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Abstract

Human enterovirus 71 (HEV71) has emerged as the leading cause of viral encephalitis in children in most Asian countries.
The roles of host miRNAs in the neurological pathogenesis of HEV71 infection remain unknown. In the present study,
comprehensive miRNA expression profiling in HEV71-infected human neuroblastoma SH-SY5Y cells was performed using
the Affymetrix Gene Chip microarray assay and was validated using real-time RT-PCR. Among the 69 differentially expressed
miRNAs, miR-1246 was specifically induced by HEV71 infection in human neuroblastoma cells, but inhibition of miR-1246
failed to affect HEV71 replication. Parallel mRNA and microRNA profiling based on the 35 K Human Genome Array identified
182 differentially regulated genes. Target prediction of miR-1246 and network modeling revealed 14 potential target genes
involved in cell death and cell signaling. Finally, a combined analysis of the results from mRNA profiling and miR-1246 target
predication led to the identification of disc-large homolog 3 (DLG3), which is associated with neurological disorders, for
further validation. Sequence alignment and luciferase reporter assay showed that miR-1246 directly bound with the 39-UTR
of DLG3 gene. Down-regulation of miR-1246 induced significant changes in DLG3 expression levels in HEV71-infected
SHSY5Y cells. Together, these results suggested that miR-1246 might play a role in neurological pathogenesis of HEV71 by
regulating DLG3 gene in infected cells. These findings provide new information on the miRNA and mRNA profiles of HEV71-
infected neuroblastoma cells. The biological significance of miR-1246 and DLG3 during the course of HEV71 infection
deserves further investigation.
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Introduction

Human enterovirus71 (HEV71) is a single-stranded, positive-

sense RNA virus belonging to the genus Enterovirus, family

Picornaviridae[1,2]. HEV71 has been identified as one of the

leading pathogensof hand-foot-and-mouthdisease (HFMD) and is

associated with encephalitis, meningitis, and neurological compli-

cations, even death, in infants and young children. Since the 1998

outbreak in Taiwan, HEV71 has become a newly emerging, life-

threatening pathogen in children, specifically in the Asia-Pacific

region [3]. Millions of cases, including hundreds of deaths, are

confirmed annually in mainland China. Thus far, no vaccine or

effective antiviral therapy is commercially available.

The neuropathogenesis of HEV71 infection remains largely

elusive. Previous studies have provided rigorous radiological or

histopathological evidence regarding the induction of paralysis via

the infection and destruction of the anterior horn motor neurons

of the spinal cord [4,5]. Some cases of HEV71-mediated paralysis

may induce acute flaccid paralysis by several mechanisms, leading

to the virus-mediated destruction of anterior horn motor neurons

[6,7]. HEV71 radiculomyelitis is most frequently observed in the

medulla oblongata, reticular formation, pons, and midbrain

structures by magnetic resonance imaging and post-mortem

studies [8,9]. Other studies in cynomolgus macaques demonstrat-

ed that the development of paralytic disease following HEV71

infection was associated with inflammatory infiltrates in the spinal

cord and medulla oblongata [10,11]. Importantly, HEV71 viral

antigen has been found in neurons following immunocytochemical

staining [12,13].

miRNAs are a class of non-coding, single-stranded RNAs 18–25

nucleotides in length that are found in the genomes of all

multicellular organisms and some viruses[14]. Functionally,

miRNAs prevent the translation of mRNAs or result in the

degradation of mRNAs by binding to complementary sequences in

the mRNA[15]; in this way, miRNAs work to regulate the cell

cycle, cell differentiation, proliferation, development, apoptosis,
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oncogenesis, and immunity[16–20]. Cellular miRNAs may be

used to regulate the replication of viruses and reshape the cellular

gene expression environment to regulate the tissue tropism of

viruses in vivo [21,22]. Additionally, viral miRNAs may directly

regulate the viral and/or host cell gene expression to benefit the

viruses [23–25]. Thus, the expression of host miRNAs during

HEV71 infection is the focus of much interest. Cui et al. performed

comprehensive miRNA profiling in HEV71-infected Hep2 cells

(human laryngeal cancer cell) using deep sequencing technology;

