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Abstract The execution of many computational steps per
time unit typical of parallel computers offers an important
benefit in reducing the computing time in real world appli-
cations. In this work, a parallel Particle Swarm Optimiza-
tion (PSO) is used for gene selection of high dimensional
Microarray datasets. The proposed algorithm, called PMSO,
consists of running a set of independent PSOs following an
island model, where a migration policy exchanges solutions
with a certain frequency. A feature selection mechanism is
embedded in each subalgorithm for finding small samples
of informative genes amongst thousands of them. PMSO
has been experimentally assessed with different population
structures on four well-known cancer datasets. The contri-
butions are twofold: our parallel approach is able to improve
sequential algorithms in terms of computational time/effort
(Efficiency of 85%), as well as in terms of accuracy rate,
identifying specific genes that our work suggests as signifi-
cant ones for an accurate classification.

Additional comparisons with several recent state the of
art methods also show competitive results with improve-
ments of over 100% in the classification rate and very few
genes per subset.
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1 Introduction

DNA Microarrays [29] allow scientists to simultaneously
analyze thousands of genes, thus providing important in-
sights about cells’ functions, since changes in the physiol-
ogy of an organism are generally associated with changes
in large gene ensembles of expression patterns. The vast
amount of data that is involved in a typical Microarray ex-
periment usually require from scientists to perform a com-
plex statistical analysis, with the goal of classifying the
dataset into correct classes. The key issue in this classifi-
cation is to identify significant and representative gene sub-
sets that may be later used to predict class membership for
new external samples. Furthermore, these subsets should be
as small as possible in order to develop fast and low con-
suming processes for future class prediction. The main dif-
ficulty in Microarray classification versus other domains is
the availability of a relatively small number of samples in
comparison with the number of genes in each sample. In ad-
dition, expression data are highly redundant and noisy, and
most genes are believed to be uninformative with respect to
studied classes, as only a fraction of genes may present dis-
tinct profiles for different classes of samples.

In this context, machine learning techniques have been
applied to handle large and heterogeneous datasets, since
they are able to isolate the useful information by rejecting
redundancies [11, 30]. Concretely, feature selection (gene
selection in Biology) is often considered as a necessary pre-
process step in analyzing large datasets, as this method can
reduce the dimensionality of the datasets and often results in
better analyses [18, 32, 33].

Feature selection for gene expression analysis in cancer
prediction often uses wrapper classification methods [24] to
determine a type of tumor, to reduce the number of genes
to investigate in the case of a new patient, and also to as-
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sist in drug discovery and early diagnosis. Several classifi-
cation algorithms could be used for wrapper methods, such
as K-Nearest Neighbor (K-NN) [15] or Support Vector Ma-
chines (SVM) [13]. By defining clusters, a big reduction of
the number of considered genes and an improvement of the
classification accuracy can be finally achieved. The formal
definition of the feature selection problem that we consider
here is:

Let F = {f1, . . . , fi, . . . , fn} be a set of features; find a
subset F ′ ⊆ F that maximizes a scoring function Θ : Γ →
G such that F ′ = argmaxG⊂Γ {Θ(G)}; where Γ is the space
of all possible feature subsets of F and G a subset of Γ .

Optimal feature selection is a complex problem proved to
be NP-hard [28]. Therefore, we need efficient automated ap-
proaches to tackle it. Metaheuristics algorithms have proved
to be adequate tools for this matter, since they are capable
of solving the feature selection accurately and efficiently for
the large dimensions needed in Biology. Evolutionary Al-
gorithms (EAs) and, specifically, Genetic Algorithms (GAs)
have been successfully used in the past to tackle the gene se-
lection of Microarrays [6, 19–21]. All these approaches con-
sist in using single population sequential algorithms which
can achieve competitive performances (from the point of
view of the quality of solution), but without considering
other important aspects such as the computational effort and
the time consumption.

Parallel metaheuristics have always been very popular in
the literature [2], and thus there exists a large number of im-
plementations and algorithms. Concretely, population based
algorithms are naturally prone to parallelism, since most of
their variation operators can be easily undertaken in paral-
lel. However, the truly interesting observation is that the use
of a structured population, i.e, a given spatial distribution
of individuals, either in the form of a set of islands or a
diffusion grid, is responsible for the numerical benefits as
evaluated in [2, 3]. The execution of many computational
steps per time unit (when in parallel machines with sev-
eral CPUs or cores) offers an additional benefit in reducing
the computing time of such numerically enhanced structured
metaheuristics. Unfortunately, not much work has been done
so far on parallel structured metaheuristics for feature se-
lection [35], and no related approaches (to the best of our
knowledge) have been developed for gene selection of Mi-
croarray datasets.

In this work, a structured PSO is used for gene selection
of high dimensional Microarrays datasets. The proposed al-
gorithm, called Parallel Multi-Swarm Optimizer (PMSO),
consists in running a set of parallel subPSOs algorithms
forming an island model, where a migration operation ex-
changes solutions between those islands with a certain fre-
quency. A feature selection mechanism is embedded in each
subalgorithm for finding small samples of informative genes

amongst thousands of them. The reported solutions, codify-
ing gene subsets, are then evaluated by means of their clas-
sification accuracy by using a SVM classifier, 10-fold cross-
validation, and final testing with external test datasets. The
contributions of our approach are noticeable, since the paral-
lelization of the so called Geometric PSO [27] will be shown
to improve existing algorithms in terms of computational ef-
fort and classification accuracy. Besides, the gene ensembles
found by this technique are successfully interpreted in the
light of independent existing results from Biology to show
their actual impact.

The effectiveness of our proposal is analyzed on four
well-known public datasets: Leukemia [16], Colon [9],
Lymphoma [8] and Lung [17], discovering new and bio-
logically challenging gene subsets, and identifying specific
genes that our work suggests as significant ones. Compar-
isons with several recent state of art methods show the effec-
tiveness of our results in terms of computational time/effort,
reduction percentage and classification rate.

The remainder of this paper is organized as follows. In
Sect. 2, we provide the reader with basic concepts about
Microarrays technology and Geometric Particle Swarm Op-
timization. Section 3 gives the details of our Parallel Multi-
Swarm Optimizer algorithm for feature selection. Experi-
mental results and comparisons are presented in Sect. 4, in-
cluding performance analyses and biological validation of
the genes obtained. Conclusions and further work are finally
given in Sect. 5.

