
Memory Clock 950 MHz 1.2 GHz GDDR3
Memory Interface 256-bit 256-bit
Memory bandwidth 30.4 GB/s 38.4 GB/s
#Pixel shader processors 4 24
Texture fill rate 3800 MTexels/s 10320 MTexels/s

TABLE 1I
EXPERIMENTAL CPU FEATURES

Penti 4 (Northwood C) Prescott (6x2)
Year 2003 2005
FSB 800 MHz, 6.4 GB/s 800 MHz, 6.4 GB/s
ICache L1 12KB 12KB
DCache L1 8KB 16KB
L2 Cache 512KB M
Memory 1GB 2GB
Clock 2.8 GHz 3.4 GHz

G70 families (see Table I), and the programs were coded using
Cg [8]. For perspective, we have also reported performance
results on contemporary Intel CPUs (see Table IT). The CPU im-
plementations were developed using the Intel C/C++ compiler
and optimized via compilation flags to exploit data locality and
avoid redundant computations of common pointwise distances
between adjacent structuring elements.

B. Hyperspectral Data

The hyperspectral data set used in our experiments is
the well-known AVIRIS Cuprite scene, available online (in
reflectance units) from http://aviris.jpl.nasa.gov/html/aviris.
freedata.html. The scene comprises 1939 x 677 pixels with
spatial resolution of 20 m and 204 narrow spectral bands
between 0.4 and 2.5 pm, and nominal spectral resolution
of 10 nm (20 bands has been removed from the original
scene prior to analysis due to low SNR in those bands). The
reflectance spectra of ten U.S. Geological Survey (USGS)
ground mineral spectra: alunite, buddingtonite, calcite, chlorite,
kaolinite, jarosite, montmorillonite, muscovite, nontronite, and
pyrophilite (all available from http://speclab.cr.usgs.gov) were
used as ground-truth spectra, to illustrate endmember extrac-
tion accuracy. Finally, in order to study the scalability of our
CPU- and GPU-based implementations, we tested them on
different image sizes, where the largest one corresponds to the
full 1939 x 677 pixel scene, whereas the others correspond to
cropped portions of the same image.

C. Performance Evaluation

Before empirically investigating the performance of the
proposed GPU-based implementation, we first briefly discuss
endmember extraction accuracy of the proposed morpholog-
ical method in comparison with other available approaches.
Table III tabulates the SAM spectral similarity scores obtained
after comparing USGS library spectra with the correspond-
ing endmembers extracted by standard endmember extraction
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TABLE 1II
SAM-BASED SPECTRAL SIMILARITY SCORES AMONG USGS MINERAL SPECTRA AND ENDMEMBERS PRODUCED BY DIFFERENT ALGORITHMS
PPI N-FINDR [ VCA | TEA | AMEE (/)uy = 1) | AMEE (Juux = 3) [ AMEE {/pwr = 7)
Alunite 0.084 0.081 0.034 [ 0.084 0.034 0.081 0.079
Buddingtonite 0.106 0.084 0112 | 0.094 G112 0086 0.081
Calcite 0.105 0.J05 0.093 [ 0.110 0.106 0.102 0.093
Chlorite 0.125 0.136 0.096 | 0.096 0.122 0.110 0.096
Kaolinite 0.136 0.152 0.134 | 0.134 hi36 0.136 0.106
Jarosite 0.112 0.1 0.112 | 0.108 (LELS 0.103 0.094
Montmorilionite | 0.106 0.089 0.120 | 0.096 0108 0.108 0.161
Muscovite 0.108 0.094 0.105 [ 0.106 0109 0.090 0.092
Nontronite 0.102 0.099 0.099 | 0.099 (LA 1H]} 0.095 0.090
Pyrophilite 0.094 0.090 0.112 [ 0.u%0 0.098 0.092 0.079

Performance Evolution
1000

Execution Time (s)

Image Size (MB)

Fig. 5. Performance of the CPU- and GPU-based AMEE implementations for
different image sizes (Imax = 5).

algorithms and the proposed AMEE algorithm, using different
numbers of iterations, ranging from I, = 1 to I, = 5 and
a constant structuring element with ¢ = 3 (the smaller the scores
across the ten minerals considered in Table III, the better the
results). The number of endmembers to be extracted in all
cases was set to 16 (despite the availability of only ten ground-
truth references) after calculating the intrinsic dimensionality
of the data [10], which revealed the presence of additional (un-
known) endmembers and alterations of available endmembers.
Overall, the tables show that AMEE is able to outperform the
other methods which rely on using the spectral information
alone, particularly as the number of algorithm iterations was
increased. In fact, montmorillonite was the only endmember
mineral for which N-FINDR and IEA provided better similarity
results than AMEE with I,,,,, = 5.

On the other hand, Fig. 5 shows the execution times of our
CPU- and GPU-based AMEE implementations for different
image sizes. First, it is worth noting that the GPU version is able
to process the full 1939 x 677 pixel data cube (about 512 MB
in size) in only 14 s (for I, ax = 5), in spite of the overheads
involved in data transfer between the main memory and the
GPU. The speedups achieved by the GPU implementation
over their CPU counterparts are outstanding: they are in the
order of 10 (for a single GPU). Although these factors are
already remarkable, we should also highlight that multi-GPU
systems or even clusters of GPUs may significantly increase
the reported figures. Results in Fig. 5 further demonstrate that
the complexity of the implementation scales linearly with the
problem size, i.e., doubling the image size simply doubles the
execution time. We also remark the relative evolution of GPUs
when compared to that of CPUs. The improvement caused by
the evolution of Intel CPUs was below 60%, as opposed to

the 200% improvement observed for GPU counterparts. This
comes at no surprise, since the latest generation has multiplied
by six the number of fragment processors as well as increased
the onboard memory bandwidth [7].

V. CONCLUSION AND FUTURE LINES OF INVESTIGATION

In this letter, we have explored the viability of using
GPUs for efficiently implementing spatial/spectral endmem-
ber extraction algorithms. This approach represents a cost-
effective alternative to other high-performance systems, such as
Beowulf-type clusters, which are expensive and difficult
to adapt to onboard processing scenarios. The outstanding
speedups reported in experiments, together with the low cost
and impressive evolution of GPUs, anticipate a significant
impact of these hardware devices in the remote sensing com-
munity. In future developments, we will explore additional par-
titioning strategies to balance the workload between the CPU
and the GPU. Further research will also include experiments
with multi-GPU systems and clusters of GPUs.
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