they then compared the host serum miRNA levels in patients with

HFMD caused by HEV71 or coxsackievirus type A16 (CV-A16),

as well as healthy individuals [26,27]. The microarray assay for

miRNA profiling in HEV71-infected RD cells (human muscle cell)

identified the involvement of hsa-miR-141 during HEV71

infection [28]. Additionally, miRNA profiling in HEV71-infected

Vero cells indicated that hsa-miR-296-5p inhibited HEV71

replication by targeting the viral genome [29], and hsa-miR-23b

inhibited HEV71 replication through the down-regulation of the

HEV71 VP1 protein[30]. However, the host miRNA response to

HEV71 infection in human nerve cells remains unknown.

To date, joint genome-wide profiling of mRNA and miRNAs in

HEV71-infected nerve cells is still lacking. Our previous study

showed that differentially regulated mRNAs are involved in cell

cycle/proliferation, apoptosis, and cytokine/chemokine responses

[31]. In an effort to understand host cellular regulation during

HEV71 infection, we performed comprehensive miRNA and

mRNA microarray profiling in HEV71-infected human neuro-

blastoma cells. The results demonstrated that miR-1246 specifi-

cally responds to HEV71 and other enterovirus infections in SH-

SY5Y cells. Additionally, up-regulation of miR-1246 reduced the

levels of disc-large homolog 3 (DLG3), which was associated with

neurological disorders, particularly X-linked mental retardation

(XLMR). These findings provided new information on the

miRNA and mRNA profile of HEV71-infected nerve cells and

highlighted the important roles of miRNAs in the neuropatho-

genesis of HEV71 infection.

Materials and Methods

Viruses and Cells
Human rhabdomyosarcoma cells (RD, ATCC, CCL-136), baby

hamster kidney cells (BHK-21, ATCC, CCL-10), Human

hepatocellular liver carcinoma cells (HepG2, ATCC, 77400) and

African green monkey kidney cells (Vero, ATCC, CCL-81) were

grown in Dulbecco’s modified Eagle’s medium (DMEM, Gibco,

USA) supplemented with 10% fetal bovine serum (FBS, Gibco),

50 U/mL penicillin, and 0.1 mg/mL streptomycin at 37uC in 5%

CO2. Human neuroblastoma cells (SH-SY5Y,ATCC, CRL-2266)

were cultured in DMEM/F-12 medium (Gibco), supplemented

with 10% FBS, 50 U/mL penicillin, and 0.1 mg/mL streptomy-

cin at 37uC in 5% CO2.

HEV71 strain AH08/06 [32], poliovirus type 3 (PV-3) strain

Sabin, Coxsackievirus type B5 (CV-B5) strain CC10/10 [33], and

Japanese encephalitis virus (JEV) strain SA14 [34] were used in the

current study. HEV71, PV-3, and CV-B5 were propagated in RD

cells, and JEV was propagated in BHK-21 cells. The viral stocks

were prepared, and the virus titers were determined using a plaque

assay as previously described [34,35].

Virus Infection
For virus infections of HEV71, PV-3, CV-B5, and JEV, SH-

SY5Y, RD, and Vero cells were seeded in 6-well plates,

respectively. After overnight incubation, the infections were

carried out at a multiplicity of infection (MOI) of 1. After 1 hour

incubation, the cells were washed with PBS, and medium

containing 2% FBS was added to the cells. The SH-SY5Y cells

were harvested for microarray and quantitative RT-PCR (qRT-

PCR) assay at 6 and 12 hours post-infection (hpi).