2 Preliminaries

In this section, the basic concepts of Microarrays of DNA
(application field) and Geometric PSO (involved in the
solver technique) are briefly introduced.

2.1 DNA microarrays

A DNA Microarray consists of an arrayed series of thou-
sands of DNA molecules spotted in different positions in
a matrix structure [29]. These DNA molecules, that corre-
spond to particular genes, are mixed with cellular cDNA
molecules (called labeled or colored DNA) during a hy-
bridization process. A cDNA molecule is obtained from cel-
lular RNA or mRNA during a labeling process showing the
relative expression level of each molecule. RNA molecules
are isolated from a particular cell type or tissue compris-
ing of a complex mixture of different RNA transcripts. The
abundances of individual transcripts in the mixture reflect
the different expression levels of the corresponding genes.
This process is called hybridization, after which abundant
sequences will generate strong signals, while rare sequences
will generate weak signals.
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Microarrays are normally used to compare gene expres-
sion levels within a sample or look at differences in the ex-
pression of specific genes across different samples, such as a
few samples of one disease or healthy and unhealthy tissues.
A gene expressed only in the disease sample, for example,
might represent a useful drug target. This is especially ap-
propriate in cancer analysis, since it allows us to discrimi-
nate against tumoral tissues and normal ones. Several gene
expression profiles obtained from tumors such as Leukemia,
Colon, and Lung cancers have been published.

2.2 Geometric particle swarm optimization

The Particle Swarm Optimization [22] is an efficient opti-
mization technique initially developed for continuous opti-
mization problems. A recent version called Geometric Par-
ticle Swarm Optimization (GPSO) [27] enables us to gener-
alize PSO to virtually any solution representation in a nat-
ural and straightforward way, extending the search to other
search spaces, such as combinatorial ones.

However, many practical engineering problems are for-
mulated as combinatorial optimization problems and specif-
ically as binary decisions (which is the case in feature se-
lection). Several binary versions of PSO can be found in the
literature [12, 23]. Nevertheless, all these versions are ad
hoc adaptations from the original PSO and therefore their
performance is usually improvable.

The key issue in GPSO consists in using a multi-parental
recombination of particles (solutions) which leads to the
generalization of a mask-based crossover operation, prov-
ing that it respects four requirements for being a convex
combination in a certain space. A convex combination is an
affine combination of vectors where all coefficients are non-
negative. When vectors represent points in the space, the
set of all convex combinations constitutes the convex hull
(see [27] for a complete explanation). This way, the mask-
based crossover operation substitutes the classical movement
in PSO and position update operations, initially proposed for
continuous spaces. This property has been demonstrated for
the cases of Euclidean, Manhattan and Hamming spaces in
the cited work.

For Hamming spaces, which is the focus in this approach,
a three-parent mask-based crossover (3PMBCX) is defined
in a straightforward way:

Given three parents a, b and c in {0,1}n, generate ran-
domly a crossover mask of length n with symbols from the
alphabet {a, b, c}. Build the offspring o by filling each posi-
tion with the bit from the parent appearing in the crossover
mask at the position.

In a convex combination, weights wa , wb and wc indicate
(for each position in the crossover mask) the probability of
having the symbols a, b or c, respectively.

The pseudocode of the GPSO algorithm for Hamming
spaces is illustrated in Algorithm 1. For a given particle i,
three parents take part in the 3PMBCX operator (line 9):
the current position xi , the social best position gi and the
historical best position found hi (of this particle).

Algorithm 1 GPSO for Hamming Spaces
1: S ← SwarmInitialization()

2: while not stop condition do
3: for each particle i of the swarm S do
4: evaluate(xi)

5: update(hi)

6: update(gi)

7: end for
8: for each particle i of the swarm S do
9: xi ← 3PMBCX((xi,wa), (gi,wb), (hi,wc))

10: mutate(xi)

11: end for
12: end while
13: Output: best solution found

The weight values wa , wb and wc indicate (for each el-
ement in the crossover mask) the probability of having val-
ues from the parents xi , gi or hi , respectively. These values
associated to each parent represent the present influence of
the current position (wa), the social influence of the global
best position (wb), and the individual influence of the histor-
ical best position found (wc). A restriction of the geometric
crossover forces wa , wb and wc to be non-negative and add
up to one.

In summary, the GPSO developed in this study oper-
ates as follows: In the first phase, uniform random ini-
tialization of particles is carried out by means of the
SwarmInitialization() function (Line 1). In a second phase,
after the evaluation of particles (line 4), historical and social
positions are updated (lines 5 and 6, respectively). Finally,
particles are “moved” by means of the 3PMBCX operator
(line 9). In addition, with a certain probability, a simple bit-
mutation operator (line 10) is applied in order to introduce
diversity in the swarm to avoid early convergence. As eval-
uated in [6], the three-parent mask-based crossover used in
GPSO makes the offspring inherit the shared selected fea-
tures present in the three parents involved in the mating.

The GPSO developed in this study operates as follows:
in a first phase, uniform random initialization of particles is
carried out. In the second phase, after the evaluation of par-
ticles, historical and social positions are updated. Finally,
particles are “moved” by means of the 3PMBCX operator.
In addition, with a certain probability, a simple bit-mutation
operator is applied in order to introduce diversity in the
swarm to avoid early convergence. As evaluated in [6], the
three-parent mask-based crossover used in GPSO makes the
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offspring inherit the shared selected features present in the
three parents involved in the mating.

In this case, as defined in 3PMBCX, only one offspring
is generated, which represents the new position of the cur-
rent particle. Here, non-shared features are inherited by the
offspring corresponding to the ith parent ({a, b, c}) of the
mask. This way, we can state (and experiments confirm this),
that the 3PMBCX crossover operator for Hamming spaces
of GPSO is especially suitable for the feature selection prob-
lem, showing thus an implicit property of the studied algo-
rithm.

3 PMSO for gene selection

In this section, our new approach named Parallel Multi-
Swarm Optimizer (PMSO) for feature selection is presented.
We first describe the parallelization model coupled to the
GPSO algorithm. After that, the gene selection scheme is
explained.

3.1 GPSO parallel model

In analogy with Parallel Genetic Algorithms (PGAs) [4, 31],
we define our Parallel Multi-Swarm GPSO (PMSO) as a
pair 〈S, M〉, where S = {S1, . . . , Sm} is a collection of m

swarms (populations) and M is the migration policy. The
main parameters of the migration policy constitute a five-
tuple M = 〈σ,ρ,φs,φr , τ 〉, where σ ∈ N (migration gap)
denotes the number of iterations in every subswarm between
two successive exchanges of particles (steps of isolated evo-
lution), ρ ∈ N (migration rate) is the number of particle
copies that undergo migration in each exchange; φs and φr

are two functions which respectively decide how to select
emigrant particles and what particles have to be replaced
by incoming immigrants. The topology model is denoted by
τ : S → 2S , e.g., a unidirectional ring, in our case. Algo-
rithm 2 shows the pseudocode of PMSO.

Two alternatives exist for φs : random and best. The first
one refers to randomly selecting any particle to be migrated;
the second one selects the best-known particle in the island
subswarm. Concerning φr , also two strategies are consid-
ered always and if_better. The former refers to always re-
placing the worst particle(s) by the incoming emigrant(s);
the later replaces the worst particle(s) only if it is worse than
the incoming emigrant(s).

Finally, concerning the topology (τ ), an unidirectional
ring is considered where each subswarm sends (and re-
ceives) particles to (from) the two consecutive nearest sub-
swarms in the ring. It must be noted that the subswarms
proceed asynchronously, giving rise to loosely coupled con-
tiguous epochs of computation and then communication.
For this work, we have selected the asynchronous version
since it usually provides a better performance than the syn-
chronous one [5].

Algorithm 2 PMSO Pseudocode
1: DO IN PARALLEL for each i ∈ {1, . . . ,m}
2: initialize(Si )
3: while not stop_condition do
4: iterate Si for n steps /* GPSO evolution */
5: for each Sj ∈ τ(Si) do
6: send ρ particles in φs(Si) to Sj

7: end for
8: for each Sj such that Si ∈ τ(Sj ) do
9: receive ρ particles from Sj

10: replace ρ particles in Si according to φr

11: end for
12: end while
13: Output: best solution ever found in the multi-swarm

3.1.1 Gene selection and classification scheme

Following the basic scheme of solution encoding used in
feature selection, PMSO provides a binary encoded particle
(vector) where each bit represents a gene in the dataset. If a
bit is 1, it means that this gene is kept in the reduced subset,
while 0 indicates that the gene is not included. Therefore,
the particle length is equal to the number of genes in the
initial Microarray dataset.

As illustrated in Fig. 1, where a general model of our
PMSO is provided, the particles of each subswarm (Si ), rep-
resenting gene subsets, are evaluated by means of a SVM
classifier and 10-fold cross-validation as follows: each gene
subset (codified by a particle) is divided into ten subsets,
nine of them constituting the training set and the remain-
ing one used as the validation set. The SVM is trained using
the training set and then the accuracy obtained (number of
correct classifications by the SVM once trained) is evalu-
ated on the validation set [13]. This evaluation is repeated
ten times, each one alternating the used validation set. This
method reinforces the validation process, so that the final
accuracy value is the resulting average of the ten validation
folds. Such a strong validation is necessary when the number
of samples is low regarding the number of features, which
is the case for this work. As a final evaluation, the resulting
subset solution is evaluated on the external test set, thus ob-
taining the final accuracy (standard protocol recommended
in supervised learning).

3.1.2 Fitness function

A fitness function is needed to guide the search by assigning
to any tentative solution a quality value. Once the accuracy
value and the number of genes are known, the fitness func-
tion is calculated according to:

f (x) = (100 − acc) + λ · #(genes in subset)

#(total genes)
, (1)
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Fig. 1 General model of PMSO for gene selection and classification
of Microarrays. Training, validation and testing mechanisms are em-
bedded into the parallel algorithm

being, λ = 10
log(#(total genes))+1�. (2)

The objective here consists of maximizing the accu-
racy and minimizing the number of genes. For convenience
(only minimization of fitness), the first factor is presented
as (100 − acc) and the second one is normalized in order
to control the trade off between these two factors. A con-
stant value λ (which depends on the total number of genes)
is used in this normalization. Therefore, if the number of
features in the subset is high (with regards to the total num-
ber of genes in the original dataset), then the fitness function
promotes the reduction of features. Otherwise, if the number
of features in the subset is small, then this fitness function
promotes the improvement in accuracy.

4 Experimental results

We have implemented the proposed PMSO algorithm for
gene selection in C++ following the skeleton architecture
of the MALLBA library [7]. For the SVM classifier we have
used a set of classes provided by the LIBSVM [10] library
for training, validation, and testing. These classes were cou-
pled with those of the PMSO for this evaluation phase.

In this section, the experiments are described by first dis-
cussing the Microarrays datasets used, then the experimen-

tation setup, the analysis of results and comparisons, and a
global discussion.

4.1 Microarray datasets and data preprocessing

The instances used are classified into four well-known
datasets taken from real-word Microarray experiments. All
of them were taken from the public repository of Kent Ridge
Bio-medical Dataset (http://datam.i2r.a-star.edu.sg/datasets/
krbd/index.html). In particular:

– The ALL-AML Leukemia dataset consists of 72 Microar-
rays experiments with 7,129 gene expression levels. Two
classes exist: Acute Myeloid Leukemia (AML) and Acute
Lymphoblastic Leukemia (ALL). The complete dataset
contains 25 AML and 47 ALL samples. The original
dataset is divided into a training set of 38 samples and
a test set of 34 samples.

– The Colon Tumor dataset consists of 62 Microarray
experiments collected from colon-cancer patients with
2,000 gene expression levels. Among them, 40 tumor
biopsies are from tumors and 22 (normal) are from
healthy parts of the colon of the same patient.

– Types of Diffuse Large B-cell Lymphoma dataset consists
of 47 tissue samples, 24 of them are from germinal centre
B-like group while the rest 23 are activated B-like group.
Each sample is described by 4,026 genes.

– The Lung Cancer dataset involves 181 experiments with
12,533 gene expression levels. Classification occurs be-
tween Malignant Pleural Meso-thelioma (MPM) and
Adenocarcinoma (ADCA) of the lung. In tissue samples
there are 31 MPM and 150 ADCA.