MicroRNA Array Analysis
To screen miRNA expression during HEV71 infection, miRNA

profiles were analyzed using the Affymetrix GeneChip miRNA

Array2.0 (CapitalBio Corporation, Beijing, China) according to

the manufacturer’s instruction. Briefly, miRNAs were purified

from total RNA extracted from HEV71-infected cells or mock-

infected cells and were then labeled using an Enzyme Linked

Oligosorbent Assay (ELOSA) QC Assay and hybridized to the

miRNA array. The array data were normalized by global

normalization using the miRNA QC Tool software. The levels

of miRNAs between the HEV71-infected and control samples

were calculated based on the fluorescence intensities. Differential

expression levels of miRNAs between the two groups of samples

were assessed using a one-way ANOVA analysis.

Validation of Selected miRNAs Using qPCR
The qRT-PCR assay of selected miRNAs, including hsa-miR-

1246, hsa-miR-125a, hsa-miR-320b, hsa-miR-494, hsa-miR-1268,

and hsa-miR-211, was performed using the miScript Reverse

Transcription kit and miScript SYBR Green PCR kit (QIAGEN)

according to the manufacturer’s instructions with specific miRNA

primers from QIAGEN. The HEV71-infected SH-SY5Y cells

together with the mock infection cells were collected and lysed,

and miRNAs were isolated using the miRNA isolation kit

(QIAGEN) according to the manufacturer’s instructions. The

amount of each miRNA relative to the endogenous reference

RNA U6 was described using the equation 22DDCt.

Evaluation of miR-1246 by qRT-PCR Assay
To confirm the specific expression of miR-1246 in HEV71-

infected cells, the infected RD, Vero, and SH-SY5Y cells, along

with the control cells, were collected. In addition, SH-SY5Y cells

infected with HEV71, PV-3, CV-B5, and JEV, along with the

control cells, were collected to evaluate the miR-1246 expression

in response to other enterovirus infections. The miRNAs were

isolated from the samples using a miRNA isolation kit (QIAGEN),

and the miR-1246 level was quantified using qRT-PCR according

to the QuantiTec SYBR Green PCR Kit (QIAGEN). Data were

subjected to statistical analysis to assess the difference between the

two groups; a P value ,0.05 was considered to be statistically

significant.

SH-SY5Y Cells Infected with HEV71 after Transfection
with miR-1246 Inhibitor
The inhibitorof miR-1246 (MIN0005898) and its negative

control oligonucleotides (1027271) were purchased from QIA-

GEN. The SH-SY5Y cells were seeded at 66104 cells/well in 24-

well plates shortly before transfection. Cells were transiently

transfected using the HiPerFect Transfection Reagent (QIAGEN)

according to the manufacturer’s instructions. Each well contained

the miR-1246 negative control (50 nM, final concentration) or the

miR-1246 inhibitor (100 nM, final concentration). At 12 hour

after transfection, the cells were infected with HEV71 at an MOI

of 1. At 6 and 12 hpi, the supernatants were collected for virus

titer analysis by qRT-PCR assay.

HEV71 Down-Regulates DLG3 by miR-1246
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mRNA Expression Profiling
The mRNA gene expression profiling of SH-SY5Y cells infected

with HEV71 was carried out using the 35 K Human Genome

Array (Operon), which comprised ,70 bp oligonucleotide probes

for 35035 genes from the human genome Oligodatabase

(human_V4.0) (CapitalBio). Firstly, SH-SY5Y cells were transient-

ly transfected with the miR-1246 inhibitor or the negative control

using the HiPerFect Transfection Reagent (QIAGEN) according

to the manufacturer’s instructions. At 12 hpi, the cells were lysed

with TRIzol (Invitrogen) and frozen for mRNA profiling analysis

according to the manufacturer’s protocol. All data were submitted

to the GEO microarray database according to LuxScan 3.0

standards (CapitalBio). All files were transformed and normalized

using Loess normalization techniques. The degree of fold-change

(relative fluorescence intensity) was analyzed for all of the

differentially regulated genes. The significant genes list was

determined for hierarchical clustering.

Computational Analysis Validating the miR-1246 Targets
and mRNAs
Potential targets of miR-1246 were predicted using miRanda

and TargetScan6.0. The mRNA target pairs that were up- or

down-regulated .1.5-fold or ,21.5-fold (P,0.05) were then

selected for further analyses using the CapitalBio Molecule

Annotation System V3.0 (CMAS3.0) (http://bioinfo.capitalbio.

com/mas3/). Predicted interactions represent both direct and

indirect associations that are derived from various sources,

including GenBank, EMBL, SwissProt, Gene Ontology, KEGG,

and BioCarta. The cut-off values for the inclusion in these analyses

included a differential gene expression, with p-value ,0.05, and a

fold change .1.5 or ,21.5 (based on SAM) [36].

Selected co-occurrence genes were further analyzed by qRT-

PCR; GAPDH was used as an internal control. Real-time RT-

PCR primers were designed using the Beacon Designer software

(Table S5). The qRT-PCR reaction was performed according to

the manufacturer’s protocol. Each assay was performed in

triplicate.

Inhibition of miR-1246 in HEV71-infected Cells
SH-SY5Y cells were infected with HEV71 followed by

transfection with varying doses of miR-1246 inhibitor. The cells

were then harvested, and qRT-PCR was performed to determine

the relative level of DLG3 transcription.

Construction of miR-1246 Expression Plasmid
Two complementary oligonucleotides were designed and

synthesized based on the cDNA sequence of the Homo sapiens

miR-1246 precursor including restriction enzyme sites as well as

protecting bases. The two annealed complementary oligonucleo-

tides were then ligated into the pSilencer 2.1-U6 hygro expression

vector. The recombinant plasmid, pS-miR-1246, was confirmed

by restriction enzyme digestion and DNA sequencing.

Luciferase Reporter Assay
To create a luciferase reporter construct, the 39-UTR segments

of DLG3 that contained the putative binding sites for miR-1246

were generated by PCR using the following primers: 59-

tcattctagatcatcatgtgactgtgcc-39, and 59-ccatggccggcctacgttgcaccgtt-

caga-39. The purified PCR products were cloned into the pGL3-C

(Promega, Madison, WI) vector downstream of the luciferase gene

to generate the pGL3-DLG3 construct. Site-directed mutagenesis

of the predicted miR-1246 target sites in the 39-UTR of DLG3

was generated with the following primers: 59-ctctgtacctaattg-

cacctgtgctagcgcttgggaaa-39 and 59-aggtgcaattaggtacagagccattgtttt-

39. The construct was confirmed by sequencing and named pGL3-

DLG3-mut. For reporter assay, HepG2 cells cultured in 24-well

plates were co-transfected with pS-miR-1246 and pGL3-DLG3

using Lipofectamine 2000 (Life Technologies). The plasmids

pGL3-C and pGL3-DLG3-mut were set as control. The pRL-

CMV plasmid (Promega) expressing Renilla luciferase was co-

transfected to normalize the transfection efficiency. Then, cells

were harvested 48 h after transfection, and Firefly and Renilla

luciferase activity levels were measured using the Dual-luciferase

Reporter Assay (Promega, Madison, WI) according to the

manufacturer’s instruction. Each assay was performed in triplicate.

Statistical Analysis
The data were analyzed using Microsoft Excel 2007 and Graph-

Pad Prism v5.0. For real-time PCR assays, relative quantitation

value of each miRNA was calculated by using the equation

22DDCT and underwent log2-transformation to show the relatively

expression levels of each target miRNAs. Statistical significance

was determined using the Student’s t test. In all figures, values are

expressed as mean 6 standard deviation (SD), a P value ,0.05

was considered to be statistically significant.

Microarray Data Submission
The raw microarray data were submitted to Gene Expression

Omnibus database, and is available under the following accession

numbers GSE45816 and GSE45817.