Table 1 summarizes the original organization of train-
ing and testing samples of the four used Microarrays. The
test sets of Leukemia and Lung were taken from the origi-
nal repositories provided by the authors. In Colon and Lym-
phoma, only training sets are available in the original repos-
itories, and for this reason, new test and training sets have
been here generated for these two datasets by randomly (uni-
formly) extracting samples from the original one as stated in
Table 1. These datasets were selected because of their differ-
ent dimensions and gene organizations, constituting a het-
erogeneous test-bed to better support our conclusions.

Expression levels of training and test sets were normal-
ized separately in order to scale their intensities, thus en-
abling a fair comparison between the different datasets.
Therefore, for each attribute aj (gene) with j ∈
{1 · · ·#attributes}, and for each sample xk (expression) with
k ∈ {1 · · ·#samples}, a scaling operation to [−1,1] was per-
formed resulting a′

j (xk) by using the following equation (as
LIBSVM recommends):

a′
j (xk) = 2 · aj (xk) − minj

maxj − minj

− 1, (3)

http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html
http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html
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Table 1 Usage details of the four Microarray Datasets

Dataset #Genes Clases #Train #Test #Total

Colon 2,000 Cancer 20 20 40

Normal 11 11 22

Lymp. 4,026 Ac B-like 17 6 23

Ce B-like 19 5 24

Leuk. 7,129 AML 11 14 25

ALL 27 20 47

Lung 12,533 MPM 16 15 31

ADCA 16 134 150

where maxj and minj correspond to the maximum and min-
imum gene expression values for attribute aj . Reductions
of genes by removing them according to thresholds were
not made previously, and so we make the task of correct
classification harder by leaving even clearly non-functional
genes for the algorithm to remove. Uninformative genes to
the classifier could nevertheless be informative ones to the
metaheuristic algorithm, since bad solutions are quite impor-
tant to avoid guiding the search towards low quality regions
of the search space.

4.2 Experimental setting

All experiments were carried out using a cluster of PCs with
Linux O.S. (Suse 9.0 with kernel 2.4.19) and a Pentium IV
2.8 GHz processor, with 1 GB of RAM. The PMSO algo-
rithm was independently executed 30 times on the Microar-
ray datasets in order to have statistically meaningful conclu-
sions. Each one of these PMSO executions performed 500
iterations.

In the parameters setup, an optimal configuration of the
SVM classifier is crucial, since it influences the training
effectiveness. Therefore, the main Kernel (RBF) parame-
ters γ and C coefficient [13], were systematically opti-
mized (as recommended in LIBSVM [10]) in a prepro-
cess phase using grid-search with cross-validation. Basi-
cally, this consists in identifying the best combination of
both parameters in a rank of bounded values (for example,
C = 2−5,2−5, . . . ,2−15, γ = 2−15,2−13, . . . ,23). Figure 2
plots the traces of the different grid-search parameters for
each training dataset. The resulting parameters are:

– Leukemia: C = 8 and γ = 0.0001220703125 (accuracy
= 92.0%)

– Colon: C = 128 and γ = 0.0001220703125 (accuracy =
82.5%)

– Lymphoma: C = 8 and γ = 0.000030517557 (accuracy
= 94.0%)

– Lung: C = 2 and γ = 0.0001220703125 (accuracy =
93.0%).

These parameters were set using the SVM classifier in-
dependently of the PMSO, in order to obtain an accuracy as
high as possible (as shown in parenthesis). The parameters
of PMSO were set using the previously tuned SVM classi-
fier. Finally, after the PSMO executions, a testing process
was made on each resulted subset. In this process, the pa-
rameters of SVM were tuned using the grid-search method
for the resulting subsets and test sets separately.

A comparison of prediction quality on all features versus
the same quality obtained on selected by PMSO features sets
is made in the next section.

Both sets of PMSO parameters, the ones defining the dis-
tributed model and those specific to GPSO, were set ac-
cording to a preliminary study. As a result of this study,
our PMSO has been run with the best configuration using
160 particles organized in 1, 2, 4 and 8 subswarms (with
160, 80, 40 and 20 particles each subswarm/processor), thus
constituting four different configurations regarding the num-
ber of subswarms. In these configurations, we have consid-
ered σ = 100 and ρ = 1. The selection/replacement strate-
gies choose respectively the best particle to be sent and re-
places if_better. The migration topology is a unidirectional
ring. Finally, concerning the GPSO parameters, we have
used similar present, historic, and social weights w1 = w2 =
w3 = 0.33. The probability of performing mutation is 0.01.

4.3 Performance analysis

Table 2 shows the results obtained by PMSO, out of 30
independent runs, using the four different configurations
(number of swarms in column 2). As a robustness indica-
tor, column 3 denotes the number of executions in which the
amount of genes (#Genes) in the resultant subset is lower
than 5 (very good result from a biological point of view).
Following the standard methodology when comparing clas-
sification rates, the average and standard deviation of the ob-
tained accuracies (Accuracy 1) and the number of genes are
reported in columns 4 and 5, respectively. Column 6 shows
the reduction percentage1 of each computed subset regard-
ing the original datasets. In the last column, the accuracy
percentage (Accuracy 2) of the tuned stand-alone SVM on
each complete dataset (before reduction) is presented.

Several observations can be made from Table 2. First of
all, the accuracy rate and the number of genes obtained by
PMSO with 8 swarms (8-Swarm PMSO) is the best in all
the cases for each dataset. This confirms that our parallel ap-
proach is clearly the way to go if a high accuracy and com-
putational effort are needed, which is the case in actual labs.
Significant statistical differences were found in these results
regarding Colon, Lymphoma and Lung datasets. These dif-
ferences in distributions (30 independent runs) were statis-
tically assessed by using the following procedure: first a

1Reduction = 100 − #(genes in subset)
#(total genes in dataset) .



Parallel multi-swarm optimizer for gene selection in DNA microarrays 261

Fig. 2 Plots of the different grid-search parameters evaluated in SVM for each one of the datasets

Table 2 Results of PMSO using 1, 2, 4, and 8 subswarms configurations. The columns denotes the number of subswarms, the hit rate (expressed
as subsets with less than 5 genes), the accuracy rate, the number of genes, and the reduction percentage

Datasets Swarms (#Genes < 5) Accuracy 1 (%) #Genes Reduction (%) Accuracy 2 (%)

Colon 1 30 79.98±5.61 2.40±0.71 88 82.5

2 30 82.04±5.24 2.23±0.49 89

4 30 85.53±3.61 2.06±0.24 90

8 30 85.55±4.06 2.00±0.00 90

Lymphoma 1 22 96.94±3.32 4.06±1.15 90 92.0

2 24 96.75±2.87 3.60±1.08 92

4 28 97.12±2.72 3.23±0.76 92

8 30 97.87±2.56 2.86±0.49 93

Leukemia 1 30 98.00±2.21 3.00±0.74 96 94.0

2 24 98.00±2.60 4.00±0.92 95

4 28 98.00±2.54 3.00±0.88 96

8 28 98.00±1.85 3.00±0.77 96

Lung 1 30 96.00±3.69 3.00±0.63 98 93.0

2 30 97.39±3.13 2.63±0.70 98

4 30 97.00±3.17 2.66±0.64 98

8 30 97.39±1.99 2.26 ± 0.44 99
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Fig. 3 Mean performance out of 30 executions of the PMSO in four
different swarm distributions (1, 2, 4, and 8 subswarms). The mean
fitness (in logarithmic scale) is plotted versus the number of iterations

Kolmogorov Smirnov test was performed in order to check
whether the variables were normal or not and the Levene
test to check the homoskedasticity of samples (equality of
variances). If they were normal with equal variances, an
ANOVA I test was performed, otherwise we performed a
Kruskal-Wallis test. A level of significance of 95% (α =
0.05) was always applied in order to check if there were
statistically significant differences. After that, we did a mul-
tiple comparison test.

Secondly, in comparison with the accuracy percentage
(Accuracy 2) of the SVM on each complete dataset, our re-
sults show better accuracy percentages in 14 out of 16 con-
figurations. This is a true improvement since the reduction of
features in all the cases with regards to the original datasets
is around 90% in our model while SVM is using all genes.
Specifically, our PMSO with 4 and 8 swarms always obtains
better accuracies (with subsets lower than 5 genes) than the
stand-alone SVM on the complete datasets.

When analyzing the internal behavior of these configura-
tions of PMSO, we can clearly see that the ones distributed
with more subswarms (4 and 8) show a smoother conver-
gence than the others (i.e., diversity is better preserved). We
suspect that the migration mechanism in PMSO introduces
also a high diversity which helps the initial exploration in
all configurations. This behavior is clearly observable in
Fig. 3 where the mean performances through the evolution
steps of 30 independent runs of each PMSO are plotted. In
this figure, the lines represent the mean of the fitness ob-
tained by the subswarms at each iteration. For this reason,
the lines corresponding to PMSO with 4 and 8 subswarms
show peaks that represent migrations injecting diversity in
the receptor swarm, hence altering the averages of the global
evolution fitness. This beneficial behavior is only slightly
observed in PMSO with 2 subswarms, and non-existent in
PMSO with 1 subswarm.

Table 3 Mean time of execution in microseconds (ms) performed by
our 8-Swarm PMSO running on 1, 2, 4 and 8 processors

Dataset T1 T2 T4 T8

Colon 2.69E+09 1.42E+09 7.60E+08 5.28E+08

Leukemia 5.14E+09 2.83E+09 1.52E+09 1.05E+09

Lymphoma 3.05E+09 1.69E+09 8.80E+08 4.74E+08

Lung 7.64E+09 4.19E+09 2.38E+09 1.39E+09

4.4 Speedup analysis

One of the most important parameters for measuring the effi-
ciency of a parallel algorithm is the Speedup (Sp). The stan-
dard formula of the speedup is represented in (4), where m

is the number or processors used, T1 is the mean time of
execution of all the subswarms of the algorithm in 1 proces-
sor, and Tm is the mean time of execution of the swarms in
parallel on m processors.

Sp = T1

Tm

. (4)

Table 3 shows the mean time of execution in microsec-
onds (ms) performed by our 8-Swarm PMSO running on
1, 2, 4 and 8 processors. The most time consuming execu-
tion corresponds to T1 in Lung dataset which takes about
2.12 hours (7.64E+09 ms). This time is reduced down to
23.16 minutes (1.39E+09 ms) when using 8 processors (T8)
with the same dataset. Specifically, the 8-Swarm PMSO run-
ning on 8 processors obtains a reduction in the computa-
tional time of 69.8% when dealing with Lung. This is a clear
improvement concerning the time consumption since Lung
is the larger dataset we have tackled.

More precisely, in order to work with a measure propor-
tional to the number of processors employed we calculated
the speedup using the execution times obtained. For this, we
followed the standard methodology described in [1].

A linear (ideal) speedup is obtained when Sp = m, and
hence, in the execution of an algorithm with linear speedup,
doubling the number of processors means doubling the
speed. Figure 4 shows a graphical representation of the
speedup performed by our 8-Swarm PMSO algorithm ex-
ecuted in 1, 2, 4 and 8 parallel processors. In this graphic,
the linear speedup is represented by a dotted line. The re-
maining lines represent the speedup of the 8-Swarm PMSO
on Leukemia, Colon, Lymphoma, and Lung datasets.

As we can observe, all the speedup values are close to
the linear one, being all of them higher than 5 when run-
ning in 8 processors. This way, the mean efficiency2 re-
ported is E = 70% for all datasets which is a very good
value for facing still larger problems in the future. The best

2Mean efficiency E = Sp
m

× 100(%).
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Fig. 4 Linear (ideal) speedup versus actual speedup of the 8-Swarm
PMSO executed in 1, 2, 4 and 8 processors

efficiency is obtained when running in 4 processors being
E = 85%. In short, our PMSO provides an efficient outcome
even in the presence of such a high dimensionality of the so-
lutions (from 2,000 to 12,533 genes), stating a low overhead
of communications and thus being a globally scalable tech-
nique.

4.5 PMSO versus parallel island genetic algorithm

In this section we compare the results obtained by our
PMSO operating with 8 subswarms (8-Swarm PMSO),
against a Parallel Island Genetic Algorithm (PGA) [2] also
operating with 8 subpopulations. This way, we look to make
a comparison not only versus the standard SVM but also
versus other parallel techniques popular in the literature.