Results

miRNA Profiling in HEV71-infected SH-SY5Y Cells
The expression profiling of human-specific miRNAs was

performed in HEV71-infected SH-SY5Y cells using the Affymetrix

GeneChip microarray assay. SH-SY5Y cells were infected with

HEV71 at an MOI of 1, and the infected cells were harvested after

6 and 12 hpi. The hierarchical clustering heatmap shows all

differentially regulated miRNAs in the four independent samples

according to the criteria of a fold change$1.5 or#21.5 (P,0.05)

at 6 (C1 and E1) and 12 (C2 and E2) hpi (Fig. 1). Further analysis
showed that 69 miRNAs were differentially expressed during

HEV71 infection compared with those in the uninfected cells

(Table S1). Among the 69 identified miRNAs, miR-1246

exhibited significant 7- and 9-fold increases at 6and 12 hpi,

respectively, compared with those in the uninfected cells.

To validate the microarray results, six miRNAs were selected

for independent qRT-PCR assays. As shown in Fig. 2, the

expression levels of miR-125a significantly decreased, while miR-

320b and miR-1246 significantly increased at 6 and 12 hpi; No

significant change was observed for miR-1268 at either time

points. These results were in agreement with the microarray

analysis. These results strongly indicated that miR-1246 was

significantly up-regulated in HEV71-infected SH-SY5Y cells.

miR-1246 is Specifically Induced by Enterovirus Infection
in SH-SY5Y Cells
Previously, the expression of miR-1246 was identified in human

embryonic stem cells [37]. To further characterize the expression

pattern of miR-1246 in response to virus infection, SH-SY5Y cells

were infected with various viruses, and the levels of miR-1246

were analyzed at 6 and 12 hpi. As shown in Fig. 3A, PV-3 and

CV-B5 significantly induced the up-regulation of miR-1246 in

SH-SY5Y cells, as did HEV71. However, no significant difference

in miR-1246 levels was observed in the JEV-infected cells

(Fig. 3A). Another two enterovirus-permissive cell lines, RD cells

HEV71 Down-Regulates DLG3 by miR-1246
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Figure 1. Heatmap and hierarchical clustering of miRNA. The heatmap represents the results of the two-way hierarchical clustering of miRNA
and samples. Each row represents a miRNA, and each column represents a sample. C_1 and C_2 represent the non-infected cells at 6 and 12 hpi,
respectively, and E_1 and E_2 represent the infected cells at 6 and 12 hpi, respectively. Up-regulated miRNAs are shown in red, and down-regulated
miRNAs are shown in green.
doi:10.1371/journal.pone.0095272.g001
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and Vero cells, were infected with HEV71, followed by miR-1246

assay at 6 and 12 hpi. The results showed that up-regulation of

miR-1246 was only observed in HEV71-infected SH-SY5Y cells;

no significant change was observed in RD cells, and only a slight

change was observed in Vero cells at 12 hpi (Fig. 3B). Together,

these results indicated that the up-regulation of miR-1246 is a

specific response to HEV71 infection in human neuroblastoma

cells.

miR-1246 does not Affect HEV71 Replication
miRNAs can exert regulatory effects on both the host and the

pathogen. To further investigate the potential effects of miR-1246

on viral RNA replication, SH-SY5Y cells were infected with

HEV71 at an MOI of 1, following transfection with the miR-1246

inhibitor or the negative control. The miR-1246 inhibitor is a

chemically synthetic oligonucleotide with a complete complemen-

tary sequence to endogenous miR-1246. At 6 and 12 hpi, viral

titers in culture supernatants were then determined using qRT-

PCR. As shown in Fig. S1, no significant difference was observed

at 6 and 12 hpi with or without the miR-1246 inhibitor, indicating

the inhibition of miR-1246 did not significantly affect HEV71

replication.

Gene Expression Profiling and Target Predication
miRNAs regulate cellular gene expression at the post-transcrip-

tional level, thus silencing and/or down-regulating gene expres-

sion. To assess whether a direct correlation exists between the

expression patterns of mRNA and the target genes of miR-1246,

we assessed the expression profile of the mRNA transcripts present

in HEV71-infected SH-SY5Y cells, following transfection with the

miR-1246 inhibitor, and control cells using a microarray assay

based on the 35 K Human Genome Array. Microarray hybrid-

ization preliminarily identified mRNAs whose relative abundance

increased or decreased during HEV71 infection, as shown in

Table S2 and Table S3. Among the 35035 transcripts tested

(from human genome Oligo database), 182 genes were identified

to be differentially regulated in the infected cells compared to the

uninfected controls. Of the 182 differentially regulated genes, 97

genes increased in abundance with a fold change .1.5 (P,0.005),

while 85 mRNAs decreased in abundance with a fold change,2

1.5 (P,0.005).

The potential target genes of miR-1246 were predicted using

TargetScan6.0 online, and a total of 178 conserved target genes

were shown in Table S4. To further analyze the potential

correlation between the up-/down-regulated mRNAs and the

predicted targets, a total of 14 co-occurrence genes were identified

(Table S5). All these genes were then modeled into ontological

networks using MAS3.0, and potential interaction is shown in

Fig. 4. Among the 14 co-occurrence genes, four of them, VPS53,

PSD3, C6orf35 and Cxorf36, were identified as orphan genes

without interaction with any genes from the inclusive database.

Furthermore, all the co-occurrence genes were validated using

qRT-PCR. As shown in Fig. 5, a total of eight genes, including

ADRB1, CREB5, KIAA0240, SLC112A2, DSG3, NFIB,

DNAJC3, and VPS53, were significantly induced by HEV71

infection, which was consistent with the mRNA microarray data.

Finally, the DLG3 gene was selected for the following assays.

miR-1246 Target the 39-UTR of DLG3
To clarify the roles of host miR-1246 in HEV71 infection,

miRanda and TargetScan databases were initially used to screen

for potential targets of miR-1246 within HEV71 genome. The

results showed that no miR-1246 complementary sequences were

found in the HEV71 genome RNA transcripts. The potential

miR-1246-binding sites within the 39-UTR of DLG3 were further

predicted using TargetScan 6.0, and one specific miR-1246

binding site was accessed (Fig. 6A). Further, to test whether miR-

1246 directly target the 39-UTR of DLG3, dual luciferase reporter

assay was performed in pS-miR-1246-transfected cells. As shown

in Fig. 7, the expression of DLG3 was significantly inhibited by

Figure 2. Validation of the microarray data using qRT-PCR.
Selected miRNAs in HEV71-infected SH-SY5Y cells were validated using
qRT-PCR. The gray bar and the black bar represent 6 and 12 hpi,
respectively. The fold change was calculated based on endogenous
control normalization using the equation 22DDCt. ***P,0.0001; values
represent the mean6SD.
doi:10.1371/journal.pone.0095272.g002

Figure 3. miR-1246 is specially induced in enterovirus-infected
SH-SY5Y cells. a. SH-SY5Y cells were infected with HEV71, PV-3, CV-
B5, and JEV, respectively, and the expression of miR-1246 was detected
by qRT-PCR. b. SH-SY5Y cells, RD cells, and Vero cells were infected with
HEV71 and subjected to qRT-PCR analysis for miR-1246. All data are
normalized against a mock-infected sample. ***P,0.0001; values
represent the mean6SD.
doi:10.1371/journal.pone.0095272.g003
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Figure 4. Predicted interaction networks of co-occurrence genes. Differentially regulated genes are represented in the links predicted using
CMAS 3.0. Yellow sphere represents co-occurrence genes identified in our study, whereas white one represents genes form the database. The color of
the lines represents methods to detect the white-labeled interactors of the yellow-labeled protein. Red line represents ‘‘anti bait
coimmunoprecipitation’’. Blue line represents ‘‘in vitro; in vivo; yeast 2-hybrid’’. Green represents ‘‘in vitro; in vivo’’. The number on top of the
lines means MAS ID.
doi:10.1371/journal.pone.0095272.g004