The PGA has been configured as follows: the whole
population consists of 160 individuals (codifying gene sub-
sets) organized in 8 subpopulations with 20 individuals each
one. We have considered σ = 100 and ρ = 1 (explained
in Sect. 4.2). The selection/replacement strategies choose,
respectively, the best individual to be sent and replaces
if_better. The migration topology is also a unidirectional
ring. Finally, concerning the genetic algorithm parameters
we have used a generational strategy of reproduction (e.g.
number of offspring equal to number of parents), two-point
crossover (probability of crossover 0.9), and simple bit-flip
mutation (probability of mutation 0.01) as applied to GPSO
in Sect. 3. The evaluation task in PGA has followed the same
procedure as for PMSO. The evaluation task in PGA has fol-
lowed the previously explained parameter setting of SVM
for classification, 10-fold cross-validation, and fitness func-
tion (1). A final testing of the resultant subsets has been also
accomplished.

Table 4 Comparison of PMSO versus PGA, both configured with 8
islands

Dataset Alg. (#Genes ≤ 5) Accu. (%) #Genes

Colon PMSO 30 85.55±4.06 2.00±0.00

PGA 30 81.45±4.22 2.10±0.30

Lymp. PMSO 30 97.87±2.56 2.86±0.49

PGA 30 94.44±3.72 3.60±1.28

Leuk. PMSO 28 98.00±1.85 3.00±0.77

PGA 30 98.55±1.55 3.15±0.85

Lung PMSO 30 97.39±1.99 2.26±0.44

PGA 30 93.43±4.86 2.00±0.00

The PGA was implemented in C++ using the MALLBA
library. For the experiments, we have used the same pool of
machines as explained in Sect. 4.2. The PGA was executed
30 times, each one of these executions performing 500 iter-
ations.

Table 4 shows the results obtained by PGA together with
those obtained by PMSO for each dataset. Column 3 denotes
the number of executions in which the amount of genes in
the resulted subset is smaller than 5. The columns 4 and 5
indicate the average and standard deviation of the accuracy
rate and the number of genes in the final subsets, respec-
tively. In bold we mark the most accurate results. As we can
observe, PMSO obtains higher percentages of accuracy than
PGA in Colon, Lymphoma and Lung datasets. These differ-
ences in accuracy have been statistically assessed by using
the same procedure explained in Sect. 4.3. For Leukemia
dataset, the differences in the results of PGA and PMSO
are statistically negligible. Concerning the number of genes
in the resulting subsets, PMSO obtains the smaller subsets
in Colon, Lymphoma, and Leukemia. Only in Lung dataset,
PMSO obtained slightly larger subsets than PGA which al-
ways obtained subsets with 2 genes. In conclusion, we can
state that PMSO performs better than PGA in the scope of
the problem and 3 of the 4 datasets studied here.

4.6 PMSO versus other approaches

In our aim of providing a thorough assessment of our results,
in this section we additionally compare the results obtained
by our PMSO operating with 8 subswarms (8-S PMSO) with
six other approaches found in the literature. We must note
that this study is very heterogeneous because other authors
do not offer all the needed information and the algorithms
are quite varied; hence, an exhaustive comparison can not
be made. However, a simple comparison with other reported
results is still useful.

The values are reported in Table 5, in terms of the aver-
age of the accuracy and the number of genes in the final
subsets. In order to provide a more understandable com-
parison, these results are separated according to intervals
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of different numbers of genes (3 last columns). The accu-
racy reported by the 8-Swarm PMSO correspond to subsets
achieved with 20, 10, and ≤5 genes (#G). We saved the sub-
sets of genes generated with the specified lengths in each in-
dependent execution. As we can see, for subsets with more
than 10 genes, the accuracy rate reported by our 8-Swarm
PMSO is the best in 3 out of 4 datasets beating all the ex-
isting algorithms. In them, the only worse accuracy value
was found for the Leukemia dataset [20] but our algorithm
is finding solutions with a lower number of genes. With the
smaller subsets (≤ 5 genes), our approach reports the high-
est accuracy in Lymphoma, Leukemia and Lung. For Colon,
Liu et al. [26] reported slightly higher accuracies than 8-
Swarm PMSO, although with a larger number of genes. Fi-

Table 5 Comparison with six other works. Columns indicate the av-
erage of the accuracy and the number of genes in the final subsets. The
most accurate results are in boldface. Cells with unavailable values are
marked with “–”

Dataset Author Accuracy

(#G ≤ 5) (5 < #G ≤ 10) (#G > 10)

Colon [19] – 91.20(8) –

[20] – 99.41(10) –

[21] – – 94.12(37)

[26] 93.55(4) – –

8-S PMSO 87.61(3) 88.70(10) 94.22(20)

Lymp. [19] 93.31(5) – –

[25] – – 90.00(13)

8-S PMSO 97.87(3) 96.48(10) 98.70(20)

Leuk. [19] 91.50(3) – –

[20] – – 100(25)

[26] 87.55(4) – –

8-S PMSO 98.00(3) 96.31(10) 98.15(20)

Lung [6] 99.00(4) – –

[26] – 98.34(6) –

8-S PMSO 99.38(2) 99.47(10) 100(20)

nally, with subsets of between 5 and 10 genes, our approach
is the best in Lung, but with lower accuracy than in Huerta
et al. [20] and in Hernandez et al. [19] in Colon. Therefore,
we can claim that PMSO shows a competitive performance
in comparison with state of the art algorithms.

4.7 Biological analysis of the results

In this section we provide a biological analysis of the com-
puted gene subsets. Similar biological studies have been car-
ried out in relevant papers in the past [14, 34]. Then we show
the broad impact of using PMSO, able to compute biologi-
cal ensembles of genes that have been also suggested in the
domain (e.g. [16] and [8]).

In Fig. 5, a graphical distribution of the most frequently
obtained genes in 30 independent executions of the 8-Swarm
PMSO are reported. We have used the Leukemia dataset,
since it is the one commonly studied by other related works
in the literature. From this distribution, a brief selection of
the 11 most overlapped genes (the ones in bold with fre-
quency ≥3 in Fig. 5) out of all the computed subsets, are
described in Table 6. We can remark that all of these genes
were also reported in the list of the 30 most important genes
(selected from 7,129 ones in Leukemia) suggested in Golub
et al. [16]. Hence, we arrange the genes by means of the
rank assigned in the Golub et al. [16] list (column 1 in the
referenced table). This way, the gene U50136_rna1_at that
we obtained with frequency 7 was ranked in [16] in eighth
position. Moreover, the first ranked gene (X95735_at Zyxin)
in [16], that we obtained with frequency 5, is the only gene
that is capable of discerning between AML and ALL sam-
ples in just one split.