Figure 5. Validation of co-occurrence genes expression in
HEV71-infected SH-SY5Y cells by qRT-PCR. A total of 14 co-
occurrence genes were validated using real-time RT-PCR at 12 hpi.
Relative fold change was calculated based on endogenous control
normalization and repeated three times independently, and error bars
present as mean6SD (n = 3). The results from qRT-PCR were compared
with that from microarray.
doi:10.1371/journal.pone.0095272.g005

Figure 6. DLG3 is repressed by miR1246 in HEV71-infected SH-
SY5Y cells. A. Predicted sequence of the miR-1246 binding sites
within the DLG3 39-UTR are indicated with vertical lines. b. DLG3 gene
expression in HEV71-infected SH-SY5Y cells was analyzed by qRT-PCR
following transfection with varying doses of miR-1246 inhibitor. The
data are normalized against mock transfection.
doi:10.1371/journal.pone.0095272.g006

HEV71 Down-Regulates DLG3 by miR-1246
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miR-1246, while pGL3-DLG3-mut that destroyed the binding

sites and vector control were not affected by miR1246 (p,0.001).

Finally, to clarify the relationship between miR-1246 and DLG3

regulation in response to HEV71 infection, varying doses of miR-

1246 inhibitor were transfected to inhibit the induction of miR-

1246. The results showed that the suppression of DLG3 caused by

HEV71 infection was significantly eliminated by the transfection

of miR-1246 inhibitor in dose-dependent manner (Fig. 6B).

Together, all these results clearly demonstrated that the up-

regulation of miR-1246 in response to HEV71 infection inhibited

the expression of DLG3.

Discussion

Human SH-SY5Y cells are the third successive subclone of the

SK-N-SH (human neuroblastoma cell) cells [38–40], and these

cells have been used to study HEV71 neural cell tropism [41]. In

this study, the first miRNA profiling of SH-SY5Y cells infected

with HEV71 was performed. Sixty-nine miRNAs were differen-

tially regulated, suggesting that virus infection does alter the

miRNA expression profile in SH-SY5Y cells. On the one hand,

the HEV71-mediated miRNA expression was assessed in the SH-

SY5Y cell line, as well as in different cell types. Interestingly, one

of the 69 miRNAs, miR-1246, was expressed at significantly

higher levels in SH-SY5Y cells than in RD or Vero cells. These

results differ from a previous study that showed that miR-141

significantly increased in RD cells infected with enteroviruses [28].

It is not surprising because miRNAs play a major part in the

tissue-specific regulation of gene expression patterns [42,43], and

several miRNAs have been shown to modulate the tissue tropism

of a number of viruses from different families [44–47]. In addition,

the special role ofmiR-1246 has been studied, especially on cancer

and cystic fibrosis [48–51]. Thus, how miR-1246 interacts with

HEV71 is of highly interests. Recent studies have reported that

miRNAs play important roles in the host cellular response to viral

infections [18,21,52], which can be attributed to both antiviral

defenses and viral factors altering the cellular environment.

Moreover, cellular or viral miRNAs have been shown to be

involved in reciprocal interaction between the host cells and virus

[25,53]; for example, miR-122 treatment has been shown to

enhance hepatitis C virus (HCV) replication by targeting the 59-

UTR [54]. However, our results showed that inhibition of miR-

1246 did not affect HEV71 production at 6 and 12 hpi (Fig. S1).
These results ruled out the possibility that up-regulation of miR-

1246 may facilitate or suppress viral replication.

Alterations of the miRNA profile underlie global cell and tissue

transcriptional changes during developmental processes and

senescence, as well as during neoplastic transformation [55,56].

Likewise, it has been shown that miRNAs are involved in the

pathogenesis of the neurodegenerative disorders in multiple

diseases, including AD and Parkinson’s disease [57,58]. According

to our results, HEV71 infection can disturb the expression of host

miRNAs. It is well known that miRNAs can regulate post-

transcriptional processes by binding to the 39-UTR of the target

transcript. miR-1246 has been shown to target the 39-UTR

sequence of the DYRK1A mRNA, resulting in a reduction in

DYRK1A levels [59]; however, in our study, sequence analysis

showed that this miRNA does not target the 39-UTR or 59-UTR

of HEV71, which is in agreement with virus growth experiments

(Fig. S1).