The genes reported in Fig. 5 (in boldface) were also
selected as the most informative genes in recent special-
ized works. Concretely, in [14] a Monte Carlo method
was used for feature selection and supervised classifica-
tion on Leukemia and Lymphoma datasets. In [34] a Near-
est Shrunken Centroid (NSC) was proposed to classify
the Leukemia dataset. Both works considered the genes
X95735_at and M23197_at as the most important ones,
which matches our main results.

Fig. 5 Distribution of the most
frequently obtained genes (in 30
independent runs) by our 8-S
PMSO on the Leukemia dataset
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Table 6 Top 11 genes ranked
by Golub et al. which were also
obtained with PMSO on the
Leukemia dataset

Rank Index Accession Gene description

1 4847 X95735_at Zyxin

5 1834 M23197_at CD33 antigen (differentiation antigen)

6 2020 M55150_at FAH Fumarylacetoacetate

8 3320 U50136_rna1_at Leukotriene C4 synthase (LTC4S) gene

15 4499 X70297_at CHRNA7 Cholinergic receptor, nicotinic, alpha polypeptide 7

14 2267 M81933_at CDC25A Cell division cycle 25A

16 5039 Y12670_at LEPR Leptin receptor

18 6376 M83652_s_at PFC Properdin P factor, complement

20 6041 L09209_s_at APLP2 Amyloid beta (A4) precursor-like protein 2

24 2354 M92287_at CCND3 Cyclin D3

28 461 D49950_at Liver mRNA for interferon-gamma inducing factor(IGIF)

Concerning the Lymphoma dataset, three of the most fre-
quently selected genes by 8-Swarm PMSO are: G1622X,
G1618X and G2399X. These genes were also reported in
the list of the 30 most important genes (selected from 4,026
ones in Lymphoma) suggested in Alizadeh et al. [8].

Moreover, genes selected from Leukemia and from Lym-
phoma in this work have been validated by means of the GO
system (the Gene Ontology http://www.geneontology.org/),
finding in all of them associations from Human proteins.
Therefore, the selection of validated genes, also discovered
in specialized publications in this area, leads us to claim the
great ability of our PMSO for selecting informative genes in
actual DNA Microarrays.

5 Conclusions

In this work, a Parallel Multi-Swarm Optimizer (PMSO) al-
gorithm is proposed for the first time for gene selection of
high dimensional Microarray datasets. PMSO has proven to
be both efficient and accurate. It is able to improve sequen-
tial algorithms, in terms of computational effort (Efficiency
of 85%). It was experimentally assessed with different pop-
ulation structures on four well-known cancer datasets, iden-
tifying specific genes that our work suggests as significant
ones. Concretely, with regard to the Leukemia and Lym-
phoma datasets, we could confirm that the most frequently
PMSO reported genes are also the most relevant genes sug-
gested in the original publications (Golub et al. and Alizadeh
et al., respectively) concerning these Microarrays. Compar-
isons with several recent state of the art methods also show
competitive results close to 100% classification rate and
very few genes per subset (4, 5 genes) obtained in 458 out
of 480 (30 × 16) independent executions.

As for future work, we are interested in developing and
testing several combinations of other metaheuristics with
classification methods in order to discover still unseen and
better subsets of genes using specific Microarray datasets. In

this sense, the utilization of ensemble classifiers could con-
tribute notably to the DNA Microarrays analysis.

Acknowledgements Authors acknowledge funds from the Spanish
Government and European FEDER under contract TIN2008-06491-
C04-01 (M* project, http://mstar.lcc.uma.es) and CICE, Junta de An-
dalucía under contract P07-TIC-03044 (DIRICOM http://diricom.lcc.
uma.es). José García-Nieto is supported by grant BES-2009-018767
from the MICINN.

References

1. Alba E (2002) Parallel evolutionary algorithms can achieve super-
linear performance. Inf Process Lett 82(1):7–13

2. Alba E (2005) Parallel metaheuristics: a new class of algorithms.
Wiley series on parallel and distributed computing. Wiley, New
York

3. Alba E, Dorronsoro B (2008) Cellular genetic algorithms.
Springer, Berlin

4. Alba E, Luque G (2005) Parallel metaheuristics. A new class of al-
gorithms. In: Measuring the performance of parallel metaheuris-
tics. Wiley series on parallel and distributed computing. Wiley,
New York, pp 43–62. Chap 2

5. Alba E, Troya JM (2001) Analyzing synchronous and asyn-
chronous parallel distributed genetic algorithms. Future Gener
Comput Syst 17(4):451–465

6. Alba E, García-Nieto J, Jourdan L, Talbi E-G (2007) Gene selec-
tion in cancer classification using PSO/SVM and GA/SVM hybrid
algorithms. In: IEEE congress on evolutionary computation CEC-
07, Singapore, Sep 2007, pp 284–290

7. Alba E, Luque G, García-Nieto J, Ordonez G, Leguizamón G
(2007) MALLBA: a software library to design efficient optimi-
sation algorithms. Int J Innov Comput Appl 1(1):74–85

8. Alizadeh A.A (2000) Distinct types of diffuse large b-cell lym-
phoma identified by gene expression profiling. Nature 11:403–
503

9. Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D,
Levine AJ (1999) Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750

10. Chang C-C, Lin C-J (2002) LIBSVM: a library for support vector
machines

11. Cho S, Won H (2007) Cancer classification using ensemble of neu-
ral networks with multiple significant gene subsets. Appl Intell
26:243–250

http://www.geneontology.org/
http://mstar.lcc.uma.es
http://diricom.lcc.uma.es
http://diricom.lcc.uma.es


266 J. García-Nieto, E. Alba

12. Clerc M (2005) Binary particle swarm optimisers: Toolbox,
derivations, and mathematical insights

13. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297

14. Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki
J, Komorowski J (2008) Monte Carlo feature selection for super-
vised classification. Bioinformatics 24(1):110–117

15. Fix E, Hodges JL (1951) Nonparametric discrimination: consis-
tency properties. Technical report, 4, US Air Force School of Avi-
ation Medicine, R Field, TX

16. Golub R, Slonim DK, Tamayo P, Huard C, Gaasenbeek M,
Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA,
Bloomfield CD, Lander ES (1999) Molecular classification of can-
cer: class discovery and class prediction by gene expression mon-
itoring. Science 286:531–537