Precise identification of miRNA targets is necessary for the

functional characterization of individual miRNAs and for a better

understanding of complex human diseases. Gene expression

profiling has been used to improve the target prediction for the

identification of functional targets [60,61]. A miRNA-mRNA

regulatory module consists of a set of miRNAs and a set of their

targets. One miRNA can potentially regulate multiple mRNAs,

and the opposite is also possible [62]. Our results demonstrated

that the 39-UTR of DLG3 gene were a potential target of miR-

1246. DLG3 is the first XLMR gene and is linked directly to

NMDA receptor-mediated signaling and synaptic plasticity

[63,64]. Compared with the classical transcription factors, miR-

1246 directly targeted the 39-UTR of DLG3 mRNA (Fig. 7), and

its expression was inversely correlated with DLG3 expression in

HEV71-infected SH-SY5Y cells (Fig. 6). In this study, we

combined results from gene chips, mRNA assay, computational

predictions, and dual luciferase assay to confirm miR-1246 directly

targets DLG3 in HEV71-infected neuroblastoma cells.

The predicted interaction networks of genes in Fig. 4 show

significant over representation of known mental disorder suscep-

tibility genes [65,66], supporting the increased power of the

network-based approach in identifying disease-relevant transcrip-

tional changes. DLG3 is a membrane-associated guanylate kinase

protein family (MAGUK) that is localized to the postsynaptic

density of excitatory synapses [67]. Synapse-associated proteins

are thought to have important functional roles within neuronal

cells [68,69]. Moreover, investigators reported that DLG3 was part

of a trafficking complex toward the synapse and was regulated by

its PPxY motifs, which bind to the domain of Nedd4 and Nedd4-2

E3 ubiquitin ligases in neurons [70,71]. DLG3 has been

demonstrated to control apical epithelial polarity and tight

junction formation and to contribute to neural induction in mouse

development [72]. Mutation of DLG3 leads to synaptic dysfunction

and learning and memory impairments [69,73].

Dysregulation of synaptic plasticity has been involved in a

variety of psychiatric disorders, neurological disorders, and in age-

related cognitive impairment. Previous studies have reported that

neurodevelopment and cognitive function may be affected by viral

encephalitis or by bacterial meningitis [74–76]. Recently, Chang et

al. showed that HEV71 infection with central nervous system

(CNS) involvement and cardiopulmonary failure may be associ-

Figure 7. The 39-UTR of DLG3 was the target of miR-1246.
Reporter construct pLG3-DLG3-mut that destroyed the putative binding
sites (underlined) is shown in comparison with wild type pLG3-DLG3
construct. The expression of pLG3-DLG3 was significantly decreased by
miR-1246 in comparison with vector control and pLG3-DLG3-mut
(***p,0.001). Each transfection was performed in triplicate.
doi:10.1371/journal.pone.0095272.g007
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ated with neurologic sequelae, delayed neurodevelopment, and

reduced cognitive functioning [77]. Considering the presence of

HEV71 viral antigens in neurons [12,13], direct HEV71 invasion

and subsequent neuron damage may contribute to the main cause

of neurologic sequelae. Our results set up connection between the

neurologic sequelae caused by HEV71 infection and host miR-

1246 regulation in association with DLG3 gene.

In summary, this is the first report on whole-genome joint

mRNA and miRNA profile analysis from EV71-infected SH-

SY5Y cells. Among the 69 differentially expressed miRNAs, miR-

1246 was expressed at significantly higher levels. The HEV71-

mediated up-regulation of miR-1246 reduced the levels of DLG3

protein in SH-SY5Y cells. Together, these results indicate that

miR-1246 play a potential role in the neurological process and cell

death pathways by regulating DLG3 upon HEV71 infection in

human neuroblastoma cells.
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