17. Gordon GJ, Jensen RV, Hsiao L-L, Gullans SR, Blumenstock JE,
Ramaswamy S, Richards WG (2002) Translation of microarray
data into clinically relevant cancer diagnostic tests using gene
expression ratios in lung cancer and mesothelioma. Cancer Res
62:4963–4967

18. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for
cancer classification using support vector machines. Mach Learn
46(1–3):389–422

19. Hernandez J, Duval B, Hao J-K (2007) A genetic embedded ap-
proach for gene selection and classification of microarray data. In:
Marchiori E et al (eds) LNCS of EvoBio, pp 90–101

20. Huerta EB, Duval B, Hao J-K (2006) A Hybrid GA SVM ap-
proach for gene selection and classification of microarray data. In:
Rothlauf F et al (eds) LNCS of EvoWorkshops, vol 3907. Springer,
Berlin, pp 34–44

21. Juliusdottir T, Keedwell E, Corne D, Narayanan A (2005) Two-
phase EA/K-NN for feature selection and classification in cancer
microarray datasets. In: Comp int in bioinformatics and computa-
tional biology, pp 1–8

22. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proc of the IEEE international conference on neural networks,
vol 4, pp 1942–1948

23. Kennedy J, Eberhart R (1997) A discrete binary version of the par-
ticle swarm algorithm. In: Proceedings of the IEEE international
conference on systems, man and cybernetics, vol 5, pp 4104–4109

24. Kohavi J, John GH (1998) The wrapper approach. In: Feature se-
lection for knowledge discovery and data mining, pp 33–50

25. Liu J, Iba H (2002) Selecting informative genes using a mul-
tiobjective evolutionary algorithm. In: Proceedings of the IEEE
congress on evolutionary computation, CEC’02, May 2002, vol 1,
pp 297–302

26. Liu B, Cui Q, Jiang T, Ma S (2004) A combinational feature se-
lection and ensemble neural network method for classification of
gene expression data. BMC Bioinform 5:136–148

27. Moraglio A, Di Chio C, Poli R (2007) Geometric particle swarm
optimization. In: 10th European conference on genetic program-
ming (EuroGP 2007). Lecture notes in computer science, vol
4445. Springer, Berlin

28. Narendra M, Fukunaga K (1977) A branch and bound algorithm
for feature subset selection. IEEE Trans Comput 26:917–922

29. Pease AC, Solas D, Sullivan E, Cronin M, Holmes CP, Fodor S
(1994) Light-generated oligonucleotide arrays for rapid dna se-
quence analysis. In: Proc natl acad sci, vol 96., pp 5022–5026

30. Romdhane L, Shili H, Ayeb B (2010) Mining microarray gene ex-
pression data with unsupervised possibilistic clustering and prox-
imity graphs. Appl Intell 33:220–231

31. Salto C, Alba E (In press) Designing heterogeneous distributed
GAs by efficiently self-adapting the migration period. Appl Intell
(Online first). doi:10.1007/s10489-011-0297-9

32. Verma B, Hassan SZ (2010) Hybrid ensemble approach for clas-
sification. Appl Intell 34(2):258–278

33. Vinh L, Lee S, Park Y, dÁuriol B (In press) A novel feature selec-
tion method based on normalized mutual information. Appl Intell
(Online first). doi:10.1007/s10489-011-0315-y

34. Wang S, Zhu J (2007) Improved centroids estimation for the near-
est shrunken centroid classifier. Bioinformatics 32(2):972–979

35. Zhu H, Jiao L, Pan J (2006) Multi-population genetic algorithm
for feature selection. In: ICNC (2), pp 480–487

José García-Nieto received his
Master degree in 2008, and his En-
gineering degree in Computer Sci-
ence in 2006, both at the University
of Málaga, Spain. He is currently
working towards the Ph.D. degree
also at the University of Málaga. His
research topics are metaheuristics
and specially swarm intelligence,
and their application to complex
real-world problems in the domains
of telecommunications, bioinfor-
matics, realparameter, and multiob-
jective optimization. He has pub-
lished 6 articles in journals indexed

by JCR Thomson ISI, 3 articles in other international journals, 2 book
chapters, 4 papers in LNCS, and more than 20 referred international
and national conferences. He also collaborates in teaching activities at
the Dept. LCC (University of Málaga).

Enrique Alba had his degree in en-
gineering and Ph.D. in Computer
Science in 1992 and 1999, respec-
tively, by the University of Málaga
(Spain). He works as a Full Pro-
fessor in this university with dif-
ferent teaching duties: data com-
munications and evolutionary algo-
rithms at graduate and master pro-
grams, respectively. Dr. Alba leads
a team of 7 doctors and 8 engineers
(most of them Ph.D. candidates) in
the field of complex optimization.
In addition to the organization of
international events (IEEE IPDPS-

NIDISC, IEEE MSWiM, IEEE DS-RT) Dr. Alba has offered dozens
doctorate courses, multiple seminars in more than 20 international in-
stitutions and has directed several research projects (5 with national
funds, 5 in Europe and numerous bilateral actions). Also, Dr. Alba
has directed 6 contracts for innovation and transference to the industry
(OPTIMI, Tartessos, ACERINOX, ARELANCE) and at present he also
works as invited professor at INRIA and the Univ. of Luxembourg. He
is editor in several international journals and book series of Springer-
Verlag and Wiley, as well as he often reviews articles for more than
30 impact journals. He has published 50 articles in journals indexed
by Thomson ISI, 17 articles in other journals, 40 papers in LNCS, and
more than 200 refereed conferences. Besides that, Dr. Alba has pub-
lished 11 books, 39 book chapters, and has merited 6 awards to his
professional activities. Pr. Albas H index is 30, with more than 3000
cites to his works.

http://dx.doi.org/10.1007/s10489-011-0297-9
http://dx.doi.org/10.1007/s10489-011-0315-y

	Parallel multi-swarm optimizer for gene selection in DNA microarrays
	Abstract
	Introduction
	Preliminaries
	DNA microarrays
	Geometric particle swarm optimization

	PMSO for gene selection
	GPSO parallel model
	Gene selection and classification scheme
	Fitness function


	Experimental results
	Microarray datasets and data preprocessing
	Experimental setting
	Performance analysis
	Speedup analysis
	PMSO versus parallel island genetic algorithm
	PMSO versus other approaches
	Biological analysis of the results

	Conclusions
	Acknowledgements
	References


